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Abstract: Hydrogels based on natural and synthetic polymers and inorganic nanoparticles proved to
be a viable strategy in the fight against some Gram-positive and Gram-negative bacteria. Additionally,
numerous studies have demonstrated the advantages of using ZnO nanoparticles in medicine due to
their high antibacterial efficacy and relatively low cost. Consequently, the purpose of our study was to
incorporate ZnO nanoparticles into chitosan/poly (vinyl alcohol)-based hydrogels in order to obtain
a biocomposite with antimicrobial properties. These biocomposite hydrogels, prepared by a double
crosslinking (covalent and ionic) were characterized from a structural, morphological, swelling
degree, and mechanical point of view. FTIR spectroscopy demonstrated both the apparition of new
imine and acetal bonds due to covalent crosslinking and the presence of the sulfate group following
ionic crosslinking. The morphology, swelling degree, and mechanical properties of the obtained
hydrogels were influenced by both the degree of covalent crosslinking and the amount of ZnO
nanoparticles incorporated. In vitro cytotoxicity assessment showed that hydrogels without ZnONPs
are non-cytotoxic while the biocomposite hydrogels are weak (with 3% ZnONPs) or moderately (with
4 and 5% ZnONPs) cytotoxic. Compared to nanoparticle-free hydrogels, the biocomposite hydrogels
show significant antimicrobial activity against S. aureus, E. coli, and K. pneumonia.

Keywords: chitosan; poly (vinyl alcohol); ZnO nanoparticles; hydrogels; antimicrobial activities

1. Introduction

Bacterial infectious diseases represent a severe threat to human health and according
to data from the World Health Organization (WHO), millions of patients around the world
suffer from these bacterial infections each year [1]. The low effectiveness of antimicrobial
agents on antibiotic-resistant bacterial infections can lead to increased mortality rates and
prolonged hospitalization, but also to economic losses. Antibiotic abuse or incorrect use
can lead to changes in the ability of microorganisms to resist antibacterial agents, leading to
a decrease in their therapeutic efficacy [2,3]. Therefore, an increased number of researchers
are involved in finding a viable strategy for the treatment of antibiotic-resistant bacterial
infections by trying to explore new strategies without antibiotics or based on the admin-
istration of lower doses of drugs [1,4]. The development of new drug delivery systems
that can extend the half-life, improve the bioavailability, optimize the pharmacokinetics,
and decrease the dosing frequency of drugs may be a great solution to these issues [5].
Among various drug delivery systems, hydrogels can be a promising alternative due to
their multiple advantages: nontoxicity, biocompatibility, biodegradability, mechanical prop-
erties, bioresorption ability, increased degree of flexibility, good permeability, easy loading,
and controlled drug release but also due to their relatively low cost [6]. Hydrogels are
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three-dimensional hydrophilic polymer networks with a high capacity to absorb aqueous
solutions or biological fluids, which have a degree of flexibility similar to natural tissue
and that can generally be used for a wide range of bio-applications, such as drug delivery,
artificial muscle manufacturing, enzyme and cell immobilization, contact lenses, biosensor
membranes, artificial skin materials, and artificial heart liners [7,8]. Different types of
hydrogels with potential antibacterial properties in the treatment of bacterial infectious
(osteomyelitis [9], implant infections [10], skin wounds infectious [11], dental infectious,
ocular infections [12]) were already reported in the literature.

Among all types of hydrogels, hydrogels from natural polymers (chitosan, dextran,
gelatin, and hyaluronic acid) have great potential in medicine because of their biocompat-
ibility, biodegradability, mechanical properties, bioresorption ability, and relatively low
cost [13]. On the other hand, the synthetic polymers present a high chemical purity, repro-
ducible synthesis process, controllable degradation rate, very good mechanical properties,
and an important advantage to achieve a sustained release of the therapeutic agents over
a longer period of time in comparison with the natural ones [14,15]. Hydrogels based on
chitosan (CS) and poly (vinyl alcohol) (PVA) containing zinc oxide nanoparticles (ZnONPs)
have already been studied in the literature by the freezing-thawing cycle [16,17] or solution
casting method [18], but to the best of our knowledge, there are no studies on the obtaining
of this type of biocomposite hydrogel using the double crosslinking method. In this context,
the novelty of our study consists in the development of a new antibacterial biocomposite
hydrogel based on CS and PVA containing ZnONPs using the double crosslinking method
in order to reduce the quantity of the potential toxic covalent crosslinking agents.

