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Embryonic expression of priapulid Wnt genes
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Abstract
Posterior elongation of the developing embryo is a common feature of animal development. One group of genes that is involved
in posterior elongation is represented by the Wnt genes, secreted glycoprotein ligands that signal to specific receptors on
neighbouring cells and thereby establish cell-to-cell communication. In segmented animals such as annelids and arthropods,
Wnt signalling is also likely involved in segment border formation and regionalisation of the segments. Priapulids represent
unsegmented worms that are distantly related to arthropods. Despite their interesting phylogenetic position and their importance
for the understanding of ecdysozoan evolution, priapulids still represent a highly underinvestigated group of animals. Here, we
study the embryonic expression patterns of the complete sets of Wnt genes in the priapulids Priapulus caudatus and Halicryptus
spinulosus. We find that both priapulids possess a complete set of 12 Wnt genes. At least in Priapulus, most of these genes are
expressed in and around the posterior-located blastopore and thus likely play a role in posterior elongation. Together with
previous work on the expression of other genetic factors such as caudal and even-skipped, this suggests that posterior elongation
in priapulids is under control of the same (or very similar) conserved gene regulatory network as in arthropods.
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Introduction

Wnt signalling is crucial for animal development, as it is in-
volved in the regulation of numerous developmental process-
es such as cell proliferation and cell migration, organogenesis
and pattern formation. Wnt genes encode secreted glycopro-
tein ligands that bind to various transmembrane receptors such

as seven-pass Frizzled receptors and the receptor tyrosine ki-
nases Ryk and Ror. Binding of Wnt(s) to their receptors in-
duces intracellular gene cascades that lead (in the canonical
Wnt pathway) to the release of beta-catenin which then regu-
lates the transcription of Wnt target genes (reviewed in e.g.
Logan and Nusse 2004, Croce and McClay 2008, Wiese et al.
2018). Wnt genes are subdivided into 13 classes, of which 12
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are present in protostomian animals; the Wnt3-class was lost
in the lineage leading to Protostomia (e.g. Kusserow et al.
2005; Cho et al. 2010; Janssen et al. 2010). One of the key
functions of Wnt signalling is its general involvement in pos-
terior growth in animals (e.g. Yazawa et al. 2009; McIntyre
et al. 2013; Scimone et al. 2016; Kawai et al. 2016; Leclère
et al. 2016). Hence, in “overtly segmented” animals, i.e. ver-
tebrates, annelids and panarthropods, Wnt signalling is a key
component of posterior segment addition (reviewed in
Aulehla and Herrmann 2004, Murat et al. 2010, Cho et al.
2010, Janssen et al. 2010, Pruitt et al. 2014).While the specific
gene regulatory networks (GRN) controlling posterior growth
and segmentation can differ between different groups of ani-
mals, and in some cases even between closely related species
of the same group, Wnt signalling seems to be always in-
volved. However, the molecular interactions ofWnt signalling
in posterior growth are far from being resolved. In many
groups of animals, Wnt signalling appears to interact with
other conserved posterior factors such as Even-skipped
(Eve), Caudal (Cad) and Delta-Notch (Dl/N) signalling in
t h e f o rm o f p a r t i a l l y c o n s e r v e d GRNs ( e . g .
Chawengsaksophak et al. 2004; de Rosa et al. 2005;
Shimizu et al. 2005; Chesebro et al. 2013; McGregor et al.
2009; Oberhofer et al. 2014). A fact that complicates the un-
derstanding of posterior Wnt signalling is that different com-
binations of Wnt genes (and other components such as Wnt
receptors) are involved in posterior Wnt signalling where they
play redundant and/or complementary function(s). In arthro-
pods for example, several Wnt genes are frequently expressed
in the posterior-located segment addition zone from where
new segments are added to the growing embryo (e.g.
Janssen et al. 2010; Hayden and Arthur 2014; Constantinou
et al. 2016), and functional studies revealed that at least some
of them (as well as other factors ofWnt signalling) likely fulfil
combinatorial and/or redundant function(s) in posterior elon-
gation and segmentation (e.g. Bolognesi et al. 2008;
Beermann et al. 2011; Murat et al. 2010).

