
Sequence analysis

Bivartect: accurate and memory-saving breakpoint

detection by direct read comparison

Keisuke Shimmura, Yuki Kato * and Yukio Kawahara

Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on February 8, 2019; revised on December 12, 2019; editorial decision on January 19, 2020; accepted on January 22, 2020

Abstract

Motivation: Genetic variant calling with high-throughput sequencing data has been recognized as a useful tool for
better understanding of disease mechanism and detection of potential off-target sites in genome editing. Since most
of the variant calling algorithms rely on initial mapping onto a reference genome and tend to predict many variant
candidates, variant calling remains challenging in terms of predicting variants with low false positives.

Results: Here we present Bivartect, a simple yet versatile variant caller based on direct comparison of short se-
quence reads between normal and mutated samples. Bivartect can detect not only single nucleotide variants but
also insertions/deletions, inversions and their complexes. Bivartect achieves high predictive performance with an
elaborate memory-saving mechanism, which allows Bivartect to run on a computer with a single node for analyzing
small omics data. Tests with simulated benchmark and real genome-editing data indicate that Bivartect was compar-
able to state-of-the-art variant callers in positive predictive value for detection of single nucleotide variants, even
though it yielded a substantially small number of candidates. These results suggest that Bivartect, a reference-free
approach, will contribute to the identification of germline mutations as well as off-target sites introduced during gen-
ome editing with high accuracy.

Availability and implementation: Bivartect is implemented in Cþþ and available along with in silico simulated data
at https://github.com/ykat0/bivartect.

Contact: ykato@rna.med.osaka-u.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomic structural variations have been widely investigated at base
pair resolution using the prevailing high-throughput sequencing
technologies (Alkan et al., 2011). Examples where genomic varia-
tions occur include germline/somatic mutations, ranging from single
nucleotide variants (SNVs) to structural variants (SVs) of at least
50 bp (Sudmant et al., 2015; The 1000 Genomes Project
Consortium, 2015) such as insertions/deletions (indels), inversions
or translocations (Weischenfeldt et al., 2013). Given that these var-
iants can be associated with complex diseases and somatic muta-
tions may correlate with the progression of cancer, detection of
these variants is essential to elucidate disease mechanisms
(Martincorena and Campbell, 2015). In addition, the demand for
detecting potential off-target sites with high accuracy is increasing
as the use of genome-editing technologies increases (Kuscu et al.,
2014).

Most of the in silico methods for variant detection rely on initial
mapping onto a reference genome (Chen et al., 2009, 2016;
Cibulskis et al., 2013; DePristo et al., 2011; Kim et al., 2018; Lai
et al., 2016; Larson et al., 2012; Rausch et al., 2012; Wang et al.,

2011; Ye et al., 2009). This implies that the quality of variant calling
could be exacerbated when variant-containing reads are to be of no
consideration due to being unmapped onto the reference genome.
Additionally, these approaches typically predict many variant candi-
dates and require some complex filtering steps based on statistical
methods after the initial mapping in order to remove false-positive
predictions, which would in turn result in lower sensitivity.

In contrast, some mapping-free approaches have been developed
(Audano et al., 2018; Iqbal et al., 2012; Pajuste et al., 2017;
Rahman et al., 2018; Standage et al., 2019) on the basis of short
substrings of length k called k-mers. These methods, however, re-
quire reference k-mers, abundant unique read k-mers, or known
variant k-mers to detect novel variants. A method for direct com-
parison of sequence reads without focusing on specific k-mers has
also been proposed (Moncunill et al., 2014), which employs a qua-
ternary sequence tree to expand all sequence reads together with
their suffixes to be compared. This results in a huge memory require-
ment, and makes it impossible to run on a computer with a single
node for analyzing omics data.