Chitosan is a biocompatible, biodegradable, and non-toxic polysaccharide known
to have antimicrobial properties and very commonly used to obtain various controlled
release systems (hydrogels, nanoparticles, films, gels) with applications in medicine [19].
The main disadvantage of CS-based hydrogels is that they have low mechanical properties
that restrict their practical application. However, in order to overcome this drawback,
it is recommended to mix CS with synthetic polymers, such as PVA, which has good
mechanical strength and is generally considered as a safe and biocompatible, non-toxic,
and non-carcinogenic material that can be crosslinked by various physical and chemi-
cal methods to obtain hydrogels [20,21]. In our study, we used two crosslinkers for the
preparation of hydrogels, the covalent one, glutaraldehyde (GA), and the ionic one, mag-
nesium sulfate (MgSO4). In our previous studies, it was demonstrated that this double
crosslinking is a viable strategy for the preparation of hydrogels in the form of films or
micro/nanoparticles [22–26]. An important advantage of this strategy is that the amount of
covalent crosslinker, which can be potentially toxic for biomedical applications, is reduced
but it still allows hydrogels with good mechanical properties to be obtained. Moreover, it
is well known that the incorporation of inorganic antibacterial materials into hydrogels
leads to the development of complex systems with superior mechanical strength, increases
adhesion to surfaces (skin, soft tissues), and enhances antibacterial properties [27,28].
ZnONPs have been shown to possess great antibacterial activities on broad-spectrum
pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella en-
teritidis, Salmonella typhimurium, Pseudomonas fluorescens, Pseudomonas aeruginosa) [29–31].
The production of reactive oxygen species, loss of cellular integrity as a result of contact
between ZnONPs and the cell wall, internalization of ZnONPs, release of Zn2+ ions, and
photoconductivity are the most important antimicrobial mechanisms responsible for the
destruction of microorganisms [32].

The urgent need to combat bacterial resistance to antibiotics has led to an increase in
the research of alternative ways to control pathogenic attacks. Therefore, biocomposite
hydrogels were obtained in this study and their physicochemical, morphological, and
mechanical characterization and the in vitro cytotoxicity and antimicrobial activity against a
variety of microorganisms that included Gram-positive bacteria (Staphylococcus aureus) and
Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa)
were evaluated.
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2. Materials and Methods
2.1. Materials

Medium molecular weight CS, degree of deacetylation~75% (molecular weight:
100,000–300,000 g/mol), and PVA, 13,000–23,000 g/mol, 87–89% degree of hydrolysis
were purchased from Acros Organics BVBA (Geel, Belgium). Glutaraldehyde (GA) 50% in
aqueous solution, anhydrous ≥98.0% magnesium sulfate (MgSO4), and glycerine ≥99.7%
were purchased from VWR International. Zinc oxide nanopowder (ZnO, 99+%, 10–30 nm)
was obtained from US Research Nanomaterials, Inc. (Houston, TX, USA). Human der-
mal fibroblasts cell line (HDFa), Dulbeco’s modified Eagle’s Medium (DMEM), 10% fe-
tal bovine serum (FBS), antibiotics (streptomycin/penicillin), non-essential amino acids,
phosphate-buffered saline (PBS), and trypsin-EDTA, necessary for in vitro cytotoxicity
assay, were purchased from Thermo Fisher Scientific (Waltham, MA, USA). 3-(4,5-Dimethyl-
2-thia zolyl)-2,5-diphenyl-2H-tetrazolium bromide was obtained from Merck Millipore
(Darmstadt, Germany). Freeze-dried stains (Staphylococcus aureus-ATCC 25923, Escherichia
coli-ATCC 11775, Klebsiella pneumonia-ATCC BAA–1705, and Pseudomonas aeruginosa-ATCC
10145) were purchased from ATCC (Manassas, VA, USA). Chapman agar (mannitol salt
agar) was purchased from Oxoid (Hampshire, United Kingdom) and MacConkey agar
from G & M Procter Ltd. (Perth, UK). All other chemicals used were of analytical grade.

