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ABSTRACT

Dogs were frequently employed as laboratory subjects during the era of atomic bomb testing (1950–1980), particularly in
studies used to generate predictive data regarding the expected effects of accidental human occupational exposure to
radiation. The bulk of these studies were only partly reported in the primary literature, despite providing vital informa-
tion regarding the effects of radiation exposure on amodel mammalian species. Herein we review this literature and sum-
marize the biological effects in relation to the isotopes used and the method of radionuclide exposure. Overall, these
studies demonstrate the wide range of developmental and physiological effects of exposure to radiation and radionuclides
in a mid-sized mammal.
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I. INTRODUCTION

Studies on the effects of ionizing radiation exposure in ani-
mals were largely initiated to determine safety guidelines
for humans working with radiation in the late 1940s and
remain relevant to biologists today. The insight gained from
such studies can be used to prepare for unintentional expo-
sures, including those from nuclear accidents, medical proce-
dures, and exposure during space travel, where many types

of organisms, including humans, endure prolonged expo-
sures to low dose ionizing radiation (e.g. Mousseau &
Møller, 2020).

Domestic dogs (Canis lupus familiaris) were an organism of
choice for early studies of radiation exposure, with large-
scale, long-term studies initiated in the early 1950s. Support
for these studies was originally provided by the United States
Atomic Energy Commission (AEC), which was established
after World War II to advance and control atomic research
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and technology. The AEC was disbanded in 1974 and its
functions were reassigned to the Energy Research and Devel-
opment Administration, later known as the U.S. Department
of Energy. These agencies supported several large-scale stud-
ies designed to test the effects of radiation exposure on the
health and lifespan of domestic dogs, particularly beagles.

Radium and plutonium were the first internally deposited
radionuclides used to study the long-term biological effects
on dogs (Stannard, 1988; Thompson, 1989). In fact, similar
studies were conducted on human psychiatric patients prior
to the establishment of the U.S. Atomic Energy Commission
(Looney, Hasterlik & Brues, 1955). Studies of radium iso-
topes were conducted in response to the discovery of expo-
sure effects in female factory workers who contracted
radiation poisoning from painting watch dials with self-
luminous paint containing radium. Beginning in the early
1900s and extending until the late 1920s the workers, termed
‘Radium Girls’ (Clark, 1997) would ‘point’ their camel hair-
brushes using their lips, causing them to ingest small amounts
of radium from the paint. Afflicted with anaemia, and a con-
dition now known as radium jaw, an unknown number of
women suffered and died before litigation brought a halt to
the practice in 1928.

As plutonium became of interest for its use in atomic
weapons, the need for occupational safety guidelines
emerged (Thompson, 1989). It became apparent that the
limited research derived from experiments on psychiatric
patients and people who were accidently exposed to radium,
such as the dial painters, would not suffice in providing the
information necessary to set occupational safety guidelines.
Researchers began testing radium toxicity in rats, mice, and
rabbits, and used the knowledge gained from these studies
to create maximum permissible amounts of occupational
radiation exposure. However, the small body size and short
lifespan of these model organisms left translational gaps with
regards to the application of radium toxicity to humans.
Some radiation effects can be delayed more than 20 years,
which far surpasses the lifespan of rodents, highlighting the
need for a more suitable animal model (Dougherty
et al., 1962).

The domestic dog was chosen for radiation research
because of their larger body size and longer lifespan com-
pared to rodents, as well as their widespread availability.
Early on, ‘pound’ or ‘mongrel’ dogs of mixed and usually
unknown descent were frequently used (e.g. Shively,
Michaelson & Howland, 1958; Handford et al., 1960; Bair &
McClanahan, 1961). As researchers gained a better under-
standing of confounding health history and the role that dis-
parate genetic backgrounds could play in producing
variability in test results, a shift was made toward the use of
purebred dogs. As a breed, beagles were generally selected
for their small size, non-aggressive nature, and availability
(Andersen &Good, 1970; Thompson, 1989). However, some
studies employed other dog breeds with specific genetic sus-
ceptibilities. For instance, two studies used Saint Bernards
(Taylor et al., 1981; Lloyd et al., 1983d) rather than beagles
for exposure tests since, like many large dogs, they are

naturally susceptible to bone diseases including osteosarcoma
(Tjalma, 1966). These studies provided researchers with an
opportunity to gain a better understanding of how inherent
genetic susceptibility might exacerbate radiation-induced
bone disease. Beginning in 1969, one study examined the
incidence of osteosarcoma in Saint Bernards following injec-
tion of 239Pu. Identifying 14 osteosarcomas in the eight Saint
Bernards that died following injection, they estimated
Saint Bernards were about five times more sensitive than
beagles to 239Pu induced-bone sarcomas and 130 times more
sensitive to 239Pu than the average human (Taylor
et al., 1981). While these results were promising, the large size
of the Saint Bernard made them relatively undesirable as a
study animal and their use was quickly curtailed.
Research using domestic dogs to study radiation exposure

