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Abstract

The aim of this study was to investigate whether conditional inactivation of the glucocorticoid receptors (GRs) in
noradrenergic neurons affects animal behavior in mice. Selective ablation of GRs in the noradrenergic system was
achieved using the Cre/loxP approach. We crossed transgenic mice expressing the Cre recombinase under the
dopamine beta-hydroxylase (DBH) promoter with animals harboring the floxed GR gene. The resulting GRDBHCre

mutant mice exhibited no alterations in terms of normal cage behavior, weight gain, spatial memory or spontaneous
locomotor activity, regardless of gender. To assess depressive- and anxiety-like behaviors we performed the Tail
Suspension Test and the Light-Dark Box Test. While male mutant animals did not show any alternations in both
tests, female GRDBHCre mutants displayed depressive- and anxiety-like behavior. Additionally, male GRDBHCre mice
were exposed to chronic restraint stress but still exhibited immobility times and anxiety statuses similar to those of
non-stressed animals while stressed control mice clearly revealed depressive- and anxiety-like phenotype. Thus, in
males the effects of the mutation were precipitated only after chronic restraint stress procedure. Our data reveal a
possible gender-dependent role of GRs in the noradrenergic system in anxiety- and depressive-like behavior in mice.
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Introduction

Noradrenergic system and hypothalamic-pituitary-adrenals
(HPA) axis are two major systems involved in stress response.
Stress triggers many physiological and behavioral responses to
maintain homeostasis in the organism. However, if the stress
response is sustained, it may produce a vulnerable phenotype
resulting in various health problems [1]. Acute stress exposure
activates the brain noradrenergic system, which is responsible
for promoting immediate responses to perceived threats, e.g.,
by facilitating sensorimotor reflexes [2], modulating attention [3]
and promoting anxiety-like behavior [4]. Furthermore,
increasing noradrenaline (NA) levels promotes active escape
behaviors (e.g., struggling and climbing) in a Forced Swimming
Test (FST) [5]. In contrast, HPA axis is mainly responsible for
long term stress adaptation [1]. The noradrenergic system
{Kitada, 1983 #316}modulates the stress response mainly
through its action on the limbic system and mobilization of body

reserves through the activation of the sympathetic nervous
system and promotion of adrenaline release from adrenal
medulla [6]. Noradrenergic neurons may also be involved in the
stimulation of the HPA axis. This action can be either direct,
thorough innervations of the hypothalamic paraventricular
nucleus [7], or indirect, through the influence of noradrenaline
on limbic structures, which, in turn, activate the HPA axis
themselves [6].

Stress-induced hyperactivity of the HPA system is believed
to be a major contributor to the pathology of depression [8].
The activity of the HPA is controlled by glucocorticoid receptors
(GRs), and the function of these receptors may be impaired in
depression, resulting in reduced GR-mediated negative
feedback on the HPA axis. Indeed, mice carrying GR mutations
exhibit alterations in the HPA comparable to those observed in
depressed patients [9]. Although classical homozygous GR
knockout mice are not available due to their lethality [10], GR
under- (heterozygous GR+/-) and over-expressing (YGR) mice
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display stress-induced depressive-like and anti-depressive
phenotypes, respectively [9,11].

The aim of the current study was to investigate whether
conditional inactivation of GRs in the noradrenergic neurons of
mice affects the animals’ behavior and whether this effect is
similarly expressed in both genders.

Materials and Methods

Animals
All tested animals were of the C57BL/6N strain. Selective

ablation of GRs in the noradrenergic system (GRDBHCre mice)
was achieved using the Cre/loxP approach. Transgenic mice
hosting Cre recombinase under the dopamine beta-
hydroxylase (DBH) promoter were crossed with animals
harboring the floxed GR gene as described previously [12].
Previous studies performed on GRDBHCre mice revealed the
crucial role of GRs in postnatal maintenance of chromaffin
cells, resulting in the inhibition of adrenaline synthesis [13].
Male and female mutant mice were kept with their control (Cre-
negative) littermates of the same sex in self-ventilated cages
under standard laboratory conditions (12 h light/dark cycle,
food and water ad libitum). Animals were 12 weeks old at the
time of the behavioral tests.

This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. The
protocol for all the behavioral study was approved by the
Animal Ethical Committee at the Institute of Pharmacology,
Polish Academy of Sciences (Permit Number: 789, issued:
Sept 30, 2010).

Behavioral experiments
Open Field Test (OFT) was used to measure spontaneous

locomotor activity. Mice were video recorded for 60 minutes in
40x40 cm square boxes, and the total distance moved was
scored in 10 min intervals.