Another conserved function of Wnts is their role in mor-
phological and molecular border formation (and maintenance)
within the developing embryo. In the fly Drosophila
melanogaster, other arthropods and even tardigrades and on-
ychophorans,wg is likely involved in maintaining (para-) seg-
mental boundaries and defining each segment’s polarity
(Sanson 2001; Janssen et al. 2004; Gabriel and Goldstein
2007; Eriksson et al. 2009), and gene expression data on other
Wnt genes suggest their involvement in intrasegmental pat-
terning and segment border formation/maintenance (e.g.
Janssen et al. 2010; Hogvall et al. 2014; Hayden and Arthur
2014; Constantinou et al. 2016).

Priapulids (penis worms) represent a group of unsegmented
ecdysozoan animals closely related to kinorhynchs (mud
dragons) and loriciferans (brush heads), which together com-
prise the Scalidophora (Schmidt-Rhaesa 1998, Nielsen 2012,

Borner et al. 2014, reviewed in Giribet and Edgecombe 2017).
Scalidophorans represent a group of ecdysozoans that may
represent the sister group to all other ecdysozoans including
arthropods and their close relatives (Campbell et al. 2011;
Borner et al. 2014; Laumer et al. 2015) (Fig. 1(A)).
However, note that ecdysozoan phylogeny is still not fully
resolved (reviewed in Giribet and Edgecombe 2017).

Here, we investigate the Wnt gene complement, the stage-
specific embryonic expression profiles and the embryonic ex-
pression patterns of the complete set of Wnt genes in the
priapulid worm Priapulus caudatus (Fig. 1(B)). Our data re-
veal that several Wnt genes are expressed in specific posterior
patterns, strongly suggesting a conserved role of Wnt genes in
posterior growth in members of this group of ecdysozoan an-
imals. However, none of the investigated Wnt genes is
expressed in a pattern that could possibly represent a molecular
remnant of body segmentation, or border formation in general.

Methods

Animal collection, fertilisation and embryo fixation

Sexually mature specimens of Priapulus caudatus were col-
lected from Gullmarsfjorden (Fiskebäckskil, Sweden) in the
area between Lysekil and Fiskebäckskil close to the Sven
Lovén Centre for Marine Infrastructure. Mud was collected
with a ring dredge from depths between approximately 30 and
60 m. Gonads of mature specimens were dissected and kept in
filtered deep seawater (fDSW). The oocytes were then re-
leased by shaking the ovaries and after cleaning with fDSW;
active sperm from several males was used for in vitro
fertilisation. Fertilised eggs were kept in Petri dishes in filtered
fDSWand incubated at a constant temperature of 10 °C. The
eggs were washed daily with fresh fDSW to keep dishes free
from overgrowth with bacteria, fungi and protozoans. Around
10 days after fertilisation, larvae hatched and these so-called
hatching larvae then developed into the first lorica larvae after
1 week (Wennberg et al. 2009). Batches of embryos were
collected of each developmental stage (defined as day after
fertilisation (DAF)) for either RNA extraction or in situ
hybridisation. These latter embryos were permeabilised prior
to fixation with 0.05% thioglycolate, 0.01% pronase in fDSW
for 45 min at 10 °C. After several washes in fDSW, the em-
bryos were fixed in 4% paraformaldehyde in fDSWfor 1 h at
room temperature, followed by several washes in phosphate-
buffered saline with 0.1% Tween-20 (PBST). Samples fixed
for gene expression studies were dehydrated in 50% methanol
in PBST, washed once in 100% methanol and then stored in
methanol at − 20 °C. Embryos used for RNA extraction and
subsequent RT-PCRs were shock-frozen at − 80 °C and stored
until RNAwas extracted.
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Phylogenetic analysis

Reciprocal BLAST search using Drosophila melanogaster
w i n g l e s s /Wn t 1 (wg /Wn t 1 ) a g a i n s t s e q u e n c e d
transcriptomes of the priapulids Priapulus caudatus
(SRX507009) and Halicryptus spinulosus (SRX1343820)
identified 12 Wnt-like genes per species. Amino acid se-
quences of the Wnt genes from Priapulus, Halicryputs,
various arthropods, the onychophoran Euperipatoides
kanangrensis, the annelid Platynereis dumerilii and of
Homo sapiens were aligned using T-Coffee followed by
manual editing in SeaView (Notredame et al. 2000; Gouy
et al. 2010) with default parameters in MacVector v12.6.0
(MacVector, Inc., Cary, NC). The phylogenetic analysis
was conducted using MrBayes (Huelsenbeck and
Ronquist 2001). A fixed WAG amino acid substitution
model with gamma-distributed rate variation across sites
(with four rate categories), unconstrained exponential prior
probability distribution on branch lengths and exponential
prior for the gamma shape parameters for among-site rate
variation were applied. Gene topology was calculated