effects expanded as interest in nuclear power sources gained
traction, resulting in more fission product radionuclides
being added to large-scale studies (Thompson, 1989). Fission
product radionuclides are components of fallout from
nuclear weapons testing and nuclear reactors, both new tech-
nologies that heightened apprehension for accidental expo-
sures. Some of the most common radionuclides released
after nuclear explosions include 90Sr, 137Cs, 238Pu, and
241Am, among others. For example, particulate plutonium
was detected in fallout released from the Fukushima Daiichi
Nuclear Power Plant after the accident in 2011, although the
physical and chemical form was unknown until recently.
Kurihara et al. (2020) reported the discovery of plutonium
associated with caesium-rich microparticles (CsMPs), which
are released after nuclear accidents. When nuclear melt-
downs occur, CsMPs are formed as a result of nuclear fuel
reacting with concrete from the reactor’s structure (Furuki
et al., 2017). Similarly, the accident at Chernobyl in 1986
released vast amounts of many radionuclides including several
isotopes of plutonium, that were dispersed globally (Hirose &
Sugimura, 1990; Ketterer, Hafer & Mietelski, 2004). The dis-
covery of plutonium release as a result of nuclear accidents
highlights the utility of studies on the effects of plutonium
exposure in dogs.
Some early studies that experimentally exposed dogs to

radionuclides did not seek to investigate the effects of expo-
sure. In fact, many of these studies even corrected for radio-
active decay, allowing them to consider the radioisotope
components to be non-radioactive for the purpose of their
studies (Morrow & Gibb, 1958; Smith et al., 1961). These
studies were particularly important as they represent the first
attempts to refinemethods of experimental exposure, provid-
ing critical information upon which later studies were built.
For example, one study investigated the clearance of dust
containing alpha emitters from the respiratory tract after
inhalation, which later became the most widely studied
method of radiation exposure used on dogs.
In June 1960, the Lovelace Foundation for Medical Edu-

cation and Research in New Mexico obtained funding for
the foundation of a new laboratory with the ability to con-
struct and operate large-scale inhalation studies on dogs.
The laboratory, later known as the Inhalation Toxicology
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Research Institute (ITRI), completed 19 lifelong studies on
beagles where over 1500 dogs were exposed to inhaled radio-
nuclides (Thompson, 1989). In perhaps the largest of these
studies, 126 young adult beagles were exposed to beta-
emitting 144Ce aerosols and the effects were compared to
those produced in dogs exposed to alpha-emitting 239Pu
aerosols. Researchers concluded that lower doses of alpha-
emitting radionuclides, compared to beta-emitting radionu-
clides, can induce pulmonary cancers in dogs (Hahn
et al., 1999). Further studies of 144Ce exposure conducted
by ITRI exposed juvenile and aged beagles in addition to
young adults, although these results were not published in
the primary literature. In this study, cerium cleared from
the lungs of three-month-old dogs more quickly than it
cleared from the lungs of 8 to 10-year-old dogs, and larger
fractions were deposited in the skeletons of juveniles
(Thompson, 1989).

Many large-scale studies were followed by smaller ancil-
lary studies, yielding an overall broader scope. Major studies
tended to include young adult dogs, but several smaller-scale
studies of juvenile or aged dogs were conducted in order to
investigate the influence of age or development on differ-
ences in radiation exposure effects (e.g. Lloyd et al., 1983a,
c). Results of these comparative studies varied with the differ-
ent radionuclides implemented. Some studies found juvenile
dogs to have greater 226Ra and 239Pu retention in the bone
after exposure (Bruenger et al., 1980; Lloyd et al., 1983c), sug-
gesting that they may be more radiosensitive, while other
studies indicate that aged dogs died significantly earlier than
juveniles or young adults exposed to 137Cs (Nikula
et al., 1996). Similarly, ancillary studies were performed with
minor variations in exposure methods, such as altering the
particle size of inhalants or using radionuclide aerosols of dif-
fering solubilities to determine if such alterations could cause
substantial differences in exposure effects (e.g. Guilmette
et al., 1984; Muggenburg et al., 1996). Several studies found
that retention was significantly affected by the particle size
of 239Pu in inhaled aerosols. The average radiation dose to
the lung 10 years after exposure was estimated to be twice
as large for particles of 2.8 μm activity median aerodynamic
diameter (AMAD) than for smaller-sized particles of 0.72 μm
AMAD because of differences in retention (Guilmette
et al., 1984). Henceforth, results of these ancillary studies
are discussed in comparison to their respective major
studies in order to provide the most comprehensive and log-
ical understanding of radiation exposure effects on
domestic dogs.

Even before fully understanding the effects of radiation on
humans, clinicians began using radiotherapy to treat cancer
(Grubbé, 1933). Radiotherapy remains a primary treatment
for cancer to date, often in the forms of external beam radia-
tion (teletherapy) or radioactive implants (brachytherapy)
(Mohan et al., 2019). Several recently published studies have
used dogs afflicted with cancer to test radiotherapies aimed
specifically at tumour reduction (e.g. Gagnon et al., 2020;
Monforte Monteiro et al., 2020). Although these studies pro-
vide valuable information to the medical field, studies

conducted on diseased dogs, particularly those with cancer,
are not discussed herein as the reported effects are more rel-
evant to clinical treatments versus radiation per se. In order to
provide a clear assessment of the effects of radiation on dogs,
we include only studies conducted on healthy dogs in this
review.

The effects of internally deposited radionuclides depend
on their distribution, retention, and length of duration within
the body. The initial absorption of radionuclides differs
based on their entry route into the body. Studies on domestic
dogs implemented four primary methods of radiation expo-
sure: intravenous injection, inhalation, ingestion, and exter-
nal irradiation.

