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Coalescence dynamics 
in oil‑in‑water emulsions 
at elevated temperatures
Bijoy Bera1,2*, Rama Khazal1 & Karin Schroën1

Emulsion stability in a flow field is an extremely important issue relevant for many daily-life 
applications such as separation processes, food manufacturing, oil recovery etc. Microfluidic studies 
can provide micro-scale insight of the emulsion behavior but have primarily focussed on droplet 
breakup rather than on droplet coalescence. The crucial impact of certain conditions such as increased 
pressure or elevated temperature frequently used in industrial processes is completely overlooked 
in such micro-scale studies. In this work, we investigate droplet coalescence in flowing oil-in-water 
emulsions subjected to higher than room temperatures namely between 20 to 70 ◦ C. We use a 
specifically designed lab-on-a-chip application for this purpose. Coalescence frequency is observed 
to increase with increasing temperature. We associate with this observation the change in viscosity 
at higher temperatures triggering a stronger perturbation in the thin aqueous film separating the 
droplets. Using the scaling law for rupture time of such a thin film, we establish a mechanism leading 
to a higher coalescence frequency at elevated temperatures.

A huge number of applications in food industry, oil and natural gas industry, separation processes industry 
require either a stable or unstable oil-in-water emulsion under very specific process conditions1. As an exam-
ple, in an oil–water separation process, temperature is used to facilitate phase separation from the compressed 
emulsion and hence, coalescence of the oil droplets is desired. On the other hand, high temperature (in short 
time) treatment of dairy products ensures sterilization of the liquid food and requires non-coalescing dispersed 
phase at elevated temperatures2. In addition, many of these industrial processes require the oil–water mixture 
to be subjected to flow. The complex interplay of droplet interactions coupled with the process parameters and 
the flow conditions make such a system extremely difficult to study.

Understanding this system very much requires a description of the micro-scale phenomena since the dis-
persed phase droplets are of the order of a few hundred nanometers to a few tens of microns. The coverage of the 
oil–water interface by an emulsifier also plays a significant role in eventual stability of the emulsion and hence, 
the diffusion of the emulsifier and subsequent adsorption control the behavior and stability of the emulsion at 
this micro-scale. Prior research has focussed extensively on migration of dispersed phase droplets in a (linear) 
flow3, droplet deformation because of flow4, transient effects on the droplet behavior5 etc. In the past couple of 
decades, microfluidics has proven to be an extremely important tool in probing emulsions6–9. However, in most 
of these microfluidic emulsion studies, the focus has remained on droplet breakup (e.g., at a T-junction)10,11 i.e., 
the formation of the emulsion. Both numerical as well as experimental research have been carried out on the 
dynamics of droplet breakup during the formation of such emulsions12. The coalescence studies are, however, 
mostly limited to determination of droplet size distributions and their analysis13,14. This severely limits the under-
standing of the system since the dynamic flow effects on coalescence cannot be observed using these methods.

Krebs et al. introduced an experimental method for the first time to measure and analyze the coalescence of 
moving droplets in a microfluidic channel15. Surfactant concentration, addition of salt were used as parameters in 
this study and inferences were drawn regarding the stability of the system. However, such an in-situ microfluidic 
study of droplet coalescence does not correspond to industrially relevant process conditions. In addition to that, 
effects of some of the industrial process conditions such as oil volume fraction, droplet size and oil viscosity on 
the emulsion stability have previously been studied in an empirical fashion16, but microscopic insight of what 
such a specific process condition e.g., elevated temperature does to the thinning of the aqueous film between 
two droplets leading to the droplets’ coalescence is quite limited.
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In our current study, we build a lab-on-a-chip setup where a temperature control is added to the coalescence 
setup described by Krebs et al. We use two low molecular weight (LMW) surfactants: SDS and Tween-20 (food-
grade) as emulsifiers to first form oil-in-water emulsion at the T-junction part of the microfluidic chip. The 
same emulsion then flows to the part of the microfluidic chip known as coalescence chamber where we study 
the oil droplets’ coalescence as a function of temperature, surfactant concentration, initial oil droplet size and 
the adsorption time allowed to the surfactant molecules to get adsorbed to the oil–water interface. Based on the 
observations, we propose a mechanistic explanation of the film drainage at elevated temperatures and explain 
how that will lead to the coalescence trends observed in our experiments.

