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Objective: To establish a classifier for accurately predicting the overall survival of
gallbladder cancer (GBC) patients by analyzing pre-treatment CT images using machine
learning technology.

Methods: This retrospective study included 141 patients with pathologically confirmed
GBC. After obtaining the pre-treatment CT images, manual segmentation of the tumor
lesion was performed and LIFEx package was used to extract the tumor signature. Next,
LASSO and Random Forest methods were used to optimize and model. Finally, the
clinical information was combined to accurately predict the survival outcomes of GBC
patients.

Results: Fifteen CT features were selected through LASSO and random forest. On the
basis of relative importance GLZLM-HGZE, GLCM-homogeneity and NGLDM-
coarseness were included in the final model. The hazard ratio of the CT-based model
was 1.462(95% CI: 1.014–2.107). According to the median of risk score, all patients were
divided into high and low risk groups, and survival analysis showed that high-risk groups
had a poor survival outcome (P = 0.012). After inclusion of clinical factors, we used
multivariate COX to classify patients with GBC. The AUC values in the test set and
validation set for 3 years reached 0.79 and 0.73, respectively.

Conclusion: GBC survival outcomes could be predicted by radiomics based on LASSO
and Random Forest.

Keywords: radiomics, machine learning, gallbladder cancer, prognosis, random forest
INTRODUCTION

Gallbladder cancer (GBC) is the fifth most common tumor of the digestive system and accounts for
95% of malignant tumors in the biliary system (1). The lack of specific clinical manifestations in the
early stage, coupled with high invasive biological features and abnormal anatomic location of the
gallbladder, results in poor survival outcomes (2, 3). In addition, due to the low sensitivity to
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chemotherapy and radiotherapy, and the lack of effective
therapeutic targets, surgical resection is still the main treatment
option (4). At present, widespread concern about the survival
outcomes of GBC has been aroused. Researchers hope to
distinguish patients with higher prognostic risk, so as to
implement personalized medical treatment. So far, prognostic
analyses of GBC have depended on laboratory-tested indicators
such as tumor markers, nutritional indicators, and gene
expression signatures, but these indicators lack an intuitive
analysis of the whole tumor lesion (5–7).

Lesions can be directly observed by radiological images in
clinic and lesion information not visible to the naked eye can be
provided by radiomics. In recent years, radiomics has been
developed to focus on the extraction and mining massive
medical imaging data. It is hypothesized that these selected
imaging features reflect specific tumor phenotypes (8, 9).
Because these image signatures provide a comprehensive
picture of the entire tumor entity, the heterogeneity of these
signatures may have implications for clinical events such as
treatment response, survival outcomes and disease progression.
Some studies have focused on the appearance of imaging features
at different cancer stages (10, 11). In addition many other studies
have reported the effect of imaging features on survival
outcomes, but no studies have been reported on GBC.

GBC survival prediction model is of great significance for
patients’ prognosis assessment, treatment mode selection,
surgical patient selection, postoperative adjuvant treatment
plan determination, high-risk recurrence patient identification,
follow-up frequency formulation, and rational use of medical
resources. In this study, we assessed a number of CT-based
radiomics parameters to predict patient’s overall survival (OS).
Patient cohort with a total of 141 patients was used to analyze
image data, extract features, and perform model tests. All the
selected parameters were evaluated for their predictive power
and stability. Finally, we combined clinical information for a
cost-effective prediction.
METHODS

Patient Selection
The flow of data analysis and processing is shown in Figure 1.
The records of patients from 2010 to 2017 were selected from the
Department of Hepatobiliary surgery through an electronic
medical review. Inclusion criteria for patients: 1) Pathological
examination Confirmed GBC; 2) Perform CT scan before tumor
biopsy or surgery. Some patients were excluded because of the
history of liver surgery or other liver lesions leading to
gallbladder lesions that could not be identified (Table 1).
Considering that conventional CT, including CT and Contrast-
enhanced CT, is commonly used tests in clinical practice and
have good cost-effectiveness, it was selected as the study object.
Finally, a total of 141 patients were included in this study, and
CT images were collected from Radiology Department.

All procedures involving human participants comply with
ethical standards bodies and/or national research councils. Ethics
Frontiers in Oncology | www.frontiersin.org 2
Committee of Sichuan University approved this retrospective
study. Written informed consent (written informed consent for
patients under 16 years of age must be signed by a parent or
guardian) is required before radiological examination for
all patients.

