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Abstract
Antibacterial properties of copper have been known for ages.
With the rise of antimicrobial resistance (AMR), hospital-
acquired infections, and the current SARS-CoV-2 pandemic,
copper and copper-derived materials are being widely
researched for healthcare ranging from therapeutics to
advanced wound dressing to medical devices. We cover cur-
rent research that highlights the potential uses of metallic and
ionic copper, copper alloys, copper nanostructures, and
copper composites as antibacterial, antifungal, and antiviral
agents, including those against the SARS-CoV-2 virus. The
applications of copper-enabled engineered materials in medi-
cal devices, wound dressings, personal protective equipment,
and self-cleaning surfaces are discussed. We emphasize the
potential of copper and copper-derived materials in combating
AMR and efficiently reducing infections in clinical settings.
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Introduction
Copper is an essential trace element with atomic
number 29 and is vital for living organisms. Copper has
been used since 9000 BC [1]. Copper’s antibacterial
activity may be seen in Hppocrates’ books from 3000 BC
[2] and Ayurvedic literature [3]. Copper was originally

documented in the Scopus database as an antibacterial
coating material in 1962 [4]. In 2008, the United States
Environmental Protection Agency (US EPA) recognized
copper and its alloys as efficient antimicrobial surfaces
[5], capable of killing about 99.9% of bacteria in 2 h
hours.

Copper-impregnated fibers are utilized as fabric disin-
fectants in hospitals [6]. According to reports, imple-
menting copper in medical facilities decreases
healthcare-associated infections (HAIs) [7]. Copper’s

outstanding contact-killing properties make it useful as
a coating material for door handles, bed rails, lavatory
surfaces, trays, intravenous (IV) poles, and other items
[8]. Copper is also utilized in wound dressings to pre-
vent infections and encourage wound healing [9] and as
an antibacterial coating for implant surfaces [10,11]
owing to its low-in vivo toxicity. Furthermore, based on
the efficiency of copper in eliminating the SARS-CoV-2
virus, a copper nanoparticle-based antimicrobial coating
is being applied to medical personal protective equip-
ment (PPE) kits [12].
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Abbreviations
AMR Antimicrobial resistance

US EPA United states environmental protection agency

HAIs Healthcare-associated infections

IV Intravenous

nZH-Cu Zeolite doped with copper ions

LMCu Gallium liquid metal copper alloy

NPs Nanoparticles

NRs Nanorods

NCs Nanocubes

NSs Nanospheres

ROS Reactive oxygen species

IUDs Intrauterine devices

TEM Transmission electron microscope

PVA Polyvinyl alcohol

CS Chitosan

Cu-F Copper-containing nanofiber (Cu-F)

PPE Personal protective equipment

CuO Copper oxide

RT-PCR real-time polymerase chain reaction

PAN Polyacrylonitrile

CGHM Collingwood general and marine hospital

WHO World health organization

LOC lab-on-a-chip

EPD Electrophoretic deposition

ZOI Zone of inhibition

PP Polypropylene

SWCNTs Single-walled carbon nanotubes
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This review provides a comprehensive overview of the
literature on various copper and copper-derived mate-
rials, including metallic copper and copper ions, copper
alloys, Cu composites, and various copper nano-

structures (Cu NPs, CuS NPs, Cu2O-Cu NPs, CuO
nanorods, Cu-chitosan NPs, and so on), etc. as effective
antimicrobial agents. The goal is to highlight various
copper-based chemical compositions with outstanding
broad-spectrum antibacterial capabilities. We discuss
various applications of copper-derived materials in
biomedical domains such as wound dressings, medical
implants, intrauterine devices (IUDs), PPEs, and self-
cleaning surfaces, with the most recent literature
receiving the highest importance (last 5 years). Given
the current COVID-19 pandemic scenario and the
shortest recorded viable period of the SARS-CoV-2 virus