Methods
Chemicals.  Oil is the dispersed phase in our system and we have used Hexadecane (Sigma Aldrich, The 
Netherlands) which is filtered using a 30 µ m microfilter (BD Scientific, The Netherlands). SDS and Tween 20 
(Sigma Aldrich) are used as the emulsifiers in these experiments. The continuous phase is prepared by dissolving 
SDS and Tween 20 in ultrapure water (milli-Q, Merck Millipore, Germany) and subsequently diluting the stock 
solution to required surfactant concentrations.

Coalescence setup.  The microfluidic chip and setup used in these experiments have been previously used 
by some of our co-workers15,17 and is schematically shown in Fig. 1. In short, a pressure controller (Elveflow, 
France) is used to inject both hexadecane and surfactant solutions in the chip. The first part of the microfluidic 
chip consists of a ‘T-junction’, as depicted in Fig. 1, where the oncoming oil phase is sheared by the aqueous 
surfactant solution. As a result, oil droplets are created inside the microchannel and an oil-in-water emulsion is 
formed. The emulsion then passes through a winding part in order to allow adsorption of the emulsifier (sur-
factants) at the oil–water interfaces. In our experiments, the length of this adsorption part of the microchannel is 
varied between 35 and 100 ms of passage time for the freshly formed emulsion through this part. The following 
part of the chip is wider (500 µ m) compared to the rest (100 µm). As a result, the oil droplets slow down leading 
to collision as well as coalescence. This part of the chip is called the coalescence chamber. During the experi-
ments, coalescence occurrences are recorded at the beginning and at the end of this chamber for further analysis. 
Further details of the chip can be found in15,17.

It is important to note that our entire study relies on the dynamic flow conditions achieved in the microflu-
idic setup. The formation of the oil droplets at the T-junction is possible for a specific ratio of oil phase inflow 
rate and aqueous phase inflow rate. In addition, any variation in the droplet sizes or the speed with which the 
droplets arrive at the coalescence chamber, is also a direct result of varying these inflow rates of oil and aqueous 
phases. Finally, the coalescence events that we measure in our experiments, occur where the continuous phase 
is flowing around them which would have a significant influence on the drainage of the interstitial films. These 
flow rates and film drainage are described in greater detail in the later sections.

Before carrying out coalescence experiments, these chips are cleaned thoroughly using a specific cleaning 
protocol. The chips are first sonicated for 30 min in a 5% DECON solution (Sigma Aldrich, The Netherlands) 
followed by rinsing and sonication (for 60 min) in milli-Q water. The chip is further sonicated in ethanol before 
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Figure 1.   Experimental set-up with the microfluidic coalescence chip shown in inset. The coalescence chip 
comprises of three parts: the T-junction for formation of droplet and emulsion, the adsorption channel 
(U-shaped) for surfactant adsorption and finally, the wider coalescence chamber for allowing droplet collision 
and merging.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10990  | https://doi.org/10.1038/s41598-021-89919-5

www.nature.com/scientificreports/

rinsing again with milli-Q water. Subsequently, the chips are baked dry in an oven for 2 h at 500 ◦ C. After cooling 
the chip, they are stored in ethanol before use.

Temperature unit.  In order to capture the influence of temperature on the coalescence of oil droplets, a 
temperature unit is added to the microfluidic setup. As shown in Fig. 2a, a custom made plexiglass holder is 
placed on top of the coalescence chamber of the chip. The holder is connected to a heating unit with a tube which 
in turn is connected to the compressed air supply, as shown by the schematic representation in Fig. 2b. Hence, 
compressed air is let to flow through the heating unit where it can be heated up to 95 ◦ C. Subsequently, this hot 
air is blown over the coalescence chamber; a thermostat confirms the temperature of the (outside) of the coales-
cence chamber, and it it assumed that the inside of the chamber is also at the same temperature.

The usual oil inflow rate at the T-junction is 70 µl/min, while the water inflow rate is 200 µl/min. We noticed 
that in order to produce the same size droplets, the flow rates are not required to be changed (significantly) at 
higher temperatures. We attribute this to the T-junction not being heated directly by the heating element i.e., the 
change of viscosity at higher temperatures does influence the coalescence of the droplets but not the formation 
of the droplets which depends on the relative inflow rates. Of course, the whole set-up being in mm-scale, the 
T-junction is also influenced by the heating element housed on top of the coalescence chamber, but the influence 
seems not large enough to affect the droplet formation.