Image Recognition and Feature Extraction
CT scanning was performed using 64-MDCT Scanner (Brilliance64,
Philips Medical Systems, Eindhoven, The Netherlands) or 128-
MDCT scanner (Somatom Definition AS+, Siemens Healthcare
Sector, Forchheim, Germany) before going through any treatment.

All CT examinations were performed under the following
conditions: 120 kVp; 199 mAs; 12.9 ctdIVOL (mGy); 460.7 DLP
(mGy*cm); pitch, 0.75–1.0; rotation time, 0.5–0.75 s; collimation,
0.625 mm; section thickness, 2.0 or 5.0 mm.

The ROI area was sketched by two experienced radiologists.Due
to the limited recognition ability of ordinary CT for GBC and the
boundary of cancer is usually fuzzy, we followed the following
principle when making segmentation: 1) delineate solid lesions
with high density of GBC and avoid low-density areas such as bile,
2) delineate the definite tumor part when it is difficult to recognize
the blurring around the lesion, and 3) excluded samples with
disagreement among radiologists.

We used the image feature extraction software LIFEx to
obtain the texture signatures of CT images (12). Based on each
layer of CT image, we depicted the boundary of the lesion in the
two-dimensional region of interest (ROI) and finally obtained a
three-dimensional ROI. ROI is described by independent
radiologists who do not know the patient’s diagnosis
(Supplement Figure 1). The maximum, minimum, mean, and
standard deviation of the density values in the ROI region were
calculated. From the obtained data, Gray-level co-occurrence
matrix (GLCM), Neighborhood gray-level different matrix
(NGLDM), Gray level run length matrix (GLRLM), and the
Gray level zone length matrix (GLZLM) were calculated.We
obtained a total of 54 radiomics parameters (Supplementary
Table 3).

Statistic Analysis Workflow
First, all the collected samples were randomly divided into test
set and validation set according to a ratio of 7:3. We used the
sample function of R software to make randomization, and
conducted a hypothesis test on the age of the randomized
patients between the two groups (Supplementary Table 4).
The results showed that the average age difference between the
two groups was not statistically significant (P > 0.05). Therefore,
we selected the group accounting for 70% as the training set for
the follow-up analysis of the model. Then, the signatures from
image texture were filtered by least absolute and Selection
Operator (LASSO) (13). After 100 repeated simulations,
signatures with the best robustness were selected. In order to
optimize the model, we use the random forest to further screen
the selected signatures and obtain the final machine learning
model. We performed a multivariate Cox regression analysis of
radiological parameters and clinical characteristics and drew a
nomogram. The survival curve was plotted by Kaplan-Meier
analysis and tested by log-rank test.
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RESULTS

Establishment of a Model Using
Radiomics Signatures
First, we randomly divided the patients into a training group
and a test group, with a split ratio of 7:3. Then, LASSO method
was used to make simulation in the training group for up to 100
times and 15 signatures were selected. The results are shown in
Figure 2. Next, the random forest was used to further optimize.
According to the relative importance, three most important
parameters were screened out (Supplementary Table 2). Then,
we built a model based on random forest algorithm. The risk
score for each patient is calculated and the risk score
distribution for each patient is shown in Figure 3. By
comparing the high with low risk groups, we found that the
high risk group had a worse overall survival. And GLZLM-
HGZE, and GLCM-homogeneity increased risk, but the increase
of NGLDM-coarseness reduces the risk, so we think GLZLM-
HGZE and GLCM-homogeneity may be a risk factor of GBC,
and NGLDM-coarseness is more likely to be a protective factor.
Frontiers in Oncology | www.frontiersin.org 3
Correlation analysis shows that the correlation degree of these
three factors is low (Supplementary Table 5). The Univariate
COX shows the risk score had a hazard ratio of 1.534 (95% CI:
1.078–2.183). Finally, we validated this model in the verification
group (Supplementary Table 1). The model had a good
performance, with high-risk individuals had poorer survival
outcomes than low-risk individuals. In addition, the survival
rate of high-risk patients was significantly lower than that of
low-risk patients (P = 0.012).