II. METHODS OF RADIONUCLIDE EXPOSURE

(1) Intravenous injection

Intravenous injection was chosen as a primary method of
exposure because it was thought to bypass the complications
of absorption (Thompson, 1989). Twenty-two major studies
exposed dogs to intravenously injected 137Cs, 144Ce, 226Ra,
224Ra, 228Ra, 228Th, 239Pu, 241Am, 249Cf, 252Cf, 253Es, or
90Sr (Table 1). The most common effects were bone and skel-
etal tumours, which were subsequently the leading causes of
death (Bruenger et al., 1980; Lloyd et al., 1993, 1994, 1995;
White et al., 1994). Radioactive elements such as strontium,
radium, and plutonium are notoriously bone-seeking, so ele-
vated retention in these parts of the body after injection leads
to much higher effective doses to these tissues. A similar trend
was seen with I131 which was released after the Chernobyl
nuclear disaster. Iodine is naturally concentrated in the thy-
roid, so children exposed after the nuclear disaster received
higher doses to the thyroid compared to the average body
dose, resulting in increased incidences of thyroid cancers
among children less than 15 years old at the time of the acci-
dent (Astakhova et al., 1998; Jacob et al., 1999).

Further effects of intravenously injected radionuclides
included liver tumours and haematopoietic cell damage.
Dogs intravenously injected with 137Cs and 241Am solutions
had an increased incidence of liver tumours (Lloyd
et al., 1995; Nikula et al., 1995, 1996). At Argonne National
Laboratory all middle-aged dogs exposed to 137Cs died
from complications associated with radiation-induced hae-
matopoietic cell damage (Nikula et al., 1996). Indeed,
haematopoietic cell damage is now known to be a leading
cause of death after exposure to ionizing radiation in humans
and was first reported in a small number of dogs from a single
study that were exposed to large doses of X-ray emissions in
1922 (Shao, Luo & Zhou 2014). Damage to haematopoietic
stem cells via ionizing radiation causes differentiation and
suppression of bone marrow development and is dependent
on radiation dose (Shao et al., 2014; Guo et al., 2015). Both
phenotypes are the direct result of oxidative stress (Einor
et al., 2016), although related mechanisms are also proposed

Biological Reviews 96 (2021) 1799–1815 © 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

Radiation and dogs 1801



T
ab
le
1.

St
ud

ie
s
th
at

ex
po

se
d
do

gs
to

ra
di
at
io
n
vi
a
in
tr
av
en
ou

s
in
je
ct
io
n

R
ad
io
nu

cl
id
e/

so
ur
ce

of
ir
ra
di
at
io
n

M
od

e
of

ex
po

su
re

D
os
e/
tr
ea
tm

en
tr
an
ge

N
um

be
r
of

ex
po

su
re
s

A
ge

of
do

gs
at

fi
rs
te
xp
os
ur
e

(m
on

th
s)

R
ef
er
en
ce
s

M
aj
or

re
su
lts

13
7 C

s
In
tr
av
en
ou

s
in
je
ct
io
n

9.
6–
14
.6

G
y
(c
um

ul
at
iv
e

do
se
)

Si
ng
le

5–
68

N
ik
ul
a
et
al
.(
19
96
)

L
iv
er

de
ge
ne
ra
tio

n;
as
pe
rm

y;
ha
em

at
op

oi
et
ic
fa
ilu

re
13
7 C

s
In
tr
av
en
ou

s
in
je
ct
io
n

7.
42
–
16
.4

G
y
(c
um

ul
at
iv
e

do
se
)

Si
ng
le

12
–
14

N
ik
ul
a
et
al
.(
19
95
);
R
ed
m
an

et
al
.(
19
72
);
B
oe
ck
er

(1
97
2)

A
sp
er
m
y;
liv
er

tu
m
ou

rs
;n

as
al
/s
in
us

tu
m
ou

rs
14
4 C

e
In
tr
av
en
ou

s
in
je
ct
io
n

0.
85
1–
19
.6
1
M
B
q/

kg
(to

ta
li
nj
ec
te
d)

Si
ng
le

13
Su

m
m
ar
y
of

re
su
lts

av
ai
la
bl
e
in

T
ho

m
ps
on

(1
98
9)

Sh
or
te
ne
d
lif
es
pa
n;

bo
ne

tu
m
ou

rs

22
4 R

a
In
tr
av
en
ou

s
in
je
ct
io
n

13
–
38
0
kB

q/
kg

(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

15
–
24

L
lo
yd

et
al
.(
19
82
);
M
ug
ge
nb

ur
g

et
al
.(
19
96
)

B
on

e
tu
m
ou

rs
;n

as
al
tu
m
ou

rs
;

ha
em

at
ol
og
ic
al
ch
an
ge
s

22
6 R

a
In
tr
av
en
ou

s
in
je
ct
io
n

0.
78
9–
37
0
kB

q
(to

ta
l

in
je
ct
ed
)

M
ul
tip

le
14
.3

W
hi
te
et
al
.(
19
94
);
R
aa
be

&
Pa

rk
s
(1
99
3)
;R

aa
be

et
al
.(
19
81
);

M
om

en
i(
19
78
);
Pa

rk
s
et
al
.(
19
78
);

M
om

en
ie
t
al
.(
19
76

a)