Coalescence experiments inside temperature unit.  First, the chip is placed in the temperature con-
trolling holder and then oil and water phases are injected into the chip to form the emulsion. When the oil 
droplets arrive at the coalescence chamber, a series of images are captured at the beginning of the chamber for a 
period of 30s and then the same is done at the end of the coalescence chamber as well. The capturing of the coa-
lescence events is started at room temperature (20 ◦ C) and then subsequently repeated at elevated temperatures 
up to 70 ◦ C in steps of 5 ◦.

Calculation of coalescence frequency.  The captured images are analyzed following15,17 for calculating 
the frequency of coalescence events. In short, the surface areas of the droplets at the end of the coalescence 
chamber are calculated from the pixel information from the captured videos. If the mean final droplet volume is 
given by V f  , and the mean initial droplet volume is given by V i  , then assuming a monodisperse emulsion before 
the oil-droplets coalesce (a reasonable assumption for a microfluidic experiment), the mean droplet volume 
ratio ( � ) is given by:

Hence, the mean number of coalescence can be calculated by: Ncoal =
Vf

Vi
− 1 = �− 1 . If we assume that a 

droplet remains for t res , the so-called residence time, before reaching the end of the coalescence chamber, then 
the coalescence frequency is given by:

where, t res can be calculated from the mean droplet velocity.

Results
Influence of surfactant concentration and temperature.  Figure  3a shows the coalescence occur-
rences with respect to surfactant concentration (0.01–1 mM) when SDS is used as the emulsifier. Temperature 
is varied between 20 and 70 ◦ C for each of these SDS concentrations and the figure depicts the entire phase dia-
gram of these coalescence events. We see that coalescence occurrences decrease with increasing SDS concentra-
tion (at a constant temperature). As one approaches the critical micellar concentration (cmc) of SDS (8.2 mM), 

(1)� =
Vf

Vi

(2)fcoal =
Ncoal

tres
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Figure 2.   A Lab-ona-chip where temperature can be increased while performing coalescence experiments; (a) 
the actual temperature unit attached to the coalescence chamber at top, (b) a schematic explaining the use of 
heated air to elevate the temperature of the chip.
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very few oil droplets seem to coalesce. Above the cmc, we do not observe any coalescence. On the other end 
of the concentration spectrum i.e., at a relatively low SDS concentration ( 0.01 mM), coalescence experiments 
are difficult to carry out. This is due to most of the oil droplets pinning on the bottom glass of the coalescence 
chamber. Since the microfluidic chips are cleaned thoroughly before the experiments, the channel is extremely 
hydrophilic. This, coupled with the fact that hexadecane has a far lower surface tension ( ∼ 27 mN/m) than that 
of water ( ∼ 72 mN/m)18,19, implies that unless the surfactant molecules covered the oil-interface efficiently, hexa-
decane will have a much higher affinity for the (hydrophilic) glass surface. Hence, at lower SDS concentration, 
hexadecane droplets stick to the bottom glass.

Temperature of the coalescence chamber seems to clearly have a significant effect on the coalescence occur-
rences. With an increasing temperature, we notice an increase in the coalescence events in the microchannel 
(Fig. 4a). The increase is slower until about 50 ◦ C and then quite significant up to 70 ◦ C. This increasing trend 
is independent of the surfactant concentration. However, below 0.1 mM SDS concentration the coalescence 
trend with increasing temperature is more erratic. We attribute this to the irregular surface coverage at oil–water 
interface at low surfactant concentration. It is important to note that all these experiments are carried out at a 
temperature which is above the Krafft temperature of SDS and hence, the solubility of the surfactant does not 
directly play a role. This assumption is also validated by the fact that the results presented for each SDS concen-
tration and temperature are average values of a set of three experiments; the errors are reasonably small.

Another surfactant is chosen to examine the generality of these observations, namely Tween 20. Figures 3b 
and 4b show the coalescence frequency for hexadecane droplets when Tween 20 is used as the emulsifier; the 
general trend is identical to that of SDS.