Elevated Plus Maze (EPM) was utilized to assess short term-
spatial memory as described by [14]. Briefly, a mouse was
placed on the open arm of a dimly illuminated (30 lux) EPM
facing outwards, and the latency of entry into the closed arm
was measured. Spatial memory was assessed by repeating the
procedure 24 hours later, when decreased latency to enter
closed arm serves as index of spatial memory function as
shown by [15] [14] [16].

Tail Suspension Test (TST) was utilized to assess
depressive-like behavior; the time the animals were immobile
while suspended by the tail for 6 minutes was taken as a
measure of depressive-like behavior. Scoring of immobility time
was performed by means of automated video tracking software
EhtoVision XT8 (Noldus), utilizing similar method to that
described by [17]. Animal shape was detected automatically by
software using greyscaling method basing on high contrast
between black animal and white background. Mobility of animal
is assessed by comparing detected animal shape in frame n
with that in frame n-1, result presented as percentage of area
change. Video tracked records were acquired at 25 frames/
second and threshold for scoring immobility was set to 5% area

change averaged over 1s intervals. Light-Dark Box (LD Box)
was performed according to the guidelines provided in [18].
Male animals were put into the light part of a box consisting of
connected light (400 lux) and dark (40 lux) compartments, and
the time spent in the light compartment over a 5 minute trial
was measured.

Chronic restraint stress procedure was performed by placing
animals, for 2 hours daily, in 50 ml disposable centrifuge tubes
that were adapted for this purpose by drilling holes to permit air
circulation. This procedure was repeated for 14 consecutive
days, and behavioral experiments were performed 24 hours
after the last restraint stress. Animals where weighted before
first day of experiment and at the end of 1st and 2nd week of the
procedure.

All the experiments were performed by experimenters blind
to animal genotypes, video tracked and scoring of behavioral
experiments was performed automatically or semi-
automatically by means of automated video tracking software
EhtoVision XT8 (Noldus). To ensure the accuracy of automated
analysis the detection settings for the TST test were validated
by comparing time course of immobility scored manually with
that scored by the software in selected animals (Figure S1).
This observation was is in line with other authors who also
compared the data obtained manually and automatically with
use of mentioned above software [17].

Corticosterone analysis
Blood samples were taken 1 hour after the start of the light

phase of the light/dark cycle, either immediately (basal level) or
30 min after a half hour of immobilization stress (performed as
described above). Blood samples (3-4 drops/sample) were
rapidly collected from decapitated animals and plasma
corticosterone levels were determined with use of the
Corticosterone ELISA kit (DRG instruments, Germany)
according to the manufacturer’s instructions.

Tissue preparation and processing
Animals were sacrificed by cervical dislocation, and their

brains were removed and fixed in 4% paraformaldehyde
overnight, embedded in paraffin and sectioned on a rotary
microtome, for coronal sections (7 µM) for different brain areas
(hippocampus, locus caeruleus).

Immunofluorescence staining
Chosen sections from corresponding regions in mutant and

control animals were incubated overnight at 4 °C with primary
anti-GR (1:50, Abcam, Cambridge, UK) and anti-TH (1:1000,
Millipore) antibodies. Antigen-bound primary antibodies were
visualized with anti-rabbit Alexa-488 and anti-goat Alexa-594
coupled secondary antibodies.

Results and Discussion

The specificity of introduced mutation was previously
validated only at peripheral tissues as described before [13].
Thus, in the first experiment, we validated the specificity of the
mutation within the central nervous system as well. As
expected, GR expression was selectively and completely lost in
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the region of the locus coeruleus (LC) (Figure 1), but not in
other brain structures like hippocampus (Figure S2).