B
on

e
tu
m
ou

rs

22
6 R

a
In
tr
av
en
ou

s
in
je
ct
io
n

0.
22
2–
37
0
kB

q/
kg

(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

12
–
28

Po
lig

et
al
.(
20
04
);
L
lo
yd

et
al
.(
20
01
a,

b)
;B

ru
en
ge
r
et
al
.(
19
91
);

D
ou

gh
er
ty

&
R
os
en
bl
at
t(
19
71
)

B
on

e
tu
m
ou

rs
;i
nt
ra
oc
ul
ar

m
el
an
om

as

22
6 R

a
In
tr
av
en
ou

s
in
je
ct
io
n

0.
74
–
37

kB
q/

kg
(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

3–
5

L
lo
yd

et
al
.(
19
83

b,
c,
20
01
b)
;

B
ru
en
ge
r
et
al
.(
19
91
)

G
re
at
er

re
te
nt
io
n
in

ju
ve
ni
le
s

22
6 R

a
In
tr
av
en
ou

s
in
je
ct
io
n

37
–
37
0
kB

q/
kg

(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

58
.8
–
74
.4

L
lo
yd

et
al
.(
19
83

a,
b,
20
01

b)
;

B
ru
en
ge
r
et
al
.(
19
91
)

L
ow

er
re
te
nt
io
n
in

ag
ed

do
gs
;k
id
ne
y

de
te
ri
or
at
io
n

22
6 R

a
In
tr
av
en
ou

s
in
je
ct
io
n

0.
02
–
1.
1
μC

i/
kg

(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

17
(o
ne

w
as

11
0
m
on

th
s)

T
ay
lo
r
et
al
.(
19
97
);
L
lo
yd

et
al
.(
19
83
b,
d)

G
re
at
er

re
te
nt
io
n
in

Sa
in
tB

er
na
rd
s;

hi
gh
er
ri
sk
fo
rb

on
e
di
se
as
e
in
Sa

in
t

B
er
na
rd
s

22
6 R

a
In
tr
av
en
ou

s
in
je
ct
io
n

1.
91
–
10
.8
μC

/k
g
(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

1.
7–

75
M
ay
s
et
al
.(
19
58
)

R
ad
on

re
te
nt
io
n

22
8 R

a
In
tr
av
en
ou

s
in
je
ct
io
n

0.
74
–
33
3
kB

q/
kg

(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

13
–
24

L
lo
yd

et
al
.(
20
01

a)
;D

ou
gh
er
ty
&

R
os
en
bl
at
t(
19
71
)

B
on

e
tu
m
ou

rs
;i
nt
ra
oc
ul
ar

m
el
an
om

as
;h

ae
m
at
ol
og
ic
al

ch
an
ge
s

22
8 T

h
In
tr
av
en
ou

s
in
je
ct
io
n

0.
07
4–
99
.9

kB
q/

kg
(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

10
–
24

L
lo
yd

et
al
.(
19
84

a,
20
01
a)
;

D
ou

gh
er
ty

&
R
os
en
bl
at
t(
19
71
);

St
ov
er

et
al
.(
19
60
)

B
on

e
tu
m
ou

rs
;i
nt
ra
oc
ul
ar

m
el
an
om

as

23
9 P
u

In
tr
av
en
ou

s
in
je
ct
io
n

0.
03
7–
11
1
kB

q/
kg

(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

13
–
25

L
lo
yd

et
al
.(
19
93
,1

99
9,

20
01
a,
b)
;

B
ru
en
ge
r
et
al
.(
19
91
);
Pe
te
rs
on

et
al
.(
19
82
);
W
ro
ns
ki
et
al
.(
19
80
);

D
ou

gh
er
ty

&
R
os
en
bl
at
t(
19
71
);

C
oc
hr
an

et
al
.(
19

62
)

Sh
or
te
ne
d
lif
es
pa
n;

bo
ne

tu
m
ou

rs
;

ha
em

at
ol
og
ic
al
ch
an
ge
s;
liv
er

tu
m
ou

rs

23
9 P
u

In
tr
av
en
ou

s
in
je
ct
io
n

0.
18
5–
11
1
kB

q/
kg

(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

2.
9–

3.
5

L
lo
yd

et
al
.(
19
99
,2

00
1b
);
B
ru
en
ge
r

et
al
.(
19
80
,1

99
1)

G
re
at
er

re
te
nt
io
n
in

th
e
bo

ne
of

ju
ve
ni
le
s;
bo

ne
tu
m
ou

rs
23
9 P
u

In
tr
av
en
ou

s
in
je
ct
io
n

0.
59
2–
11
.1

kB
q/

kg
(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

49
.2
–
62
.4

L
lo
yd

et
al
.(
19
78
,1

99
1,

19
99
,

20
01
b)
;B

ru
en
ge
r
et
al
.(
19
91
)

G
re
at
er

re
te
nt
io
n
on

bo
ne

su
rf
ac
es
of

ag
ed

do
gs
;b

on
e
tu
m
ou

rs
23
9 P
u

In
tr
av
en
ou

s
in
je
ct
io
n

0.
01
58
–
0.
90
3
μC

i/
kg

(q
ua
nt
ity

in
je
ct
ed
)

Si
ng
le

19
T
ay
lo
r
et
al
.(
19
81
,1

99
7)

B
on

e
tu
m
ou

rs
;h

ig
he
r
ri
sk

fo
r
bo

ne
di
se
as
e
in

Sa
in
tB

er
na
rd
s (C
on
ti
nu
es
)

Biological Reviews 96 (2021) 1799–1815 © 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

1802 Gabriella J. Spatola et al.



(Shao et al., 2014). As a result of bone marrow damage, which
is characterized by a decrease in haematopoietic stem cell
reserves and improper function of haematopoietic stem
cell renewal, exposed subjects may develop aplastic anaemia
or a myeloproliferative disorder, both related to a lack of
healthy blood cells in the body. This can initiate a cascade
of events leading to death.