using 13,000,000 cycles for the Metropolis-Coupled
Markov Chain Monte Carlo (MCMCMC) analysis (four
chains; chain-heating temperature of 0.2). Markov chains
were sampled every 200 cycles and default settings of 25%
of samples were applied as burn-in. Clade support was
calculated with posterior probabilities in MrBayes.

Stage-specific RNA-seq analyses

Following the collection and fertilisation procedures
above, we obtained bulk embryonic samples for a series
of developmental stages that include oocytes and embryos
at days 1, 3, 5, 7 and 9 post fertilisation. For this time
course, we generated two biological replicates each com-
ing from a common fertilisation using eggs from a single
female individual and a sperm mix from different males. At
least a thousand embryos were manually picked and trans-
ferred directly to RNAlater. We used TRIZOL (Invitrogen)
to extract total RNA from each time point and sequenced
single-end 50 base-pair reads of eleven samples using a
single Illumina HiSeq2000 lane at the GeneCore (EMBL

Fig. 1 (A) Simplified cladogram
representing the phylogenetic
relationships of different
ecdysozoan groups (after
Campbell et al. 2011). (B) Adult
specimen of the priapulid worm
Priapulus caudatus next to a
centimetre scale bar. Note subdi-
vision of the adult body into the
anterior introvert, the trunk and
the posterior caudal appendage
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Genomics Core Facilities). One replicate of the 7-day sam-
ple failed at library preparation and was not included. We
used kallisto (Bray et al. 2016) to quantify the transcript
abundances by pseudoaligning the reads to a reference
transcriptome (SRA Accession: SRX507009).

Gene cloning and whole-mount in situ hybridisation

Total RNA from a mix of developmental stages of Priapulus
caudatus embryos and larvae was extracted using TRIZOL
(Invitrogen). All investigated gene fragments were amplified
by means of RT-PCR from total RNA that was reverse tran-
scribed into cDNA. Gene-specific primers were designed
based on available sequence information. For all genes, nested
PCRs were conducted with internal primers, using a first PCR
as template (see Supplementary Table 1 for primer sequence
information). Amplified gene fragments were cloned into the
PCRII vector (Invitrogen) and sequenced on an ABI3730XL
automatic sequencer (Macrogen, Seoul, South Korea).
Identification numbers are summarised in Supplementary
Table 2.

Single colorimetric in situ hybridisation was performed as
described in Martín-Durán et al. (2012).

Data documentation

Prior to being photographed, embryos were incubated in 70%
glycerol and mounted on glass slides under a thin glass cover.
A Leica DFC550 digital camera mounted onto a Leica Leitz
DMRXE dissection microscope was used. Whenever needed,
contrast and brightness were adjusted using the image-
processing software Adobe Photoshop CS6 for Apple
Macintosh (Adobe Systems Inc.).

Results

Sequence analysis

Phylogenetic analysis confirms that the identified genes fall
into the expected 12 classes of Wnt genes (Fig. 2(A)), show-
ing that priapulids possess the full set of Wnt genes reported
for protostomes (e.g. Janssen et al. 2010) (Fig. 2(B)). All
priapulid Wnt genes (except Wnt16) cluster with absolute
support (100%) with confirmed Wnt orthologs from arthro-
pods, an onychophoran (Euperipatoides kanangrensis), an an-
nelid (Platynereis dumerilii) and human (Homo sapiens).
Support for a monophyletic clade containing all Wnt16
orthologs is sufficiently high (81.5%) to suggest that this rep-
resents a monophyletic group as well.