2.2. The Preparation of Biocomposite Hydrogels

Double crosslinked hydrogels were obtained according to the experimental program
provided in Table 1.

Table 1. The experimental design for double crosslinked hydrogels preparation.

Sample CS/PVA Ratio
(mg/mg)

GA/Free NH2 and OH
Ratio (mol/mol)

MgSO4 / Free NH2
(mol/mol)

ZnO Nanoparticles in
Relation to the Total Amount of Polymers (%)

C2P2.5

50/50

1/20

1/20

0
C2P2.10 1/10

C2P2.15 3/20

C2P2.20 1/5

C2P4.5

50/100

1/20

C2P4.10

1/10

0
C2P4.10.Z3 3
C2P4.10.Z4 4
C2P4.10.Z5 5

C2P4.15

3/20

0
C2P4.15.Z3 3
C2P4.15.Z4 4
C2P4.15.Z5 5

C2P4.20 1/5 0

Appropriate amounts of CS and PVA were dissolved separately, CS in 25 mL of
lactic acid solution 1% (w/v) and PVA in 25 mL of ultrapure water. After their complete
dissolution, the two solutions were mixed. The specific amount of GA required to crosslink
the free amine of CS and hydroxyl groups of PVA was added dropwise under vigorous
stirring over the mixed polymer solution. After 30 min, the MgSO4 solution was added,
stirring for a further 15 min. In order to increase the elasticity of hydrogels, 500 mg of
glycerine were added to the polymer solution and the mixture was to stirred for another
15 min. After that, the obtained mixture was carefully transferred into a square silicone
mold with a side of 6.5 cm. The samples were dried in the oven at 37 ◦C. After purification
(washing with ultrapure water), the hydrogels were stored in the desiccator, at a constant
humidity of 65%.

To impart antimicrobial properties to hydrogels, ZnO nanoparticles were added to
their composition. Specific amounts of inorganic nanoparticles (Table 1) were first added
to the PVA solution and allowed to stir overnight, at room temperature and in the dark.
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The next day, CS was added to this mixture and the same steps, as described above, were
followed in order to prepare biocomposite hydrogels.

2.3. Characterization of Biocomposite Hydrogels
2.3.1. The Structural Characteristics

The structural characteristics of the obtained hydrogels, the ionic and covalent new
bonds, and also the presence of ZnONPs were analyzed using a Bruker FT-IR Spectrometer
(VERTEX 70) equipped with a DLaTGS detector in the ATR operating mode (ZnSe crystal:
600–4000 cm−1).

2.3.2. The Morphological Characteristics

The morphological characteristics of the hydrogels were determined by scanning elec-
tron microscopy (SEM) using a Quanta 200 Scanning Electron Microscope (FEI Company,
Bruno, Czech Republic). The hydrogels were analyzed in the dry state. This analysis gave
us information on the porosity and homogeneity of hydrogels.

The shape and size of ZnONPs were assessed using a HITACHI-HT7700 Transmission
Electron Microscope (Hitachi High-Technologies Corporation, Tokyo, Japan).

The elemental composition of the hydrogels and the presence of ZnONPs were
demonstrated using a Verios G4 UC Scanning Electron Microscope from Thermo Scientific
(Bruno, Czech Republic) equipped with an Octane Elect Super SDD detector (an energy-
dispersive X-ray spectrometer from EDAX (Ametek, Mahwah, NJ, USA).

To provide electrical conductivity and to prevent charge buildup during exposure to
the electron beam, the samples were coated with 6 nm platinum using a Leica EM ACE200
Sputter coater.