An additional effect of intravenous exposure to 137Cs
included testicular damage in male beagles. All long-term
male survivors that were injected with 137Cs were aspermatic
(Nikula et al., 1996). Recently, the mechanism of damage has
been investigated in detail. One study used a 137Cs source to
expose several groups of male mice to gamma radiation at
various levels (Son et al., 2015). Results indicated that even
a low dose rate of 3.49 mGy h−1, which results in a total
dose of 1.7 Gy after 21 days, can induce disruption of the
blood–testis barrier (Son et al., 2015), which is necessary for
protecting germ cells and maintaining an appropriate micro-
environment. Disruption of the barrier results in infertility.
Unsurprisingly, infertility was also reported in wild-caught
birds from Chernobyl, Ukraine, where 137Cs was among
the most prevalent radionuclides in fallout from the nuclear
disaster (Møller et al., 2014). Møller et al. (2014) investigated
the presence and sperm quality of wildlife externally exposed
to consistent but relatively low dose rates of radiation chron-
ically by the environment in and around Chernobyl. Their
research showed that the proportion of male birds without
sperm increased logarithmically with the level of radiation
exposure, and 18.4% of males from highly contaminated
areas were completely without sperm. Additional studies
are needed to understand the effects of environmental expo-
sure to ionizing radiation on fertility.

One particularly interesting observation from studies that
implemented intravenous exposures was that retention of
radionuclides differed by age. Three-month-old juvenile
dogs injected with either 226Ra or 239Pu appeared to have
greater nuclide retention in the skeleton compared to 17 to
19-month-old young adults who were injected with the same
radionuclide concentrations per unit of body mass (Bruenger
et al., 1980; Lloyd et al., 1983c). Retention of 226Ra or 239Pu
was also higher in 17-month-old young adults compared to
5-year-old beagles (Lloyd et al., 1983a). After single injections
of 41 kBq 226Ra/kg, cumulative average skeletal doses were
25 Gy for juveniles, 22 Gy for young adults, and 15 Gy for
aged dogs. After injections of 11 kBq 239Pu/kg, cumulative
average skeletal doses were 4 Gy for juveniles and young
adults, and 5 Gy for aged dogs. Cumulative average skeletal
doses were retrospectively estimated for 1 year prior to death,
which was presumed to be the starting time of tumour
growth. Despite juveniles having higher skeletal doses of
226Ra, bone tumours occurred most frequently in young
adult dogs (Bruenger, Lloyd & Miller, 1991).

Nikula et al. (1996) analysed data from two laboratories
testing the effects and survival of beagles injected with
137Cs at distinct ages. Aged dogs of both genders died signif-
icantly earlier than juvenile or young adult dogs as a result of
haematological abnormalities, such as severe pancytopeniaT
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leading to fatal haemorrhage, and/or septicaemia, despite
having similar cumulative whole-body radiation doses
(11 Gy for aged dogs, 12.8 Gy for young adults, and
10.9 Gy for juveniles). In addition, aged females died signifi-
cantly earlier than aged males, showing differential radiosen-
sitivity related to both age and sex.

Only two early radiation studies using purebred dogs
examined effects in Saint Bernards rather than beagles, and
both of these studies exposed dogs intravenously to either
239Pu or 226Ra. Saint Bernards exposed to 239Pu intrave-
nously appeared to be more susceptible to radiation-induced
bone tumours than similarly injected beagles, which is
thought to be related to their observed predisposition to bone
cancer (Taylor et al., 1981). In addition, 226Ra-injected Saint
Bernards retained greater quantities of the radionuclide
compared to beagles, potentially contributing to their
increased susceptibility (Lloyd et al., 1983d).

(2) Inhalation

The most likely route of human occupational exposure to
radionuclides is believed to be inhalation, leading researchers
to implement this mode of exposure in animal studies (Cross
et al., 1982; Thompson, 1989). Radon is a naturally occurring
radionuclide that is frequently encountered in homes, and
in humans is thought to be the second leading cause of
lung cancer behind cigarette smoking (American Cancer
Society, 2015). Radon levels within homes vary depending
on the local soil or rock and can even be emitted from building
materials. Those who work with naturally occurring materials
that are high in radon levels, such as uranium miners, are at
particularly high risk for detrimental exposure. Early on,
radon studies were conducted on humans at the Argonne
National Laboratory, although these studies included a limited
number of participants and did not focus on the physiological
effects of radon exposure. Instead, researchers sought to differ-
entiate between radon absorbed environmentally and radon
that is produced in the body as a result of radium decay after
exposure (Lucas & Stehney, 1956). Several studies investigated
the effects of radon inhalation exposure on dogs, reporting
respiratory distress and respiratory tract tumours after expo-
sure (Cross et al., 1982). In dogs exposed to radon, radon
daughters, uranium ore dust, and/or cigarette smoke daily,
pulmonary tumours were found after 50 months of exposure.
Curiously, eight out of 19 dogs exposed to radon, radon
daughters, and uranium ore dust daily developed respiratory
tract tumours while only two out of 19 dogs exposed to radon,
radon daughters, uranium ore dust, and cigarette smoke daily
developed respiratory tract tumours. Researchers suggest that
this could be related to increased mucus production or clear-
ance as a result of cigarette smoking, causing a smaller radia-
tion dose to bronchial and bronchiolar proliferating
epithelial cells.