To circumvent these problems, we developed Bivartect (bit-based
variant detection), a simple yet accurate computational approach to

VC The Author(s) 2020. Published by Oxford University Press. 2725

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 36(9), 2020, 2725–2730

doi: 10.1093/bioinformatics/btaa059

Advance Access Publication Date: 27 January 2020

Original Paper

http://orcid.org/0000-0002-1526-2754
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/


detecting genomic variants based on direct comparison of sequence
reads, which skips initial mapping (Fig. 1). To reduce memory use,
Bivartect converts all sequences into bit strings, and keeps only a
small part of the suffixes of the reads in the memory space during
identification of breakpoints, which are defined as positions at
which aligned sequences begin to differ. Moreover, to attain a
speed-up and save memory use further to run on a computer with a
single node, we adopted a strategy where part of the suffixes of the
normal and mutated reads with a common prefix are sorted to de-
tect potential breakpoints. This is repeated until all combinations of
the prefixes are covered. Reads recovered from suffixes in a break-
point cluster are then assembled to generate consensus sequences in
both normal and mutated sequence groups, which are then used to
infer a variant type with respect to the breakpoint (Fig. 1). If neces-
sary, consensus normal sequences in distinct breakpoint clusters,
whose mutated counterparts are predicted to have variants, are
mapped onto a reference genome to identify the genomic location of
those variants. Since Bivartect basically aims to find breakpoints
along with consensus normal/mutated sequences as described ear-
lier, it can detect not only SNVs but also indels, inversions and their
complexes. In particular, Bivartect can detect SNVs and small indels
with high accuracy, part of which was demonstrated in our compu-
tational test.

2 Materials and methods

2.1 The Bivartect pipeline
Assume that reads from normal/mutated samples, called normal/
mutated reads for short, are given, and barcodes embedded in the
reads are removed if necessary. Note that filtering a base by its qual-
ity is disallowed in our framework. The key steps of the workflow
of Bivartect are illustrated in Figure 1. Briefly, the process of variant
detection consists of the following steps: (i) when normal/mutated
reads are input to Bivartect, they are converted into bit strings, all of
which are stored in memory, and then divided into 4k (e.g. k ¼3)
small sets of their suffixes with a common prefix of length k to be
processed sequentially. (ii) Bivartect seeks to sort suffixes in one of
the above small sets, comprising both normal and mutated sequen-
ces, to construct a read cluster that contains a potential breakpoint.
(iii) Consensus sequences for normal and mutated representatives
are computed and compared with each other to infer the variant

type. (iv) Steps (ii) and (iii) are iterated 4k times to cover all possible
common prefixes.

2.2 Storing read information in memory
To select a necessary subset of reads for computation as fast as pos-
sible and make their size as small as possible, all sequence reads are
converted into bit strings where each base is represented by 2 bits
(cf. 8 bits per base as a usual case). For example, ‘A,’ ‘C,’ ‘G’ and ‘T’
are converted into ‘00,’ ‘01,’ ‘10’ and ‘11,’ respectively. In addition,
a unique ID is assigned to each read to enable short-duration access
to the read. More specifically, 64 reads are grouped together to
make a block, and header information for each read represented by
2 bytes is added to the head of the block, which stores an offset of
the read concerned within the block. It is to be noted that naı̈ve stor-
ing of an address of a read in memory requires 8 bytes in general. In
contrast, in our implementation, only an addition of size 2þ
ð8=64Þ ¼ 2:125 bytes per read is sufficient for access to the read,
achieving fast access speed while reducing memory use.

2.3 Building a breakpoint cluster by divide-and-conquer
This part is divided into 4k sub-processes, each processed sequential-
ly to save memory, and merged into the final results. The partition is
based on the pattern of a common prefix of length k in read suffixes
(a suffix of a sequence is defined as a substring of the sequence that
ends with the last letter of the sequence). For an example of a case
where k ¼3 (i.e. 64 partitions) and the lexicographical order (in the
lexicographical order, sequences are ordered according to the alpha-
betical order of their components; e.g. A, C, G and T from head to
tail) is taken into account, suffixes beginning with ‘AAA’ are proc-
essed, and then the memory space necessary for this computation is
released. Next, suffixes beginning with ‘AAC’ are processed, fol-
lowed by releasing the memory that had been necessary for this pro-
cess. These steps are repeated until the prefix ‘TTT’ is considered. It
should be noted that the value of k does not affect the final results,
and we used k ¼ 3 throughout the computational tests presented in
this study.