on Cu surfaces, a specific section is devoted to show-
casing the efficiency of copper and derived materials
against COVID-19. The section biocompatibility and
cytotoxicity assessment of copper and copper-derived
materials in the supplementary information discusses
the in vitro and in vivo toxicity of copper. Figure 1a
summarizes various biomedical applications of copper
and copper-derived materials as antimicrobial agents
and their prospects. Figure 1b shows the timelines of
key events in the history of copper as an antimicrobial
agent.
Metallic copper and its ions as antimicrobial
agents
Research on copper as an antimicrobial agent acquired
momentum when U.S. EPA reported 300 surfaces of

copper having effective antimicrobial properties [5]. In
particular, Seo et al. [23] recorded a 99.99% reduction of
Escherichia coli and Staphylococcus aureus on surfaces
coated with 48% copper over a 24-h incubation time.
Specifically, Zeolite doped with copper ions (nZH-Cu)
showed the effective killing ofE. coli and S. aureus strains
[24]. In a concurrent study, Wheeldon et al. [25]
compared the viability of Clostridium difficile on copper
and stainless steel surfaces, which are commonly used in
Current Opinion in Biomedical Engineering 2022, 24:100408
hospitals. Interestingly, Benhalima et al. [26] recorded
the destruction of all the vegetative cells of C. difficile on
the copper surface within 30 min (p < 0.005), while
stainless steel showed no antibacterial action. In a

detailed and comprehensive study, the antimicrobial
effectiveness of metallic Cu is assessed against 25
distinct nosocomial bacterial strains (16 Enterobacteri-
aceae, 5 Staphylococci, and 4 Pseudomonas) isolated from
healthcare units in Algeria, 400 g/mL Cu inhibited the
growth of 60% of the isolated strains of Staphylococci, 25%
of Pseudomonas, and 43.75% of Enterobacteriaceae.
Copper alloys as antimicrobial agents
Copper alloy surfaces have excellent antimicrobial
properties against a wide variety of microorganisms. in
observational research done from 2015 to 2016 at Reims
University Hospital in France, Zerbib et al. [27]
discovered that copper alloy successfully reduced the
incidence of hand-transmitted healthcare-associated
infections. Furthermore, Sheridan et al. [28] demon-
strated a novel antiviral fabric infused with gallium

liquid metal copper alloy (LMCu) as a breakthrough in
the global fight against COVID-19 by demonstrating its
applicability in designing PPE for healthcare personnel,
bed/bath sheets for hospital settings, and patient
clothing. Laourari et al. [29] have studied the antibac-
terial and antifungal properties of a NiCu-PANI/PVA
quaternary nanocomposite against several nosocomial
infections. The large zone of inhibition (ZOI) values of
more than 17 mm, were recorded for all the tested
strains including E. coli, Klebsiella pneumonia, Proteus sp.,
S. aureus, Fusarium oxysporum, etc., suggesting their

strong antimicrobial potential.
Copper nanostructures as antimicrobial
agents
The antimicrobial action of metal nanoparticles (NPs)

has been attributed to their high surface-to-volume ratio
and size. Sharma et al. [30] investigated the efficacy of
antibacterial Cu NPs against E. coli and Proteus vulgaris.
The interaction of Cu NPs with the bacterial cell wall
www.sciencedirect.com
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Figure 1

(a) Schematic showing the biomedical applications of copper and copper-derived materials as antimicrobial agents and their future scope. (b) Timeline
of the significant historic events of copper as an antimicrobial agent. This figure includes references [13–22].
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causes oxidative stress caused by reactive oxygen spe-
cies (ROS) that lead to bacterial cell death. In addition,
Ha et al. [31] discovered that after a 10 and 30 min