Expression analysis based on stage-specific
quantitative RNA sequencing

We used stage-specific RNA-seq data from a time course in-
cluding six different developmental stages (oocytes, 1 day af-
ter fertilisation (DAF), 3DAF, 5DAF, 7DAF, and 9DAF) to
analyse the quantitative expression profile of Priapulus Wnt
genes over time. Our data revealed that none of theWnt genes
is maternally expressed, and none of the Wnt genes is active
early during development (1DAF) (Fig. 3). During gastrula-
tion (3 DAF), however, all Wnt genes except forWnt7,Wnt9,
Wnt10 andWnt11 are transcribed at a significant level (Fig. 3).
At 5DAF, Wnt10 appears to be transcribed (albeit at a signif-
icantly lower level than the other active Wnt genes). All nine
activeWnt genes,Wnts 1, 2, 4, 5, 6, 8, 10, 16 and A, appear to
be expressed at all subsequent developmental stages until the
pre-hatching stage.

Expression of Priapulus caudatus Wnt genes

All priapulidWnt genes for which we obtained reliable whole-
mount in situ hybridisation expression data are detected at the
posterior pole of the developing embryo, close to, in or around
the blastopore (cf. expression of wg/Wnt1 in the blastopore
(Martín-Durán and Hejnol 2015)). We obtained data for late
gastrula-stage embryos and so-called introvertula-stage em-
bryos. The latter embryos are characterised by the formation
of a groove that separates the posterior trunk from the anterior
introvert (proboscis). Note that some embryos are slightly
malformed as a result of the fixation procedure.

Wnt4 is expressed in the form of two domains, each on
either side of the blastoporal region (Fig. 4(A, B)). Since de-
termination of orientation of the embryo with respect to the
left-right (LR) and dorsal-ventral (DV) axes is not possible
due to the lack of morphological markers, we cannot decipher
whether the expression domains are lateral to either side of the
blastopore, or ventral and dorsal to the blastopore (although

�Fig. 2 (A) Phylogenetic analysis ofWnt genes. Bayesian analysis ofWnt
amino acid sequences. Support of each node is given as posterior
probability. Included species are as follows: Achaearanea (syn.
Parasteatoda) tepidariorum (At), Acyrthosiphon pisum (Ap),
Cupiennius salei (Cs), Daphnia pulex (Dp), Drosophila melanogaster
(Dm), Euperipatoides kanangrensis (Ek), Glomeris marginata (Gm),
Halicryptus spinulosus (Hspi), Homo sapiens (Hs), Ixodes scapularis
(Is), Platynereis dumerilii (Pd), Priapulus caudatus (Pc) and Tribolium
castaneum (Tc). (B) Wnt gene complement in arthropods, an onychoph-
oran and priapulids. Grey boxes indicate lost Wnt subfamilies. Question
marks in grey boxes indicateWnts that have not been found in sequenced
embryonic transcriptomes. Duplicated Wnts are represented by overlap-
ping boxes. (E) Unpublished embryonic expression pattern (R. Janssen);
E, published embryonic expression pattern; e, embryonic expression has
been investigated but specific expression patterns were not detected; F,
functional data are available
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we assume lateral expression rather than dorsal and ventral
domains).

Wnt6 is expressed in a very specific ectodermal pattern in the
posterior of the embryo. Expression is in and around the blas-
topore. Most significant, however, are the six dot-like expres-
sion domains surrounding the blastopore at the edge of a broad
region of expression (Fig. 4(C, D)). This expression is similar to
that of FGF8/17/18 in the anterior of the developing embryo
(Martín-Durán and Hejnol 2015) and may be correlated with
the development of the short and/or long retractor muscles.

Wnt8 is expressed in the form of a single strong posterior
domain (Fig. 4(E, F)). However, this domain is restricted to one
side of the blastopore opening. Again, owing to the lack of
morphological landmarks, we cannot determine if this is dorsal
or ventral (we do not assume left-right asymmetric expression).

Wnt10 is expressed in the form of a small domain in the
blastopore which is smaller than that of the other posteriorly
expressed Wnt genes and is restricted to the blastoporal open-
ing (Fig. 4(G, H)).

Expression of Wnt16 is surrounding the blastopore in the
form of a solid circular and broad domain (Fig. 4(I, J)).

WntA is expressed in the posterior half of the embryo, and
thus in a much greater posterior domain as the other Wnt genes
(Fig. 4(K, L)). The expression ofWntA appears to be stronger in
more posterior tissue, while expression towards its anterior bor-
der of (detectable) expression is weaker, possibly forming a
short-range posterior to anterior gradient (Fig. 4(L)).