2.3.3. The Swelling Behavior

The swelling behavior of the obtained hydrogels was evaluated, using the gravimetric
method, at 37 ◦C, in phosphate buffer solution (PBS) at pH 7.4, which mimics biological
fluids [22]. The dried square-shaped hydrogel samples (1 cm side) were first weighed
(Wd, mg) and then immersed in 20 mL of PBS. At predetermined times, the samples were
easily removed from PBS and placed on a filter paper. The excess PBS on the surface of
the hydrogels was easily absorbed with another filter paper and the swollen samples were
weighed (Wst). This procedure was repeated until equilibrium was reached. The swelling
degree at time t (Qt(%)) was calculated using the following equation:

Qt(%) =
Wst −Wd

Wd
× 100 (1)

2.3.4. Tensile Mechanical Measurements

Tensile mechanical measurements were performed using a Brookfield CT3 Texture
Analyzer (Texture Brookfield Engineering Laboratories Inc., Middleboro, MA, USA) with
a 50N load cell, at room temperature. The Roller Cam Accessory (TA-RCA) was used
for this test. The films (dry hydrogels kept in an atmosphere with 65% humidity) were
cut into rectangles (length 55 mm, width 10 mm) and were caught between two clamps
positioned at a distance of 30 mm. The thickness of the films was determined by taking
the average of the thickness, measured at five different places with a digital Caliper and
found to be around 0.5 mm in all the samples. The speed of the tensile measurements
was fixed at 0.5 mm/s. The stress (σ, N/m2) was calculated from the load divided by the
cross-sectional area of the undeformed sample, and the strain (ε) was determined as the
clamp displacement divided by the initial distance between the two clamps. The ultimate
strain and stress (from the point of failure) were determined, and the elastic modulus
values were calculated from the slope of the linear climbing tract of the stress–strain plot
within the fixed strain region 0.1–2%.
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2.3.5. The In Vitro Cytotoxic Effects

The in vitro cytotoxic effects of the hydrogels were assessed using human dermal
fibroblasts, adult, and cell line (HDFa). HDFa cells were cultured and prepared for testing
as described in our previous paper [33]. The sterilized hydrogel samples were cut with a
biopsy punch to obtain discs 4 mm in diameter and incubated with the HDFa cells. After
the incubation time (24 and 48 h), the cell viability was determined using the MTT assay.
All procedures were performed in a laminar flow hood (Lamil Plus 13, Kartusalan Metally
Oy). Each hydrogel sample was tested in triplicate in order to get the average percentage
and the standard error.

2.3.6. The Antimicrobial Activities

The antimicrobial activities of the obtained hydrogels without and with ZnONPs
were evaluated using the disk diffusion assay against 4 reference strains: S. aureus (Gram-
positive bacteria), E. coli, K. pneumoniae, and P. aeruginosa (Gram-negative bacteria). Com-
mercially available antimicrobial disks with Chapman agar for Gram-positive bacteria, and
MacConkey agar for Gram-negative bacteria were used for these tests. A suspension of
microorganisms (0.5 McFarland density) was inoculated on a Petri dish with the substrate.
The sterilized hydrogel discs (4 mm diameter) were firstly hydrated in sterile 0.9% saline
solution and then placed on the agar plate and incubated for 24 h at 37 ◦C. The antimicro-
bial activities were evaluated by measuring the diameters of the inhibition zones (din, mm)
according to the Kirby–Bauer method [34]. The experiments were repeated three times.
In order to evaluate the significance of their antibacterial activity against S. aureus, E. coli,
and K. pneumonia strains, as compared to samples without ZnONPs, the one-way ANOVA
statistical test was processed.

3. Results and Discussions
3.1. Preparation of Biocomposite Hydrogels

Double crosslinked biocomposite hydrogels, based on CS and PVA, with antimicrobial
properties were obtained by incorporating of ZnONPs into the polymer solution before
crosslinking. The preparation method and the structure of the obtained biocomposite
hydrogels is represented schematically in Figure 1. The reaction with GA takes place both
at the amino groups from the CS chain, with the formation of imine bonds, and at the
hydroxyl groups from PVA with the formation of new acetal-type bonds. Ionic crosslinking
was performed using MgSO4. Amino-type functional groups in the form of the ammonium
ion (belonging to CS) with the sulfate groups of the ionic crosslinking agent participate in
this reaction.
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Figure 1. The schematic representation of the preparation method and the structure of the obtained biocomposite hydrogel.

The optimization of the obtaining conditions and the addition of the plasticizer (glyc-
erine) led to the obtaining of hydrogels with improved mechanical properties. Additionally,
the addition of ZnO nanoparticles to the polymer mixture yielded new biocomposite
hydrogels with antimicrobial properties.
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3.2. Characterization of Biocomposite Hydrogels
3.2.1. The Structural Characteristics

The structural characteristics of the obtained hydrogels were determined using FT-IR spec-
troscopy. The FT-IR spectra of hydrogel samples with different degrees of covalent crosslinking
in the absence and in the presence of ZnONPs are shown in Figures 2 and 3, respectively.
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Figure 2. FT-IR spectra for hydrogel samples with different amounts of GA.