Influence of droplet size.  The size of the dispersed phase droplets is a crucial parameter influencing emul-
sion stability. In microfluidic experiments, always a monodisperse emulsion is prepared and as a result, each of 
our coalescence experiments are carried out at a constant oil droplet size (to start with). We have varied the oil 
droplet sizes between 80 and 120 µ m using a range of dispersed phase pressure and continuous phase pressure 
ratios and the coalescence frequency seems not to change significantly based on the oil droplet size. Figure 5 
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Figure 3.   Coalescence trends in hexadecane-in-water with varying concentration of emulsifiers (a) SDS, (b) 
Tween 20. Different symbols denote the various temperatures at which the coalescence was measured: 20 ◦ C 
(black squares), 30 ◦ C (red circles), 40 ◦ C (blue upward triangles), 50 ◦ C (downward magenta triangles), 60 ◦ C 
(green diamonds) and 70 ◦ C (dark blue leftward triangles). The entire dataset along with the error bars are 
presented in the supplementary information.
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Figure 4.   Coalescence trends at elevated temperatures for different (a) SDS, (b) Tween 20 concentrations. SDS 
concentrations are: 0.01 mM (black squares), 0.05 mM (red circles), 0.1 mM (blue upward triangles), 0.2 mM 
(pink downward triangles), 0.3 mM (green diamonds), 0.4 mM (dark blue leftward triangles), 0.5 mM (magenta 
rightward triangles), 1 mM (purple circles). For Tween 20 the concentrations are: 0.01 mM (black squares), 
0.05 mM (red circles), 0.075 mM (blue upward triangles), 0.1 mM (pink downward triangles) and 1 mM (green 
diamonds). The error bars are shown (along with the entire dataset) in the supplementary information.
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Figure 5.   Coalescence trends with different droplet sizes and temperatures at 0.1 mM SDS concentration. 
Different symbols denote the various temperatures at which the coalescence was measured: 20 ◦ C (black 
squares), 30 ◦ C (red circles), 40 ◦ C (blue upward triangles), 50 ◦ C (downward magenta triangles), 60 ◦ C (green 
diamonds) and 70 ◦ C (dark blue leftward triangles).
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shows a representative measurement with 0.1 mM SDS. It is evident that at room temperature as well as at an 
elevated temperature, the coalescence frequency remains independent of the droplet size.

Influence of surfactant adsorption time.  As explained in the “Materials and methods” section, the 
microfluidic chip has a meandering section between the T-junction and the coalescence chamber. The length 
of this meandering section varies from chip to chip, and as a result the time of surfactant adsorption at the 
oil–water interface can be used as a variable parameter in the experiments, depending on how long the oil drop 
stays in this section. We have used three different adsorption times (which corresponds to the length of the 
meandering channels): 35 ms, 66 ms and 100 ms. Figure 6 shows the coalescence frequencies for 0.5 mM SDS 
concentration (at various temperatures) as the adsorption times are changed. We do not observe a significant 
change in the coalescence events based on the adsorption time.

Discussion
For coalescence to occur, two droplets need to approach each other in the microfluidic chip, after which the 
thin continuous phase film between the droplets needs to drain20–22. This drainage of course depends on vari-
ous flow and fluid properties e.g. drop velocity, fluid viscosity etc. We will first explain the effect of surfactant 
concentration on this phenomenon.

As the surfactant concentration increases, the oil–water interface has a higher surfactant coverage leading to 
a lower interfacial tension23,24. This implies that less energy is required to form the interface, and as a result it is 
more advantageous for the oil phase to remain as smaller droplets leading to less coalescence. This is also sup-
ported by the fact that the thin film is expected to be more stable when the oil droplet is covered with a surfactant. 
This is because the film stability is governed by the interaction between the two interfaces (oil–water interface 
from each droplet) which consists of the van der Waals interactions, the electrostatic interactions and the steric 
repulsion between the surfactant molecules25,26.