Discussion

Restricted expression of Wnt genes early
during priapulid development

Of the 12 priapulid Wnt genes identified in sequenced
transcriptomes, nine are expressed during embryonic develop-
ment until 9 days after fertilisation (the first larval stage is
reached at approximately 10 days after fertilisation
(Wennberg et al. 2008)). Of these nine expressed Wnt genes
(see Fig. 3), we retrieved reliable whole-mount in situ expres-
sion data for seven genes. The only Wnt genes that show
expression in the stage-specific RNA-seq time course, and
for which we could not obtain any in situ hybridisation signal,
areWnt2 andWnt5. One explanation could be that these genes
are ubiquitously expressed at a low level. In such a case, it

Fig. 3 Expression of Wnt genes during P. caudatus embryogenesis. The estimated counts were averaged between replicates and summed between
putative isoforms, and log transformed to visualise the gene-level abundances across developmental stages

�Fig. 4 Embryonic expression patterns of Priapulus caudatusWnt genes.
In all panels, asterisks mark the posterior pole of the embryo. The first
column shows embryos in posterior view (A, E, I, M, Q, U); the second
column shows embryos in lateral view (B, F, J, N, R, V); the third column
shows schematic expression in lateral view (cf. second column); the
fourth column shows schematic expression in posterior–lateral view
(the white arrows indicate the AP axis). Roman numerals in panel E
indicate six dot-like expression domains surrounding the posterior pole
of the embryo. In all data panels, the developmental stage is indicated.
The arrows in panels showing the introvertula stage in lateral viewpoint to
the groove separating the introvert from the trunk
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would be difficult to distinguish their expression pattern from
background signal, a common problem in Priapulus in situ
hybridisation experiments. If these genes are ubiquitously
expressed, then the level of expression per cell must be low
(cf. level of RNA-seq. signal (Fig. 3)).

Expression of priapulid Wnt genes suggests
an evolutionary conserved function of Wnt signalling
in posterior patterning and posterior elongation

Wnt gene signalling appears to be a conserved component of
posterior development and posterior elongation as reported
from a wide range of metazoans.

Already in sponges like the demosponges Amphimedon
and Halisarca, the expression of Wnt genes in posterior tis-
sues indicates a potential role in the establishment of the AP
axis during development (Adamska et al. 2007, 2010;
Leininger et al. 2014; Borisenko et al. 2016). Similarly, Wnt
signalling could be involved in oral/aboral patterning in
Ctenophora (Jager et al. 2013, but see Pang et al. 2010). In
cnidarians, Wnt signalling is involved in gastrulation and AP
axis patterning (e.g. Hobmayer et al. 2000; Kusserow et al.
2005; Lee et al. 2006; Lengfeld et al. 2009). The function of
Wnt signalling in posterior elongation and AP axis patterning
is well documented in deuterostomes such as vertebrates (e.g.
Schier and Talbot 2005) and expression pattern analysis sug-
gests that Wnt signalling is also involved in these processes in
other deuterostomes (e.g. Onai et al. 2009; Kawai et al. 2016;
Darras et al. 2018). Although there are not much data on
lophotrochozoan (spriralian) protostomes, at least in annelids
Wnt genes appear to be involved in segmentation and poste-
rior elongation as well (e.g. Janssen et al. 2010; Cho et al.
2010; Gazave et al. 2013).

In ecdysozoans, the other group of protostomian animals,
data on Wnt signalling are mainly restricted to arthropods.
Here, Wnt signalling and the posterior factors caudal (cad)
and even-skipped (eve) interact in gene regulatory networks
controlling segment addition and posterior elongation (e.g.
Copf et al. 2004, Miyawaki et al. 2004, Shinmyo et al. 2005,
Angelini and Kaufman 2005, Bolognesi et al. 2008, McGregor
et al. 2008, 2009, Beermann et al. 2011, Chesebro et al. 2013,
El-Sherif et al. 2014, Oberhofer et al. 2014, Hayden et al. 2015,
Schönauer et al. 2016, Auman et al. 2017, reviewed inWilliams
and Nagy 2017). Gene expression data in onychophorans sug-
gest that these genes may play a conserved role during ony-
chophoran posterior elongation as well (Eriksson et al. 2009;
Janssen and Budd 2013; Hogvall et al. 2014).