The obtained results confirmed, on the one hand, the reaction between the amino
functional groups from CS and the hydroxyl functional groups of PVA with the covalent
crosslinker (GA), and on the other hand, the reaction between the amino functional groups
from CS with the SO42− groups of the ionic crosslinker (MgSO4). The characteristic peaks
located around 3314, 3310, 3312, and 3303 cm−1, respectively, that were found in the spec-
trum from Figure 2, and peaks located between 3305 and 3323 cm−1 in the spectrum from
Figure 3 can be attributed to vibration stretching of secondary amine groups (NH) from
CS or hydroxyl groups (OH) from PVA that are involved in the intra- and intermolecular
bonds of hydrogen [35,36]. The absorption bands at about 2849 cm−1 and those between
2920 and 2940 cm−1 (Figures 2 and 3) correspond to the C-H bonds in the alkyl groups.
In the case of samples with a higher amount of GA (C2P2.15, C2P4.15, C2P4.15.Z3, and
C2P4.15.Z5), there is an intensification of the peak observed at 2849 cm−1. Absorption
bands around 1732 cm−1, which are found in the spectra of all analyzed samples, can be
associated with the stretching vibration of the —C=O group in PVA [23]. The peaks noticed
for all the analyzed samples at 1629–1646 cm−1 can be attributed to the imine group (C=N),
which is proof of the covalent crosslinking between GA and CS. The intense peak located
at approximately 1590 cm−1 indicates the presence of amine groups (NH2) specific for a
polysaccharide structure [24]. The absorption bands at 1035–1040 and 1082–1088 cm−1

can be attributed to the acetal groups (C-O-C) formed by crosslinking of PVA with GA.
The presence of ZnONPs into hydrogels was confirmed by the appearance of the peak
at approximately 774 cm−1, which corresponds to the ZnO stretching vibration [37]. The
absorption peaks ranging from approximately 654 to 667 cm−1 that are found in the spectra
of all analyzed samples can be attributed to the SO42− group, which evidenced the ionic
crosslinking between the functional groups of CS with MgSO4 [25].
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3.2.2. Morphological Characteristics
ZnO Nanoparticles

Figure 4A shows the transmission electron microscopy (TEM) image of the ZnONPs.
The TEM micrographs revealed that these nanoparticles, with a hexagonal shape, have
dimensions of approximately 30 nm in a dry state.
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EDAX elemental analysis of ZnONPs (Figure 4B) showed a large amount of Zn of
approximately 73%. The amount of O present in the EDAX spectrum was approximately
of 18%.

Biocomposite Hydrogels

The cross-section morphology of the hydrogel samples, with and without ZnONPs,
was studied by scanning electron microscopy (SEM). The micrographs presented in Figure 5
reveal a fibrillar structure probably due to the presence of polysaccharide (CS) in the sample
composition. It was also observed that the hydrogels become smoother when the amount
of covalent crosslinker increases. Increasing the amount of covalent crosslinker increases
the crosslinking density because an increased number of imine and acetal groups are
formed, and this makes the structure of hydrogels smoother. This is in accordance with the
swelling degree results, which reveal that as the amount of covalent crosslinker increases,
the degree of swelling decreases. The hydrogels have a homogeneous structure, due to
the strong covalent and ionic crosslinking, and the samples without ZnONPs did not
show porosity. On the contrary, it has been observed that the hydrogels obtained in the
presence of ZnONPs shows porosity, with the pores being small and irregular in size. At
this point, it is very important to mention that with the increase of the amount of ZnONPs,
a higher porosity was observed. Following the purifications, a part of the ZnONPs was
removed and the place occupied by these nanoparticles inside the hydrogel matrix led to
the appearance of pores and implicitly to the increase of the porosity. This effect is also
illustrated by the results of the EDAX tests.
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EDAX Analysis for Biocomposite Hydrogels

EDAX elemental analysis revealed the presence of ZnONPs in the analyzed biocom-
posite hydrogels (Figure 6).
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The EDAX images also illustrated the presence of large amounts of C and O. The final
content of ZnONPs in the tested hydrogels is presented in Table 2.