Next, we performed a series of behavioral experiments to
further characterize the phenotype of GRDBHCre mutant mice.
Because a growing number of studies have indicated that
gender differences may influence HPA axis activity and
depressive-like symptomatology in behavioral tests [19], all
experiments in unstressed animals were conducted in parallel
on male and female cohorts. We did not observe any
differences in spontaneous locomotor activity, spatial memory
in male (Figure 2A,B) nor female mutant mice (Figure 2E,F).
When compared to control animals, GRDBHCre mice displayed no
obvious alterations in daily cage behavior nor weight gain
(Figure S3). Overall, the GRDBHCre mice did not seem to be
retarded in terms of basic behavior, despite the complete,
selective ablation of GRs in the LC and the degeneration of
chromaffin cells leading to loss of adrenaline [13]. To assess
whether the GRDBHCre mice may be affected in terms of
depressive- and anxiety-like behavior, Tail Suspension Test
(TST) and Light-Dark Box Test (LDT) were performed.
Interestingly, female mutant mice displayed clear depressive-
like behavior (25% increase in immobility time in the TST;
p<0.01) (Figure 2G) and an anxiety-like phenotype (increased
latency to enter the light compartment in the LDT; mutant = 90
s vs. control = 33 s; p<0.01) (Figure 2H) in the basal, non-
stressed state, while no changes in these parameters were
observed in male mutant mice (Figure 2C,D). Because male
mutants did not exhibit any alternations under basal state and
mutation targets systems are involved in long term stress
adaptation we decided to test whether chronic restraint stress

Figure 1.  Lack of glucocorticoid receptor (GR) expression
in the region of locus caeruleus in mutant
mice.  Superimposed immunofluorescence images of
glucocorticoid receptor (GR, red) and tyrosine hydroxylase (TH,
green) in locus coeruelus of control (A) and mutant (B) animals.
White arrows show clear GR staining in TH positive (TH+) cells
of control animal, the staining is absent in the TH+ cells of
mutant. Scale bars: 50 µm for left side and 25 µm for right side
images.
doi: 10.1371/journal.pone.0072632.g001

might precipitate expression of phenotype in these mice.
Chronic stress may significantly alter the function of the
noradrenergic system [20] and be an important etiological
factor in mood and anxiety disorders [21,22]. The involvement
of chronic stress in these pathologies is reflected by the
facilitatory effects of chronic stress models on the depressive-
and anxiety-like behaviors of laboratory animals, although the
effects on the latter are not always conclusive [23]. Thus, we
tested whether chronic stress could evoke the depressive- and
anxiety-like symptoms in GRDBHCre male mice by comparing
both non-stressed and chronically stressed animals using the
Tail Suspension Test and the Light-Dark Box Test. To ensure
that utilized procedure of restraint stress was really stressful for
mice, their weights were constantly monitored and revealed
similar weight loss in both control and mutant animals over the
2 weeks (Figure S4). Chronic stress indeed precipitated
behavioral differences in mutant and control males, however in
unexpected manner - both TST and LDT tests revealed that
male GRDBHCre mutants (Figure 3A,B) were resistant to this type
procedure. Stressed and non-stressed mutant males exhibited
similar immobility times and anxiety statuses like non-stressed
control animals. As expected, chronically stressed control
males showed increased immobility time in the TST (25%
increase, p<0.01) and decreased time spent in the light
compartment in the LDT (by 35%, p<0.01), which response is
in line with other studies regarding chronic stress effects in
depression and anxiety tests [24].

Loss of GR in noradrenergic neurons does not lead to
changes of basal behavior and renders male GRDBHCre mutants
more resistant to chronic stress than control littermates. Our
findings corroborate studies reporting that variations in
glucocorticoid levels may not influence the noradrenergic
system directly but rather by modulating the changes caused
by chronic stress exposure [25]. Thus, our results suggest that
it is specifically the activation of GRs in noradrenergic neurons
which activation during chronic stress is important for the
modulation of the noradrenergic system and what in turn leads
to alterations in anxiety- and depressive-like behaviors. This
hypothesis would correspond to the results obtained from mice
lacking the noradrenergic transporter (NET-/-). Similarly to the
GRDBHCre males, these mutant mice display stress-related
weight loss after chronic stress exposure (although the nature
of the stressor was different than that in the present study) but
do not display enhanced depressive-like behavior in the forced
swim test [26]. However, we cannot rule out the possibility that
differential modulation of the noradrenergic system by chronic
stress in GRDBHCre‑ animals results, at least partially, from
abnormal peripheral adrenaline levels; the mechanisms of such
chronic modulation could also be investigated in our animals.

Nevertheless, it remains interesting that female GRDBHCre

mutants, unlike males, displayed increased anxiety- and
depressive-like behaviors in the basal state. This gender
dependent difference in response to mutation was additionally
confirmed by 2-way ANOVA test which revealed
gender*genotype (p<0.05) interaction in TST, altought
gender*genotype interaction in LDT test was statistically
insignificant.