In 27 studies dogs were exposed to 239Pu, 238Pu, 144Ce,
90Sr, 90Y, 91Y, 241Am, Rn or U by inhaled aerosols contain-
ing radionuclides (Table 2). Lung tumours and respiratory
damage were common deleterious results (Bair & Willard,

1962; Clarke & Bair, 1964; Muggenburg et al., 1996; Hahn
et al., 1997; Park et al., 2012) and were unique to this method
of exposure. Radiation pneumonitis, an inflammation of the
lung caused by radiation exposure, was the predominant
non-neoplastic disease observed (Hahn et al., 1975, 1997,
2001; Muggenburg et al., 1996). Radiation pneumonitis
is now known to be a common effect in human lung can-
cer patients who receive chemoradiation treatments.
Radiation pneumonitis is typically not fatal in human
cancer patients, although it is associated with high daily
radiation dose and coincides with lower-lobe lung
tumours (Palma et al., 2013).
After brief retention in the lungs, some radionuclides tend

to translocate throughout the dog’s body, causing varying
effects related to deposition and protracted exposure. Translo-
cation of radionuclides after initial exposure likely causes not
only immediate but delayed effects as well, with chronic expo-
sure producing a constant high dose to organs and tissues well
after initial exposure. For instance, a year after exposure to
238Pu, retention in the liver and skeleton of dogs remains per-
sistent and is still present over 1000 days after exposure
(Muggenburg et al., 1996). By comparison, 239Pu clears from
the lungs of exposed individuals with an average estimated
half-time of 1192 days, andmore than 10 years after exposure
65% of the overall final body burden was found in the thoracic
lymph nodes (Park et al., 2012). Delayed tumour formation
occurs even without constant radionuclide exposure. The
leading cause of death reported in two separate studies of dogs
exposed to single inhalations of 238Pu aerosols were bone
tumours, followed by lung and liver tumours, all of which
appeared approximately 3 years post-exposure (Muggenburg
et al., 1996; Park et al., 1997). 144Ce similarly translocated to
the liver and skeleton of exposed dogs, where the subsequent
occurrence of liver and bone tumours were noted (Hahn
et al., 1997). Long-term retention of inhaled 90Sr was highest
in the skeleton of exposed dogs leading to protracted exposure
(Benjamin et al., 1975; Gillett et al., 1987b). As a result, 47% of
exposed dogs suffered primary bone tumours.
Although dogs are the most common non-rodent laboratory

mammal used in radiation studies, the biological effects and
retention of inhaled radionuclides has also been studied in rats
(Snipes, Boecker & McClellan, 1983; Lundgren et al., 1992,
1995), mice (Hahn, Lundgren & McClellan, 1980; Lundgren
et al., 1980; Snipes et al., 1983), hamsters (Sanders, 1977;
Lundgren, Hahn & McClellan, 1982), and monkeys (LaBauve
et al., 1980; Poncy et al., 1998). Lung tumours are common in
all mammalian species chronically exposed to inhaled radionu-
clides, with effects ranging in severity depending on the dose
and dose rate of exposure (Dagle & Sanders, 1984).

(3) Ingestion

Only two major experiments used ingestion as a method of
radiation exposure, despite this being a primary route of
long-term exposure after nuclear weapons detonations and
nuclear accidents (Table 3). After an accident at a nuclear
power plant, for example, radioactive fallout is dispersed by
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wind and water, and humans are likely exposed via ingestion
of contaminated foods. The University of California, Davis,
conducted a long-term experiment using more than 400 bea-
gles and several studies on this cohort were reported in the
primary literature (Dungworth et al., 1969; Momeni
et al., 1976b; Momeni, 1978; Raabe, Parks & Book, 1981;
Book, Spangler & Swartz, 1982; Nilsson & Book, 1987;
Raabe & Parks, 1993; White et al., 1993). The experiment
was intended to provide evidence that could be applied to
humans, specifically in the event of indirect exposure to
unborn children whose mothers reside in areas where
nuclear fallout has settled. In this experiment, pregnant dams
were fed 90Sr at various doses and pups were continued on
the diet until 540 days after birth. In the highest-dose groups,
major effects included bone tumours, myeloproliferative dis-
orders, and shortened lifespans (Dungworth et al., 1969; Book
et al., 1982; White et al., 1993). The distribution of bone sar-
comas correlated with the cancellous bone volume-to-surface
ratio rather than bone mass or dose distribution (White
et al., 1993). The median lifespan of dogs that ingested
12 μCi/day was 5.2 and 6.5 years for those who
ingested 4 μCi/day. Interestingly, beagles in the lowest-dose
group (1.3 μCi/day) appeared to have normal lifespans, with
a median lifespan of 12.5 years, and did not develop any
radiation-induced bone disease (Book et al., 1982).