Following the calculations performed based on the EDAX analysis (Figure 4B, Table 2
and Table S1), it was found that the remaining percentages of ZnNPs in biocompos-
ite hydrogels were approximately 70% in C2P4.10.Z3 hydrogel, approximately 93% in
C2P4.10.Z5 hydrogel, approximately 71% in C2P4.15.Z3 hydrogel, and approximately 95%
in C2P4.15.Z5 hydrogel. The obtained results demonstrate that the percentage of ZnONPs
in the system is higher when the covalent crosslinking density increases (the amount of
GA increases). After the purification step, a small amount of ZnONPs was removed from
the biocomposite hydrogel network, thus explaining the decrease in the percentage of
ZnONPs in the hydrogel compared to the initial one. The elemental composition of all
tested samples is given in the Supplementary Materials (Table S1).

Table 2. Content of ZnONPs in tested hydrogels.

Sample C2P4.10 C2P4.10.Z3 C2P4.10.Z5 C2P4.15 C2P4.15.Z3 C2P4.15.Z5

Initial content of ZnONPs (w/w %) 0 3 5 0 3 5

Final content of ZnONPs (w/w %) 0 2.09 4.63 0 2.14 4.74

3.2.3. Swelling Behavior

The swelling behavior of the obtained hydrogels was investigated in slightly alkaline
medium (PBS at pH 7.4) in order to evaluate their potential to be used locally in biomed-
ical applications for the treatment of bacterial infections. The swelling of the hydrogels
was caused by the penetration of the aqueous solution, by diffusion, into the meshes of
the polymer network. The amount of aqueous solution penetrating inside the hydrogel
depends on the membrane elasticity, which can influence the diffusion rate. The swelling
behavior of hydrogels was influenced by both the amount of covalent crosslinking density
(Figure 7A) and the amount of ZnONPs (Figure 7B). As expected, it was found that the
increase of the amount of covalent crosslinker (increase of the ratios between GA and the
functional groups of the two polymers) led to a decrease of the swelling degree (Figure 7A).
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This behavior can be attributed to the increase of the crosslinking density. Additionally,
increasing the amount of ZnONPs in hydrogels also leads to a decrease of the swelling
degree (Figure 7B). This behavior can be attributed to the decrease of the space inside the
hydrogel network due to the increase of the amount of ZnONPs present in the system.
Therefore, the amount of water that penetrated the hydrogel network was reduced.
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It should also be mentioned that after 6 h, all the samples reached the maximum
swelling degree. In fact, between 6 and 24 h, there were no changes in the samples’
swelling degree as can be seen in Figure 7.

3.2.4. Tensile Mechanical Measurements

The mechanical properties of hydrogels are one of most important factors for estab-
lishing their future biomedical applications. Tensile properties of the dry hydrogels/films
were investigated, and the obtained stress–strain curves are presented in Figure 8A,B. The
tensile strength and modulus of elasticity are plotted in Figure 8C,D. Glycerine, a typical
plasticizer for hydrophilic films, was used to obtain films that are not brittle, with an
elongation at break between 20 and 50%. The tensile strength ranged from 2.3 to 5.6 MPa
and the elastic modulus from 6 to 30 MPa, but the composition and the crosslinking density
influenced the mechanical properties of the hydrogel network.

The increase of the crosslinking leads to a decrease in the free volume between the
chains, with a consequent stiffening of the network. Therefore, the crosslinking determines
an enhancement in the tensile strength and Young’s modulus and a decrease of the elonga-
tion at break [38–41]. This behavior was also observed for the double crosslinked PVA/CS
hydrogels: the modulus of elasticity and tensile strength increased in the C2P2 series
(Figure 8C) and C2P4 series (Figure 8D) with the increase of the GA content. The increase of
the PVA content in the C2P2 to C2P4 samples determined an increase of the tensile strength
and Young’s modulus, which is due to the intermolecular interaction between PVA and CS
chains through hydrogen bonds [42,43] but can also be explained by the higher chemical
crosslinking of the C2P4 networks compared to C2P2 networks.