exposure to H1N1 virus with Cu NPs, there was no
detectable viral DNA, and the contamination of the Cu
NPs-treated H1N1 virus was greatly decreased. In
another study, Qamar et al. [32] evaluated the antibac-
terial efficacy of CuO nanorods (CuO NRs) against a
series of gram-positive and gram-negative bacterial
strains by calculating ZOI which was significant in
comparison to the standard drug (p < 0.0001)
(Supplementary Table S1). Further, Alshareef et al. [33]
reported that when E. coli was treated with 50 - 2500 mg
copper nanospheres (Cu NSs), its growth was hindered

within 4 h, while Enterococcus sp. growth was inhibited in
www.sciencedirect.com
2 h except at the highest concentration. On incubation
with a similar concentration of copper nanocubes (Cu
NCs), the E. coli growth was hindered in 24 h, whilst the

Enterococcus sp. growth was inhibited within 2 h, only for
lower concentrations [33].
Mechanism of antimicrobial action of
copper
The cell membrane of the bacteria is the primary target
of copper antimicrobial action [34]. The electrostatic
interactions of copper ions (Cuþ and Cu2þ) with elec-
tronegative groups on the bacterial cell membrane, such
as thiol or carboxyl, cause the membrane to rupture
[35]. The affinity of thiol for Cuþ and the tendency of
Cu2þ to form reactive oxygen species (ROS) further
Current Opinion in Biomedical Engineering 2022, 24:100408
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damages cell proteins, and lipids, and eventually destroy
all the genetic material, resulting in cell death [36e38].
Figure 2 depicts the possible antimicrobial action
mechanism for copper.
Biomedical applications of copper and
copper-derived materials
Medical implants
Copper in medical equipment [39] is considered safe for
humans, as evidenced by the widespread and long-term
use (> 10 years) of copper intrauterine devices (Cu
IUDs) by millions of women. Copper nanoparticles
coated on the therapeutic caps of dental implants have

been demonstrated to inhibit pathogen and biofilm
formation [40]. Copper-incorporated titanium (Ti-Cu)
alloy implant was also discovered to exhibit excellent
antimicrobial properties [41]. It is also been reported by
Liu et al. [42] that Ti-Cu alloy prevents peri-implant
infections while being biocompatible. The application
of Ti-Cu alloy as a modern dental implant to avoid the
formation of biofilm of Streptococcus mutans and Porphyr-
omonas gingivalis on the surface of dental implants is of
Figure 2

Schematic illustration of contact killing action mechanism of antimicrobial cop
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great help. In comparison to Ti, confocal microscopy
images for 24 h revealed a substantial reduction in the
viability of S. mutans and P. gingivalis biofilm on the sur-
face of Ti-Cu alloy (Figure 3a). Under transmission
electron microscope (TEM), both microbes in contact
with the surface of Ti-Cu alloy showed disrupted
membranes and irregular and reduced ion concentra-
tions in the cytoplasm, while microbes in contact with

the surface of Ti alloy showed regular morphologies with
the preserved membrane (Figure 3b). In another study,
Gollwitzer et al. [43] developed a copper incorporated
titanium coating that proved cytocompatibility and
antibacterial activity against clinically isolated strains of
S. aureus and Staphylococcus epidermidis. Also, Bergemann
et al. [44] demonstrated the effective killing of all
S. epidermidis strains on titanium-copper-nitride
(TiCuN) coated orthopedic implants within 24 h of
incubation. Further, Milan et al. [45] developed copper-
enhanced carbon coatings on a titanium alloy for bone

implants that showed an osteogenic and angiogenic
response. After incubating the bacterial strain of
P. gingivalis for 72 h, biofilm formation was significantly
per.

www.sciencedirect.com
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Figure 3