Prognostic Model Performed Based on
Clinical Data and Radiomics
In order to achieve better performance, we analyzed a variety of
clinical indicators of patients, including age, gender, and tumor
stage. Through multivariate COX analysis, we screened out the
prognostic indicators affecting the survival of patients with GBC,
including surgery or not, liver metastasis and lymph node
metastasis grade (Table 2). Next, we randomly divided the
patients into two groups to conduct model training and
testing. We used multivariate COX to predict the overall
FIGURE 1 | Workflow for image processing and machine learning.
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survival of the patients by combining three selected clinical
indicators (Liver metastasis, surgery, and lymph node
metastasis grade) and radiomics risk score (Table 3). Finally,
we use a nomogram to visualize the performance of the model
(Figure 4) and evaluated the prediction accuracy through ROC
curve. The results of nomograms showed that the 1- and 3-year
prediction reached 0.7465 and 0.7974 in the training group and
0.7271and 0.7314 in the validation group, respectively. Figure 5
also shows the comparison between the ideal model and the
actual nomogram prediction. The calibration chart shows that
the actual model is basically consistent with the ideal model,
indicating that our model has a high accuracy.
Frontiers in Oncology | www.frontiersin.org 4
DISCUSSION

In this study, CT scan data combined with machine learning
methods was used to predict overall survival outcomes in GBC
patients. Firstly, we use LASSO to filtered raw data and acquire a
robust parameter set. Then we use the random forest to making
further optimization. Finally, three parameters including
GLZLM-HGZE, GLCM-homogeneity, and NGLDM-coarseness
were obtained. The three parameters were correlated with the
prognostic risk of the patients, and the prognostic model got a
hazard ratio of 1.549. The clinical parameters analysis results
showed that lymph node metastasis grade, surgery or not and
liver metastasis situation are prognostic factors. In combination
with these indicators and CT risk score, we get a model for
prognosis of GBC. Moreover, the 3-year AUC value of the
predictive model in the random validation group reached 0.797.

It is of great guiding significance for the selection of
treatment options and clinical decision support of patients
with GBC to find the key prognostic factors related to the
survival time and establish an individual and accurate survival
prediction model. At present, the prognosis studies of GBC
mainly focus on the clinical and pathological examination (6,
14, 15). There are many factors affecting postoperative survival
of GBC patients, including TNM stage of tumor, degree of
tumor differentiation, liver infiltration, jaundice, and lymph
node dissection. The TNM staging is widely used in clinical, but
only includes tumor infiltration depth (T stage), lymph node
metastasis (N stage), and distant metastases (M stage), with
limited survival prediction value. It only for a class of patients,
cannot achieve individualized accurate prediction to adjust
subsequent treatment. Many studies have focused on the
effect of clinical examination on the prognosis of GBC,
including inflammatory factors and nutritional indicators (16,
17). However, the original data of those researches almost come
from one laboratory examination, and there may be
fluctuations in the same individual during different times.
Meanwhile, these markers lack specificity, and the mechanism
A B

FIGURE 2 | Panel (A) shows the Lasso result. Panel (B) shows the random forest result. The left (B) shows the order of the out-of-bag importance of the selected
parameters. The right picture shows relationship between the error rate and the number of classification trees.
TABLE 1 | The general condition of the patients in this study.

Patient (Total=141) Patient characteristics

Male Female

Gender 56(39.7%) 85(60.3%)
<30 30-50 >50

Age 23(16.3%) 84(59.5%) 34(24.1%)
I-II III-IV

T stage 49(32.8%) 92(65.2)
N0 N1 N2

N stage 67(47.5%) 56(39.7%) 18(12.7%)
M0 M1

M stage 82(58.1%) 56(39.7)
Yes No

Liver metastasis 78(55.3%) 63(44.6%)
Yes No

Jaundice 33(23.4%) 108(76.5%)
<40 u/ml >=40 u/ml NA

CA199 59(41.8%) 79(56.0%) 3(2.12%)
<35 u/ml >=35 u/ml NA

CA125 85(60.2%) 53(37.5%) 3(2.12%)
<5 mg/L >=5 mg/L NA

CEA 90(63.8%) 48(34.0%) 3(2.12%)
<20 mg/L >=20 mg/L NA

AFP 130(92.1%) 8(5.67%) 3(2.12%)
Yes No

Surgical treatment 114(80.8%) 27(19.1%)
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of the correlation between these indicators and tumor outcome
is still to be studied. Moreover, clinical data can only reflect the
partial biological manifestations of tumor and lack a
comprehensive description of entire tumor lesions.