Effects of GR Inactivation in Noradrenergic System
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Neurochemical and molecular investigation should help to
better understand these unexpected results. However, we can
speculate that higher circulating glucocorticoid levels in
females are important for maintaining the normal function of
noradrenergic neurons, in contrast to males, and that this
function is compromised by the deletion of GRs. The influence

Figure 3.  Chronic stress effects on anxiety and
depressive-like behavior of control (con) and mutant (mut)
males.  A – depressive-like behavior reflected by immobility
time assessed by Tail Suspension Test (TST); B – anxiety-like
behavior measured by percentage of time spent in bright zone
in Light-Dark Box Test (LDT), Values represent means ± SEM,
n=6-10 mice. **p<0.01 vs non-stressed (basal) control animals,
+p<0.05 vs stressed control animals.
doi: 10.1371/journal.pone.0072632.g003

of the impairment of adrenal medulla function is unlikely to be
the cause of the behavior observed here because similar
changes should have been observed in other behavioral tests,
particularly the OFT. Interestingly, it has previously been
reported that the LDT but not the OFT is responsive to
noradrenergic manipulation by selective NA reuptake inhibitors
[27] and conversely phenotype of GRDBHCre female mutants
expressing in LDT but not OFT could suggest abnormal
noradrenergic function.

Furthermore, the HPA axis can influence noradrenergic
systems in several ways. First, glucocorticoids can modulate
both the synthesis and reuptake of NA by modulating the
expression of both tyrosine hydroxylase (TH, the rate-limiting
enzyme in the synthesis of NA) [25] and the NA transporter
(NET) [28]. These modulations could possibly influence basal
levels of NA and tonic sympathetic nervous system activity, but
glucocorticoids can also modulate the availability of NA by
regulating α2-adrenergic receptor-mediated inhibition of NA
release [29]. Thus, it is conceivable that GRs in noradrenergic
neurons might themselves play a role in the reported changes
in their reactivity after chronic stress exposure [20]. Through
such effects on the noradrenergic system, GRs may influence
animal behavior, as the noradrenergic system is widely
implicated in mood and anxiety disorders – conditions that are
often related to excessive (real or perceived) stress exposure
and HPA axis dysfunction.

To establish whether the observed gender-dependence is
linked to the differential responses of the HPA axis to stressful
stimuli, we measured plasma levels of corticosterone under

Figure 2.  Behavioral comparison of control (con) and mutant (mut) male (A–D) and female (E–H) mice.  A, E – locomotor
activity assessed by mean distance traveled in open field during 10 min intervals; B, F – spatial memory after 24h evaluated by
transfer latency in elevated plus maze. C, G depressive-like behavior reflected by immobility time assessed by Tail Suspension Test
(TST), D, H - anxiety-like behavior measured by percentage of time.
doi: 10.1371/journal.pone.0072632.g002
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basal and stressed conditions in both control and mutant
animals. No differences were observed in plasma
corticosterone levels under basal or stress conditions in control
and mutant animals, whether male or female (Figure 4A,B).
This observation suggests that the gender-dependent response
to the mutation and observed resistance to stress in male
GRDBHCre mutants cannot be explained simply by any alterations
in HPA axis. However, the higher levels of basal plasma
corticosterone in female animals may influence the depressive-
like behavior observed in non-stressed female mutants.
Women are considered to be more prone to depression than
men and this vulnerability is reflected in animal models [30].
Thus, one can speculate that GRDBHCre female mutants might
have lower stress tolerance thresholds.

Our data unravel a possible gender-dependent role of GRs in
the noradrenergic system in anxiety- and depressive-like
behavior in mice and indicate the GRs dependent regulation of
restraint stress response in males. Further research is needed
to dissect the possible molecular mechanisms mediating this
phenomenon.

Figure 4.  Plasma corticosterone levels.  Assessment of
plasma corticosterone levels of male (A) and female (B) control
(con) and mutant (mut) mice in basal state and 30 min after
chronic restraint stress.
doi: 10.1371/journal.pone.0072632.g004

Supporting Information

Figure S1.  Comparison of automatic and manual scoring
results of tail suspension test obtained with use of
EhtoVision XT8.
(TIF)

Figure S2.  Images from hippocampal regions of Dentate
Gyrus (A, D), CA1 (B, E) and CA3 (C, F).
Images show similar pattern of GR staining in control (A–C)
and mutant (D–F) mice. Scale bars: 100 µm.
(TIF)

Figure S3.  Weight of male (A) and female (B) animals at
different age.
Both control and mutant mice show similar weight gain. n = 12.
(TIF)

Figure S4.  Weight change of control and mutant male
animals during procedure of chronic restraint stress
measured at the end of 1st and 2nd week of the procedure.
(TIF)
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