Now, we will focus on the phenomenon of film drainage (leading to droplet coalescence) at elevated tempera-
tures. The fact that such a coalescence event is governed by the capillary velocity is already well-established20. In 
addition, the thin aqueous film squeezed between the two approaching oil droplets is perturbed by the thermal 
capillary waves (Fig. 7). The resulting fluctuations at the oil–water interface are known to be the most important 
player in the film rupture21. Effectively, the interfacial tensions act to nullify the perturbation at the interface and 
hence, act as a stabilizing force while the attractive van der Waals forces in the thin aqueous film would like to 
bring the droplets together and thus act as a destabilizing force. It is the competition of these two counteracting 
forces that decides the fate of the sandwiched aqueous film.

Capillary time, which is the characteristic time of the decay of the thermal fluctuation at the interface, is 
given by27:
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Figure 6.   Coalescence trends with different adsorption time: 35 ms, 66 ms and 100 ms, at various temperatures. 
The data shown here are all at 0.5 mM SDS concentration. Different symbols denote the various temperatures at 
which the coalescence was measured: 20 ◦ C (black squares), 30 ◦ C (red circles), 40 ◦ C (blue upward triangles), 
50 ◦ C (downward magenta triangles), 60 ◦ C (green diamonds) and 70 ◦ C (dark blue leftward triangles).
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Figure 7.   A schematic of two droplets coalescing and the role of capillary wave in the rupture of the aqueous 
film between these two droplets.
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where, ζ is the capillary length given by ζ =

√

γow
g�ρ  ( γow is the oil–water interfacial tension, g is the acceleration 

due to gravity and �ρ is the density difference between the two phases). η is the viscosity of water. Hence, the 
capillary time can be written as:

From this can be concluded that it is the change in viscosity which impacts the thermal fluctuation time and 
hence, the rupture time of the thin film more than other parameters. When the temperature is increased from 
20 to 70 ◦ C, the viscosity of water decreases from 1.0025 to 0.423 mPa s, which implies, almost by 60%28,29. On 
the other hand, the tensions at alkane-water interfaces are known to decrease slightly30, but nowhere as strongly 
as the viscosity. As a result, the rupture time of the thin film decreases at elevated temperatures, leading to a 
higher coalescence frequency.

It is important to note that the change in oil viscosity also indirectly plays a role in this film rupture. The 
viscosity difference between the two fluids gives rise to a fingering instability at the interface known as the 
Saffman-Taylor instability25. Hexadecane viscosity reduces from 2.56 mPa.s to 1.28 mPa.s when the temperature 
is increased from 20 to 70 ◦C28. As a result, it becomes easier for the aqueous phase to form the viscous finger at 
the oil–water interface and this phenomenon will also impact the drainage of the aqueous phase significantly. 
The effect of oil viscosity on the coalescence frequency has been previously studied16, where a combination of 
experiments and empirical scaling laws were used to investigate this. The observations in that work can also be 
supported with our proposed mechanism.

We also notice a significant increase in the coalescence frequency after 50 ◦ C. This is plausibly due to the for-
mation of micelles which increases around that temperature. The critical micellar concentration (cmc) is known 
to increase at temperatures around 45 ◦C31leading to a shift in the equilibrium between monomeric and micellar 
forms of SDS, hence to an inefficient coverage of the the oil droplets by the SDS molecules and ultimately to 
easier rupture of the aqueous film between the two oil droplets32. In addition, SDS is known to hydrolyze result-
ing in decomposition and formation of fatty alcohols and sodium sulphate32. This would also explain ineffective 
coverage at oil–water interface by SDS and a subsequent increase in the coalescence.

The following parameter that we changed in our experiment is the droplet size. For three different oil droplet 
sizes, namely ∼ 80 µ m, ∼ 100 µ m and ∼ 120 µ m, we observed very little or no change in corresponding coa-
lescence frequency at different SDS concentrations and at elevated temperatures. We propose two conteracting 
influences leading to this result. As the droplet size increases, the oil–water interface is more scarcely covered 
by the surfactant molecules (at the same surfactant concentration), as shown in Fig. 8a; this should lead to a 
higher coalescence frequency. On the other hand, bigger droplets would lead to a flatter aqueous film sandwiched 
between two such droplets, as shown in Fig. 8b; such a flat film is more stable20. Bigger droplets of course have a 
higher expansion pressure, but seeing that we allowed equal amount of time at the T-junction to form droplets 

(3)τ =
ζη

γow

(4)τ =
η

√

γowg�ρ

oil oil

 b

Figure 8.   Droplet size seems to have no influence on the coalescence trends (even at elevated temperatures). 
The plausible explanation is the counteracting effects of droplet coverage (by the surfactant molecules) and the 
ease of drainage from a flatter film (a), compared to that from a more curved film (b).