When ZnONPs were incorporated into the hydrogels, the tensile strength and elonga-
tion at break decreased compared with the sample without metal oxide NPs (Figure 8B,D).
A higher effect was observed for the C2P4.15.Z3 sample, but with a further increase
of the ZnONPs concentration, the mechanical properties were improved. It is known
that the addition of metallic oxide nanofillers in CS films generally improved their me-
chanical properties [44,45], but in this case, ZnONPs probably interfere with the ionic
crosslinking. However, the hydrogels with ZnONPs had a lower modulus of elasticity,
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compared with C2P4.15. The higher elasticity of the network is attributed to the fact that
ZnONPs weakened the intermolecular hydrogen bonds between CS chains or between CS
and PVA [45,46].
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After analyzing the obtained results, two of the samples with the good mechanical
properties, C2P4.10 and C2P4.15, were selected for subsequent cytotoxicity and antimicro-
bial testing.

3.2.5. The In Vitro Cytotoxic Effects

Cytotoxicity tests provide necessary information in order to evaluate the biocompat-
ibility of materials that will be used in biomedical applications. For in vitro cytotoxicity
assessment of hydrogels (in the absence and in the presence of ZnONPs), human dermal
fibroblast cells (HDFa) were used as model cells. The effect of hydrogels on the viability
of fibroblasts after incubation periods of 24 and 48 h was evaluated using the MTT colori-
metric assay and the obtained results are shown in Figure 9. The MTT assay was adapted
according to the protocol described by Mosmann [47] and calculates cell viability based on
mitochondrial function by reducing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) to a colored insoluble formazane salt.

As can be seen from Figure 9, the viability of cells in contact with hydrogels without
ZnONPs was around 89% after 24 h and around 84% after 48 h, which proves that they
are non-cytotoxic [48,49]. The addition of an increasing amount of ZnONPs in hydrogels
has led to a decrease in cell viability. In the case of hydrogels with ZnONPs, cell viability
after 24 h of incubation was between 62% and 78%, demonstrating that these samples show
a weak cytotoxicity. After 48 h of incubation, there was a decrease in cell viability, with
only the samples with 3% ZnONPs remaining in the weak cytotoxic range, while the others
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decreased in the moderate cytotoxic range. A small decrease in viability was observed
when the amount of covalent crosslinker (GA), used to obtain hydrogels, was increased.
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Figure 9. In vitro cell viability of C2P4.10 and C2P4.15 hydrogels obtained in the absence and in the presence of ZnONPs at
24 and 48 h after incubation.

There are studies in the literature that have evaluated the cytotoxic effect of ZnONPs
and found that they are toxic to several cell types [50,51]. Therefore, their incorporation
into a hydrogel matrix is a solution to reducing their cytotoxic effect, as it was concluded
by different studies where hydrogels with ZnONPs based on bacterial cellulose (CS) [52]
or sodium alginate [53] were tested.

3.2.6. The Antimicrobial Activities

Agar disk-diffusion testing is the method used in some clinical microbiology labora-
tories for routine antimicrobial susceptibility testing [54]. This method was also used in
this study in order to evaluate the antimicrobial activity for the hydrogels based on CS and
PVA, obtained in the absence and in the presence of ZnONPs. Typical reference strains
of S. aureus (Gram-positive bacteria) and E. coli, K. pneumoniae, and P. aeruginosa (Gram-
negative bacteria) were used for these tests (Figure 10). Four samples were placed on each
agar plate: the hydrogels without ZnONPs (A-C2P4.10 or B-C2P4.15) and three hydrogel
samples with different concentrations of ZnONPs (3% ZnONPs for E-C2P4.10.Z3 or G-
C2P4.15.Z3; 4% ZnONPs for F-C2P4.10.Z4 or H-C2P4.15.Z4; 5% ZnONPs for C-C2P4.10.Z5
or D-C2P4.15.Z5).

The diameter of the inhibition zone (diz), obtained after 24 h of incubation at 37 ◦C, was
transcribed as “−” when no antimicrobial effect was noticed, “+” when the diz is <15 mm,
and “++” when the diz is between 15 and 25 mm [55]. These results are presented in Figure 10.