Radiomics is a promising approach to acquire a large
amount of intuitive data through the analysis of entire tumor
lesion and metastasis. Compared with the molecular features
detected by popular omics techniques such as genomics and
proteomics, radiomics can better overcome the temporal and
spatial specificity of the whole course of cancer. Meanwhile,
texture analysis can provide quantitative and semi-quantitative
parameters to reflect tumor heterogeneity, which is of great
Frontiers in Oncology | www.frontiersin.org 5
significance in tumor research (18, 19). However, there are few
studies of this type conducted in GBC, ascribed to the
uniformed data is acquired in clinical experiment. A variety
of medical images are applied in clinical decision-making,
mainly including CT scan, contrast-enhanced CT, multi-
parameter MRI, and PET-CT. CT is the most common
and cost-effective data acquisition of original lesions before
treatment among them. Although reconstructed MRI
sequences and contrast-enhanced CT have advantages in the
identification and differentiation of tumors, these detection
methods are still not widely used in most areas of China. In
terms of applying machine learning, the heterogeneity of
tumor tissues is included in multiple texture parameters,
thus, the analysis of texture parameters alone cannot fully
reflect the overall characteristics of the tumor. Considering
this problem, we believe that a complex model integrating
different texture signatures is needed to fully identify the total
tumor lesion. Also, the random forest is a powerful machine
learning method, which has been proved to be able to
implement the correct classification work successfully (20,
21). Adopting the concept of integrated learning, random
forest has a good accuracy in current machine learning
algorithms by combining multiple decision tree models.
Moreover, it can process high-dimensional data and be
applied in big data effectively. In particular, it can evaluate
the importance of each feature in classification. Therefore, in
this study, the random forest can better identify parameters and
establish classifiers.

However, our study still has three main limitations.
Firstly, analyzing CT scan data alone cannot replace other
image acquisition methods (such as enhanced CT, mpMRI,
reconstructed multiple sequences ADC, and DTI) in real
clinical work. Secondly, limited by the size of the sample,
there are not enough enhanced CT data and MRI data, thus,
TABLE 2 | The results of a multivariate COX analysis.

P value HR Low 95% CI High 95% CI

Radiomics Risk Score 0.040 1.495 1.019 2.194
Surgery 0.087 0.672 0.426 1.059
Liver metastasis 0.026 1.615 1.060 2.459
N Stage 0.037 1.797 1.035 3.122
Jaundice 0.834 0.953 0.606 1.498
T stage 0.696 1.223 0.447 3.343
Sex 0.456 0.862 0.582 1.275
Age 0.942 1.02 0.602 1.727
TABLE 3 | The results of a multivariate analysis combined with clinical
examination and radiologic parameters.

P value HR Low 95.0%CI High 95.0%CI

Liver metastasis 0.009 1.620 1.126 2.322
Surgery 0.077 0.668 0.427 1.044
Radiomics Risk Score 0.042 1.462 1.014 2.107
N Stage 0.042 1.730 1.020 2.935
A B

FIGURE 3 | Panel (A) shows the distribution of risk scores and the values of the three CT parameters in the training and test groups. Panel (B) shows the survival of
patients at high or low risk after being grouped by median.
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this study was not compared with a variety of advanced
scanning techniques. Third, our research was limited by its
retrospective data. These findings might have better clinical
implications, if confirmed in prospective studies. Forth, the
patients included in the study were all from a single center,
which may result in the lack of sufficient extensibility
of the classifier. Considering the differences of medical
institutions in obtaining original images and the differences
in manual segmentation of lesions, we cannot guarantee that
this machine learning classifier performs well on external
data sources. But all of the research methods and analysis
Frontiers in Oncology | www.frontiersin.org 6
used in the study come from open-source data packets, which
mean that the analysis process needs to be repeated on
other data.
CONCLUSION

We found associations between established CT imaging
parameters and overall survival. Radiomics-based non-invasive
technology represented promising ability in predicting the
overall survival of gallbladder carcinoma, although more
FIGURE 4 | Nomogram that predicts the overall prognosis survival of gallbladder cancer patients after multiple factors are included.
A B

FIGURE 5 | Panel (A) shows the ROC of the prognostic survival model incorporating with clinical parameters. Panel (B) is the calibration curve of the model.
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extensive testing are necessary to perfect this technology in real
clinical use.
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