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10990  | https://doi.org/10.1038/s41598-021-89919-5

www.nature.com/scientificreports/

irrespective of their sizes, we believe that these two counteracting phenomena balance each other so that the 
coalescence frequency remains constant. It is important to note that during these experiments, the droplet 
number density is kept constant (10,000 drops passing the region of interest in 33 s) even when the droplet 
sizes is changed. As a result, an increase in droplet size leads to an increase in oil volume fraction, which in turn 
increases the interfacial area per unit volume of the emulsion. The droplet size is increased while keeping the 
droplet number density constant by changing the oil and continuous phase injection pressures proportionally.

One needs to pay attention to the type of equilibrium that we consider in this explanation. If we consider 
the initial surface coverage of the drop, then the bigger droplet will have a lower surface coverage since it has a 
faster expanding surface. At a later stage, the equilibrium between the oil–water interface and the bulk (aqueous) 
solution is strongly related to the bulk concentration. At a relatively high surfactant concentration (around the 
c.m.c.), one can expect that same number of surfactant molecules will go to a smaller or a larger droplet. However, 
the surfactant concentrations at which we observe coalescence are far below the cmc of SDS. As a result, the 
equilibrium between the interface and the bulk will act as a driving factor for an increase in the surface coverage.

It is noteworthy, that in food industry, separation processes industry and petrochemical industry, the range 
of oil droplet sizes is very wide. Starting from a few nms large oil droplets (in food grade emulsions), the size of 
dispersed phase droplets can go to as high as a few hundred µms. In order to vary the droplet size significantly 
in an experiment such as ours, one need to introduce new design of the T-junctions in the microfluidic channels 
where the ratio of oil and water flow rates create the dispersed phase droplets. To keep the focus of our work 
intact (i.e., specific process conditions affecting the droplet dynamics), we have limited our use of microfluidic 
chip to a single T-junction design.

Finally, the fact that the coalescence frequency seems to be independent of the adsorption time allowed to 
the surfactant molecules depends possibly on the short adsorption time of such molecules. The time required by 
such a low molecular weight (LMW) surfactant molecule to adsorb at the oil–water interface can be represented 
by the Ward–Tordai equation24:

where, Ŵ is the surface excess coverage, cb is the bulk concentration and D, the diffusion constant. Assuming a 
simple Langmuir isotherm15, we can write:

Inserting typical values of maximum surface coverage Ŵ∞ = 3.75× 10
−6 mol/m−2 , local concentration 

c = 1.73× 10
−2 mol/m3 and diffusion constant D = 10

−10 mol/m2 from Ref.24, we see that even at 1 mM bulk 
SDS concentration, tads is much lower than the minimum adsorption time (35 ms) in our microfluidic chip. This 
is why we do not observe a direct effect of the meandering channel on the coalescence frequency.

Conclusion
We have carried out unique experiments where emulsion stability is investigated at elevated temperature, to the 
best of our knowledge, first time in micro-scale. Using a custom-made microfluidic setup which is heated to a 
specific temperature, oil-in-water emulsion is formed at a T-junction microchannel and in the same chip, the 
coalescence between the oil droplets is studied. When a low molecular weight surfactant is used as the emulsi-
fier, the oil droplets coalesce more frequently as the temperature is increased and these droplets coalesce less 
frequently when the surfactant concentration is increased. Due to micellization the increase in coalescence is 
more pronounced after 50 ◦ C. Thermal fluctuations at the interface and the contribution of viscosity are identi-
fied as the key players in expediting the drainage and subsequent rupture of the thin aqueous film between to 
coalescing droplets. The droplet size and the surfactant adsorption time do not play a big role in such a mono-
disperse emulsion, at least within the process conditions that we have probed in this work. In our opinion, these 
results show that the microfluidic tools used in our investigation are versatile and able to quantify differences 
in coalescence stability in a systematic way. We consider this the first step towards understanding the effects to 
processes as carried out on large scale in industry.
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