(a) Fluorescent images and 3D depictions of the growth of biofilm of S. mutans and P. gingivalis on the surface of Ti and Ti-Cu after incubating for 24 h
at 37 �C, (b) TEM pictures of S. mutans (i– iv) and P. gingivalis (v–viii) incubated on Ti (i, ii, v, vi) and Ti-Cu (iii, iv, vii, viii) surfaces. The peptidoglycan
layer is marked by white arrows, the cytoplasmic membrane is marked by black arrows, and the disrupted cell membrane is highlighted by red arrows
[42]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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reduced, thus improving the efficacy of such implants.
Also, the effect of Cu-TiO2 coating on Ti was reported in
another study performed by Wang et al. [11]. The
in vitro study proved coating to be cytotoxicity-free and
can stimulate the growth, attachment, and
www.sciencedirect.com
differentiation of MC3T3-E1 cells. In vivo tests
demonstrated that the coating can improve osteogenesis
and trigger the formation of new bone. Furthermore,
Shahid et al. [46] compared the effectiveness of pre-
ventive methods and the possibilities of various copper
Current Opinion in Biomedical Engineering 2022, 24:100408
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coated titanium implants in reducing infections associ-
ated with implants.

Wound dressings
Lemraski et al. [47] examined the antibacterial efficacy
of polyvinyl alcohol/chitosan/copper nanofibers (PVA/
CS/Cu NPs) produced by electrospinning against gram-
negative and gram-positive bacteria. The nanofiber
showed good antimicrobial effectiveness against Bacillus
cereus, as well as S. aureus, E. coli, and Pseudomonas aeru-
ginosa. In another study, Ahire et al. [48] assessed the

ability of wound dressing materials made of copper-
containing nanofiber (Cu-F) against the development
of biofilm of S. aureus (Xen 30) and P. aeruginosa (PA01).
In the presence of Cu-F, the growth of PA01 and
S. aureus Xen 30 was reduced by about 13% and 31%,
respectively. Also, in the presence of Cu-F, the survival
of MCF-12A breast epithelial cells was greatly reduced.
Based on the study it was concluded that copper-
containing nanofibers are safer to be applied as wound
dressing material.
Personal protection equipment (PPEs)
The World Health Organization (WHO) recommends
face masks as a preventive measure to reduce SARS-
CoV-2 transmission [49].In this context, Hewawadu-
gea et al. [50] demonstrated that copper sulfide (CuS)

impregnated three-layered masks are extremely effec-
tive in selectively deactivating encapsulated viruses
such as SARS-CoV-2 in < 30 min, although Cu2þ ions
produced from CuSO4 did not exhibit substantial viral
suppression. CuS’ selectivity for killing encapsulated
viruses indicated that CuS may cause physical damage
to the viral envelope through physical interactions. The
mask completely stops virus-containing droplets from
penetrating during short exposure intervals of 1-2 min,
while a long-term exposure period of 5-10 min results in
an 80% efficiency. Furthermore, Hashmi et al. [51] in-

tegrated copper oxide (CuO) onto polyacrylonitrile
(PAN)-based electrospun mask membranes and showed
its good antibacterial efficacy against a variety of gram-
negative and gram-positive microorganisms. It was
discovered that increasing the concentration of CuO
resulted in a progressive rise in the inhibition zone for all
types of tested bacterial strains. Further, Jung et al. [52]
evaluated the antiviral activity of copper-coated poly-
propylene (PP) filters surrounding the KF94 face mask
by exposing Vero cells to the coated PP filters after
incubating them with the SARS-CoV-2 virus. According

to RT-PCR and immunofluorescence, the copper-coated
filters suppressed viruses by 75% within 1 h of incuba-
tion time. On the spun-bound PP filters, Paranthaman
et al. [53] created a chemically bonded organosilane
quaternary ammonium chloride-based GS75 coating on
spun-bound PP filters and observed sustained deacti-
vation of alpha and beta forms of COVID-19 virus after
72h incubation. Further, Soni et al. [54] also showed that
Current Opinion in Biomedical Engineering 2022, 24:100408
single-walled carbon nanotubes (SWCNTs) modified
hydrophobic PP surgical masks were successful in killing
99.99% and 99% of E. coli and virus-like particles,
respectively.
Self-cleaning surfaces in clinical settings
Nosocomial or hospital-acquired infections are a global
problem that causes significant death and morbidity
[55]. In a clinical controlled investigation, Mohammady
et al. [56] examined the bacterial burden on copper
coated and non-coated copper surfaces in a regular ICU
in Iran. Copper-coated heavily contacted surfaces
decreased the bacterial load by 96% when compared to