The effects of exposure to low dose ionizing radiation
remain of interest to biologists today, as such effects are often
long delayed or confounded by other environmental factors
(Burlakova et al., 2016). As radiation dose decreases, uncer-
tainty regarding which phenotypes can be directly attributed
to radiation increases. This uncertainty makes it necessary for
researchers to use very large sample sizes and continue exper-
iments for extended periods of time, which is often undesir-
able when using larger mammals such as dogs, that are
both expensive and labour intensive to maintain. Instead,
some researchers have transitioned to studying natural popu-
lations exposed to chronic low dose ionizing radiation over
many generations, such as rodents and birds (Galv�an
et al., 2014; Mousseau & Møller, 2014; Lehmann
et al., 2016; Kesäniemi et al., 2020). Although hundreds of
dog populations exist in residential areas across the globe,
some of which live in areas contaminated by radioactive fall-
out from nuclear disasters or atomic bomb testing, such as in
Chernobyl, Ukraine, Fukushima, Japan, the Semipalatinsk
Test Site, near Kurchatov, Kazakhstan, or Bikini and Ene-
wetak atolls of the Marshall Islands, these populations have
never been studied and thus present a novel opportunity to
investigate the effects of low dose ionizing radiation.

(4) External X-ray and gamma ray exposure

Several studies commissioned by the AEC, as well as studies
sponsored by agencies outside of the United States including
the Universities of Ulm (Germany) and Helsinki (Finland),
exposed dogs to 60Co gamma rays or X-rays (Table 4).
Unlike research using internally deposited radionuclides,
studies using external exposure methods were largely focused

on leukaemogenic processes, including haematopoietic func-
tion and characteristics of bone marrow after exposure. In
dogs continuously exposed to 60Co gamma rays, early hae-
matopoietic failure was positively associated with accumu-
lated dose and dose rate of exposure (Carnes &
Fritz, 1993). In dogs exposed solely in utero compared to those
who were continuously exposed even after birth for the dura-
tion of their life (7 cGy/day), the frequency of myeloid leu-
kaemia differed significantly, with dogs in terminated
exposure regimens being less likely to develop myeloid leu-
kaemia (Seed et al., 1987). Haematopoietic function of dogs
in both exposure regimens was progressively suppressed
until 100–150 days of age, at which time dogs from both
groups partially recovered haematopoietic function (Seed
et al., 1987).
Haematopoietic responses have also been documented fol-

lowing accidental exposure to ionizing radiation in humans.
Kesminiene et al. (2008) investigated the risk frequency of hae-
matological malignancies in so-called ‘Chernobyl liquidators’
who participated in accident clean up and recovery efforts
after the nuclear disaster. These clean-up workers were
exposed to significant levels of external beta and gamma radi-
ation and appeared to be at a significantly increased risk
for haematological malignancies when doses exceeded
200 mGy. However, there were several potential issues with
the dose reconstructions related to recall bias because the dose
reconstruction was based on subjective information gathered
from individuals (e.g. recall of routes to and from work and
details of the work they performed). Researchers attempted
to correct for these particular biases by incorporating uncer-
tainties into the model. Of the 598 liquidators included in this
study, 117 reported neoplasms of lymphoid and haematopoie-
tic origin, 69 of which were diagnosed as leukaemia. However,
because of the relatively small sample size for this study, and
the challenges of dose reconstruction based on individual
recall, the relationship between accidental exposures and risk
of leukaemia remains largely unclear. It is perhaps notable that
the most comprehensive studies of the association between
external low dose radiation exposure (CT scans) and cancer
in humans employed 10.9 million individuals (Mathews
et al., 2013), emphasizing the need for statistically rigorous
sampling designs for such research.
A large-scale study conducted at the University of Colo-

rado exposed over 1500 dogs to 60Co gamma rays in utero, ter-
minating exposure at various ages post-conception and
extending for a maximum of 12 months. Mortality related
to neoplasia occurred in 40% of all exposed dogs, with signif-
icant increases observed in dogs less than 4 years old. Inter-
estingly, in this particular study all exposures occurred
when dogs were in utero or neonates, yet, neither cancer nor
myeloproliferative diseases appeared until adulthood
(Benjamin et al., 1998b).
The results of studies assessing humans exposed to radia-

tion while in utero are highly variable among studies and geo-
graphic regions (e.g. National Research Council, 2006).
Kato, Yoshimoto & Schull (1989) found that children
exposed in utero to radionuclides from atomic bomb fallout
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in Hiroshima and Nagasaki, Japan, were at a higher risk for
cancer than survivors exposed as adults. A dose–response
relationship between radiation dose in utero and instances of
large benign thyroid nodules, but not small nodules, was
reported in children exposed as a result of the Chernobyl
nuclear disaster (Hatch et al., 2018). In addition, no signifi-
cant evidence of elevated risk for thyroid cancer was found
by this study. Schonfeld et al. (2012) examined the risk of
long-term cancer after in utero exposure to radiation among
offspring born to female workers at theMayak Nuclear Facil-
ity in Ozyorsk, Russia between 1948 and 1988. Of the 3226
offspring in this study that were exposed to an average dose of
54.5 mGy in utero, only 28 had died at the time as a result
of solid cancers, and six died from leukaemia, suggesting that
there is no statistically significant association between expo-
sure in utero and cancer death. Boice &Miller (1999) reviewed
arguments made for and against the causal association
between cancer and in utero exposure to ionizing radiation,
which is especially debated at low exposure doses. These
researchers argue that evidence of causal associations
between in utero exposure and increased risk of leukaemia
and solid cancers are primarily reported in case control stud-
ies, whereas cohort studies of accidentally exposed individ-
uals generally find no association. Although most
researchers acknowledge an association between in utero

exposure to ionizing radiation and cancer risk, the causal
nature of this relationship is unclear and undoubtedly
complex.