Data from non-panarthropod ecdysozoans, however, are
scarce, except for the model nematodeCaeorhabditis elegans.
This species only possesses five Wnt genes (mom-2, lin-44,
egl-20, cwn-1 and cwn-2), most of which are expressed and
function in posterior structures of the developing larva, or are
active in a posterior organisation centre of the embryo that

establishes anterior–posterior polarity (e.g. Bischoff and
Schnabel 2006; Sawa and Korswagen 2013). The
Caenorhabditis caudal ortholog pal-1 is involved in posterior
development (Edgar et al. 2001), and so is vab-7, an even-
skipped (eve) ortholog (Pocock et al. 2004). Altogether, data
on cad, eve and Wnt orthologs imply some sort of conserved
function in posterior development in the nematode, at least in
comparison with arthropods and onychophorans.

Data onWnt genes and other factors possibly associatedwith
posterior elongation are not available from other nematodes,
nematomorphs or scalidophorans (kinorhynchs, loriciferans
and priapulids), except for the expression data on Priapulus
wg/Wnt1, cad and eve (Martín-Durán et al. 2012; Martín-
Durán and Hejnol 2015), and data provided in this study.

Our data demonstrate that several Wnt genes are tran-
scribed in, around or in close proximity to the posteriorly
located blastopore. The only Wnt gene with a significantly
different expression pattern, WntA is expressed in the com-
plete posterior half of the embryo. These data, together with
the previously published expression data onwg/Wnt1, eve and
cad, strongly suggest a role ofWnt genes (andWnt signalling)
in posterior patterning and posterior elongation in priapulids,
likely as part of a similar gene regulatory network as demon-
strated for arthropods.

Wnts and border formation

Wnt signalling appears to play an important role in
intrasegmental patterning in segmented animals such as ar-
thropods, onychophorans and annelids (e.g. Janssen et al.
2010; Hogvall et al. 2014). The most famous Wnt gene,
wingless (wg/Wnt1) is a key factor in maintaining
parasegmental boundaries in concert with other segment-
polarity genes (SPGs) in Drosophila (reviewed in Sanson
2001). Similar segmentally reiterated expression patterns of
wg/Wnt1 orthologs and other SPGs in members in all arthro-
pod clades, onychophorans and annelids suggest that the func-
tion of wg/Wnt1 in border formation dates back to the last
common ancestor of protostomes and deuterostomes
(Damen 2002; Prud’homme et al. 2003; Janssen et al. 2004;
Eriksson et al. 2009; Dray et al. 2010; Janssen and Budd
2013) and may thus lend support for a segmented last com-
mon ancestor (Balavoine and Adoutte 2003; Balavoine 2014).
Although relatively little is known about the function of other
Wnt genes in intrasegmental patterning and/or border forma-
tion, strikingly many Wnt genes are expressed in transverse
segmental stripes in and around the (para) segmental bound-
aries in panarthropods and annelids (Janssen et al. 2010;
Janssen and Posnien 2014; Hogvall et al. 2014; Hayden and
Arthur 2014; Pruitt et al. 2014; Constantinou et al. 2016).
These patterns suggest that Wnt genes may also be involved
in the patterning of body units (segments) along the anterior–
posterior (AP) body axis and thus border formation (either
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morphological borders such as segmental boundaries, or mo-
lecular borders such as the parasegment boundaries). Further,
a role of Wnt genes in border formation in non-segmented
animals has been recently shown for brachiopod larvae
(Vellutini and Hejnol 2016).

Priapulids are not considered “segmented” animals as there
are no segmentally repeated body structures, or morphologi-
cally visible boundaries except for the boundary between the
anterior introvert and the posterior trunk. This boundary is
established early during development, as the developing in-
trovert is characterised by much smaller cells than the trunk
which is formed from larger cells (Wennberg et al. 2008).

We found that none of the priapulidWnt genes appears to be
expressed at the border between introvert and trunk, at least not
in the stages for which in situ hybridisation works in this spe-
cies. It is possible that formation and maintenance of this mor-
phological border do not require Wnt signalling. Alternatively,
Wnt signalling may not be recognised owing to a low level of
expression, or Wnt genes are expressed but at different devel-
opmental stages for which in situ hybridisation does not work.
Additionally, we did not detect any sign of expression that
would suggest that the ancestor of priapulids was segmented,
such as cryptic expression of Wnt genes in reiterated patterns
(transverse stripes) along the AP body axis; a lack that counts
against the common origin of segmentation in annelids
(Lophotrochozoa) and panarthropods (Ecdysozoa).
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