the control surfaces. In another study by Colin et al.
[57], copper alloy door handles and handrails were
mounted in 50% of 5 French long-term healthcare cen-
ters. The findings show that copper surfaces are less
vulnerable to these severe contamination concerns, with
the prevalence of these infections reduced by 50% and
79% on copper handrails and door handles, respectively.
The copper handles retain their efficacy against the
bacteria after 3 years of daily use in healthcare centers,
with a bacterial reduction of w90% for almost all of the
examined copper door handles. Collingwood General

and Marine Hospital (CGMH) of Canada have created
self-sanitizing rooms employing copper-infused panels
in patient rooms to inhibit the growth of microorgan-
isms, according to a study [58]. The implementation of
copper-infused sanitizing procedures in the hospital
resulted in outstanding swab test findings. Previously,
the bacterial count under typical settings ranged from
7000 to 8000 colonies, but it has now dropped dramat-
ically to the range of 30-50 colonies.

The antibacterial potential and longevity of a copper-
based surface are strongly dependent on the coating

deposition process, which modulates surface attributes
such as roughness, wettability, adhesion strength,
chemical reactivity, and so on. Bharadishettar et al. [59]
addressed several coating processes such as thermal
spray (TS), electrophoretic deposition (EPD), chemical
vapor deposition (CVD), physical vapor deposition
(PVD), and others, emphasizing their impact on various
surface factors that might influence the antimicrobial
efficiency of copper surfaces. The TS technique is a
widely used method for producing copper coatings
having thicknesses ranging from 20 mm to a fewmmwith

strong corrosion and adhesion strength while being
inexpensive. The most prevalent TS techniques are
plasma spraying, wire arc spraying, flame spraying, and
cold spraying. Champagne et al. [60] showed the higher
antibacterial potential of cold sprayed coatings due to
greater dislocation density and enhanced copper ion
diffusivity provided by sprayed particle impact velocity.
Hadzhieva et al. [61] recently investigated the advan-
tages of the EPD technique for depositing bactericidal
smart coatings on medical implants, which are based on
www.sciencedirect.com
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unique targeted responses, multiple therapeutic effects,
and self-cleaning capabilities, which may lead to new
antimicrobial treatment possibilities. Varghese et al.
[62] discovered that Cu-SiO2 coatings created by
chemical vapor deposition show outstanding antibacte-
rial efficiency against highly resistant bacterial strains
such as Vancomycin-resistant Enterococcus coli. The
increased antibacterial capabilities are attributed to Cu

nanostructuring in the silica matrix of the obtained
coatings. The PVD approach is particularly successful in
creating nano-thick copper coatings (35 nm-150 nm)
with outstanding hardness and thermal stability, and it
has been found to improve the antibacterial effective-
ness of the surfaces [63].
Figure 4
Effectiveness of copper and copper-derived
materials against COVID-19
Since the discovery of SARS-CoV-2 in December 2019
[64], the virus has spread rapidly over the world, and the
devastating effects of the COVID-19 pandemic continue.
As of now, there have been 5 million confirmed cases of
COVID-19 globally, according to WHO [65]. SARS-CoV-
2 is typically transferred by inhalation of respiratory
aerosols [66], direct contact with an infected hand, or

indirect transmission through contaminated ambient
surfaces, particularly high-touch surfaces [67]. Many
studies have been conducted to investigate the long-
term infectious persistence of SARS-CoV-2 on various
substrates. The US EPA also confirmed the long-term
effectiveness of certain copper-derived materials against
SARS-CoV-2 [22]. According to a recent report, Dore-
malen et al. [68] found copper to be more efficient than
stainless steel in limiting SARS-CoV-2 survival. According
to the scientists, exposing a COVID-19 virus to a copper
surface reduces its half-life by 0.774 h (CI = 0.427 to
1.19) and after 4 h, the virus’s viability is zero. A CuS-