As CS and ZnONPs have both antibacterial properties, a synergistic effect might be
expected. Antibacterial mechanisms for both materials have been previously reported in the
literature [56–59]. Consequently, hydrogel samples containing ZnONPs show significant
antibacterial properties, while samples without ZnONPs have no detectable antimicrobial
activity (Figure 11). As the concentration of ZnONPs increases, the zone of inhibition
also increases. Therefore, the highest antimicrobial activity was observed for samples
C2P4.10.Z5 (C) and C2P4.15.Z5 (D) (hydrogels with 5% ZnONPs) against S. aureus. These
hydrogel samples also showed an antimicrobial effect against E. coli and K. pneumonia.
The diameter of the inhibition zone was smaller in the case of samples C2P4.10.Z4 (F)
and C2P4.15.Z4 (H) (hydrogels with 4% ZnONPs), with these having an antimicrobial
effect against E. coli. Sample H, which was obtained with a higher amount of covalent
crosslinker, also has antimicrobial activity against S. aureus. However, it appeared that no
hydrogel sample showed antimicrobial activity on the P. aeruginosa strain. Similar results
were observed in studies conducted by other researchers [29].
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Figure 11. Antimicrobial effect of C2P4-10 (A), C2P4-15 (B), C2P4-10.Z5 (C), C2P4-15.Z5 (D), C2P4-10.Z3 (E), C2P4-10.Z4 (F),
C2P4-15.Z3 (G), and C2P4-15.Z4 (H) hydrogels against S. aureus, E. coli, P. aeruginosa, and K. pneumoniae.

The inhibition zone diameter data from the antibacterial tests for the samples contain-
ing 4 and 5% ZnONPs were processed through the one-way ANOVA statistical test in order
to evaluate the significance of their antibacterial activity against S. aureus (Gram-positive
bacteria), E. coli, and K. pneumonia (Gram-negative bacteria) strains, as compared to the
samples without ZnONPs (Table S2).
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Since, for all bacteria strains, the significance level is lower than 0.05, it can be stated
that the samples containing 4 and 5% ZnONPs have a significant influence on the inhibition
of the growth of tested bacteria.

4. Conclusions

Within this study, a new attempt was made in order to obtain double crosslinked
hydrogels, based on CS and PVA with embedded ZnONPs, for the potential treatment of
bacterial infections. Both the successful crosslinking of the two polymers and the presence
of ZnONPs in the biocomposite hydrogel structure were demonstrated by FT-IR spec-
troscopy. The morphology, swelling, mechanical properties, cytotoxicity, and antimicrobial
effect were influenced by the covalent crosslinking degree and the amount of ZnONPs
incorporated into hydrogels. The porosity of the hydrogels increased with an increase of
the concentration of ZnONPs. On the contrary, the swelling degree decreased when the
concentration of the ZnONPs increased. A similar trend was noticed for the cytotoxicity
tests after 24 and 48 h. In vitro cytotoxicity tests have shown that only hydrogels without
ZnONPs are non-toxic to fibroblast cells. The biocomposite hydrogels proved to be weak
(with 3% ZnONPs) and moderately (with 4 and 5% ZnONPs) cytotoxic.

The increased concentration of GA led to increased mechanical properties, but when
ZnONPs were incorporated into the hydrogels, the tensile strength and elongation at
break decreased compared with the sample without metal oxide NPs. The higher effect
was observed for the C2P4.15.Z3 sample, but with a further increase of the ZnONPs
concentration, the mechanical properties were improved. However, the hydrogels with
ZnONPs had a lower modulus of elasticity, compared with the sample without metal
oxide NPs.

In contrast to samples without ZnONPs, hydrogel samples containing 4 and 5%
ZnONPs showed significant antibacterial activity against S. aureus (Gram-positive bacteria),
E. coli, and K. pneumonia (Gram-negative bacteria) strains with an inhibition zone between 15
and 20 mm. The ANOVA test showed that these results are significant (significant level < 0.05).

The obtained results are promising and therefore the obtained biocomposite hydrogels
will be further investigated by in vivo analyses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13122079/s1. Table S1: EDAX elemental analysis for biocomposite hydrogels;
Table S2: ANOVA statistical test for evaluation of antibacterial activity.
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