(5) Other methods of exposure

In addition to the primary exposure methods mentioned
above, various studies have used subcutaneous injection,
transplacental injection, subcutaneous implants, brain
implants, and combinations of previously discussed methods
to expose dogs to radionuclides (Table 3). Several studies
involved mixed radiation exposure, while others were
stand-alone experiments (e.g. Foreman & Boecker, 1969;
Cuddihy & Boecker, 1970). In addition, meta-analyses com-
bining data from several sites have been published (Momeni
et al., 1976b; Raabe & Parks, 1993). For example, one such
study by Momeni et al. (1976b), which included data from
two experiments, both completed at the University of Cali-
fornia Davis, combined data from beagles that ingested
90Sr or were injected with 226Ra. Results show larger skeletal
changes, such as endosteal or periosteal sclerosis or thicken-
ing, fractures, osteolytic lesions, or trabecular coarsening in
dogs injected with radium at lower activity levels compared
to those that ingested strontium. Studies reporting on com-
bined data sets are listed under each of the experiments
included in the study in Tables 1 and 3.
Three studies exposed dogs via subcutaneous injections of

either 90Sr, U, or 239Pu and one exposed dogs using transpla-
cental injections of 90Sr (Table 3). No results have been pub-
lished in the primary literature regarding studies that
implemented subcutaneous or transplacental injections of
90Sr, however a summary of early results may be found inT
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the International Radiobiology Archives of Long-Term Animal Studies

(Gerber et al., 1996) or Thompson’s Life-Span Effects of Ionizing
Radiation in the Beagle Dog (Thompson, 1989). Daily 90Sr injec-
tions were given to dogs for the purpose of exploring health
risks that may be applied to humans continuously exposed
to fallout from nuclear weapons testing and nuclear acci-
dents. Thirty-two of 69 dogs subcutaneously injected daily
with total quantities of 90Sr ranging from 150 to 1500 μCi
developed bone tumours or myeloid leukaemia. Daily subcu-
taneous injections of two litters with 90Sr were terminated
prior to completion of the study due to excessive mortality.
In order to investigate health risks in beagles that could
potentially apply to unborn children exposed to nuclear fall-
out, pups were transplacentally injected with 90Sr; bone
tumours occurred at higher doses and burdens at birth ran-
ged from 120 to 300 μCi/kg (Thompson, 1989; Gerber
et al., 1996). Dogs that were subcutaneously injected with
uranium experienced kidney damage (MacNider 1919,
1928a,b). One to two-year-old beagles were more resistant
to kidney damage while dogs over 7 years old showed no
evidence of functional repair, indicating that subcutaneous
injection of uranium is more toxic in aged dogs. At the
University of Colorado, dogs were subcutaneously injected
with 239Pu in their forepaws to imitate hand wounds received
by accidentally exposed workers (Dagle et al., 1984).
The highest concentrations of radionuclides that translo-
cated from the initial injection site in the paw were found in
the regional lymph nodes and liver, with average concentra-
tions of 1429 and 0.83 nCi/g respectively for plutonium
oxide and 5.78 and 0.18 nCi/g respectively for plutonium
nitrate.

In three studies, dogs received brain implants of Rn, 192Ir,
or 125I in order to investigate potential side effects of brain
radiotherapy. In all of these studies, necrosis of the brain tis-
sue surrounding the implants occurred (Globus, Wang &
Maibach, 1952; Ostertag et al., 1983; Janzer, Kleihues &
Ostertag, 1986). There was no delayed damage to the
remainder of the brain as a result of 125I implantation, sug-
gesting that this radionuclide may be a favourable radio-
therapeutic option (Ostertag et al., 1983). However, with
192Ir wire implantation, necrosis persisted well beyond
25 days after implantation (Janzer et al., 1986). Thus, while
clear that implanting radionuclides in the brain causes necro-
sis, the extent of necrosis may vary significantly between
radionuclides.

III. CONCLUSIONS

(1) Domestic canines commonly share the same environ-
ment, lifestyle, and exposure to pollutants as their
human counterparts (Mazzatenta et al., 2017; Ostran-
der et al., 2017). Coupled with their larger body size
and longer lifespan compared to other frequently used
model organisms, this makes the canine model a useful
tool in studying radiation-induced diseases.

(2) Frequent effects of radiation exposure in dogs include
haematological changes, infertility, and cancer of the
bone, liver, lung, and blood, among others. Effects
depend on the radionuclide, method of exposure, age
at exposure, dose rate, and total exposure dose.

(3) With an increasing demand for nuclear power comes a
higher risk of nuclear accidents, and studies of radia-
tion exposures in domestic dogs have provided valu-
able information for understanding the repercussions
for accidentally exposed populations.

(4) Although experiments done in a laboratory setting
have proved illuminating, more studies are needed
on natural populations affected by past radiological
disasters in order to further our understanding of
how laboratory results may apply, as such populations
are affected by potentially confounding environmental
factors. In addition, the vast background knowledge
provided by early radiation studies on dogs could allow
meaningful conclusions to be drawn regarding the
application of laboratory results to natural
populations.
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