incorporated mask is also extremely efficient in destroy-
ing SARS-CoV-2 after only 30 min of exposure [50]. The
three-layered mask entirely prevents virus-containing
droplets from entering after 1e2 min of exposure, and
it is 80% effective after 5e10 min of exposure. In another
investigation, Behzadinasab et al. [69] discovered that
infection from SARS-CoV-2 suspended in 5 mL droplets
deposited on the coating was likewise suppressed by the
created CuO layer. When compared to glass, SARS-CoV-2
infectivity in the CuO film is reduced by w99.9% in
60 min. Furthermore, after 1 h, cuprous oxide (Cu2O)

particles linked with polyurethane, which were designed
to inhibit SARS-CoV-2 survivability on solids, reduced
the virus titer by 99.9% [70]. Figure 4 depicts copper’s
potential as an early antiviral weapon against coronavirus.
Copper’s potential as an antiviral weapon against the COVID-19
pandemic.
Future prospects and conclusions
In many public and clinical settings, copper is utilized to
reduce microbial contamination on high-touch surfaces.
However, to deploy this copper-based antimicrobial
coating technology on a large scale, the feasibility of
www.sciencedirect.com
replacing all current contamination-prone surfaces with
copper, as well as their antimicrobial durability and cost
of replacement, must be addressed. The majority of the
research published to assess the antibacterial capability
and toxicity of copper and copper-derived materials has
been done in vitro; nevertheless, it is equally important
to encourage in vivo settings to validate their application
in specialized biomedical fields such as drug delivery,

wound dressings, bioimplants, and so on. Alternative
testing in a dynamic microenvironment, such as the lab-
on-a-chip (LOC) approach, should be researched in
addition to traditional in vitro testing to provide repro-
ducible, long-term experimental findings with stan-
dardized validation. There is significant proof that
nanostructured copper coatings are very effective in
inhibiting various microbes, and have also evolved as a
valuable class of nanomaterials, for a variety of applica-
tions in the medical, ecological and industrial fields.
Bharadishettar et al. [59] addressed several coating

techniques such as TS, CVD, PVD, EPD, and so on, and
highlighted various aspects of coated surfaces that lead
to increased antimicrobial efficiency. More such
research is needed to study the effect of technical pa-
rameters on the antimicrobial potential of copper-based
coatings. Tiwari et al. [71] explored the development of
nanomaterials-infused PPE kits with high hydrophobic
characteristics that can serve as an effective barrier to
aerosol-mediated viral transmission, which is presently
the most likely infection pathway. Several studies have
shown the broad-spectrum antibacterial properties and
Current Opinion in Biomedical Engineering 2022, 24:100408
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antiviral efficiency of copper nanostructure-based coat-
ings; nevertheless, the worry with the nanostructured
coating is its toxicity, which may be damaging to the
environment and living species. To reduce its toxicity to
a non-significant level, innovative research methodolo-
gies, and inventions for optimizing the toxicity factors
that may impede toxicity pathways should be devel-
oped. For example, innovative work should be designed

to reduce the toxicity of Cu nanostructures by tuning
their size, surface functionalization/modification,
designing Cu alloy nanostructures, adopting appropriate
coating techniques, and so on [72]. Employing a syner-
gism approach, the development of advanced nano-
composites of Cu nanostructures with biocompatible
antimicrobial polymers (chitosan, polydopamine, poly-
ethyleneimine), antimicrobial peptides (epsilon poly-
lysine) provide another futuristic strategy to design safe
and effective antimicrobial coatings. Overall, copper and
copper-derived materials are undeniably effective anti-

microbial agents with promising biological applications.
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