Each sub-process is based on the following steps: (i) substrings
beginning with a common prefix of length k are searched through
all reads in memory, and suffixes with the prefix in the substrings
are generated and stored in memory as additional components for
subsequent analysis. (ii) Suffixes from normal reads are combined
with suffixes from mutated reads, and lexicographically sorted. It is
to be noted that information on whether each suffix is from a nor-
mal or mutated read is properly kept after the merger. (iii) Suffixes
with the same prefix of length d are clustered when looking them up
in the sorted list of suffixes from head to tail. Note that d is prede-
fined as the shortest length of suffixes. (iv) A cluster with different
bases starting at position d þ1 is registered as a potential breakpoint
cluster. (v) Reads are recovered from the corresponding suffixes in a
breakpoint cluster. (vi) All suffixes with the common prefix of
length k in memory are released. If the input is a set of non-strand-
specific paired-end reads, the above steps must be processed for the
reverse complements of input reads.

In the computational tests, d was changed to some extent to in-
vestigate the predictive performance of Bivartect in the benchmark-
ing test (Supplementary Table S1). On the other hand, d ¼30 was
used in the test with the mouse genome-editing data.

2.4 Removing breakpoint clusters with low quality
Closer inspection of breakpoint clusters is performed to produce
high-quality predictions. First, careful attention should be paid to
the ratio of predictions (having variants or not) to the total read in
each sequence group of a breakpoint cluster. A normal group may
contain contamination from mutated sequences, but we expect that
this is very low (�5%) in the real setting (Moncunill et al., 2014).
As for a mutated group, sequences from a heterozygous (heterozy-
gous means having two different alleles for a specific trait) sample
ideally include 50% of variants in the mutated group where a nor-
mal parent and a mutated parent were mated. Let qmin and qmax de-
note lower and upper bounds of ratios, respectively, of predicted

Input reads

Suffixes

Sorted combined suffixes 

Breakpoint cluster

Normal Mutated

Fig. 1. Overview of Bivartect for detecting potential breakpoints. This schema is

depicted using single-end reads for simplicity. As the first step, suffixes of at least

predefined length are derived from input normal/mutated reads. They are then com-

bined and lexicographically sorted. The light shaded suffixes have a common prefix

on the left of the dark gray column, which corresponds to a potential breakpoint.

Finally, a breakpoint cluster is constructed by recovering reads from the correspond-

ing suffixes to infer its variant type. (Color version of this figure is available at

Bioinformatics online.)

2726 K.Shimmura et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data


variants to the total number of reads in the mutated group of a
breakpoint cluster. For a pure condition in our benchmark data,
qmin ¼ 0:9 and qmax ¼ 1:0 were used. In the test with the mouse

genome-editing data, which contain sequences of heterozygous
mice, qmin ¼ 0:35 and qmax ¼ 0:6 were used.

Considering the number of reads that support breakpoints also
gives us an indicator for selecting high-quality variants. Let cmin and

cmax be cutoffs for the minimum and the maximum number of reads,
respectively, of the normal group and the mutated counterpart in ar-
bitrary breakpoint cluster. For example, if the minimum number of

reads of two groups in a breakpoint cluster is less than cmin, the clus-
ter is discarded in terms of few supporting reads. We fixed cmin ¼ 6

in all computational experiments presented in this work because
preliminary tests suggested that use of this value resulted in better
predictive performance than cmin < 6. In contrast, cmax was

changed to some extent in the benchmarking test (as shown by c in
Supplementary Table S1). In the test with the mouse genome-editing
data, cmax ¼ 28 was used. Guidance on how to set Bivartect’s

parameters can be found in Supplementary Notes.

2.5 Inferring variant type
To infer the variant type of a breakpoint cluster, the following steps

are performed. Step 1: clusters that indicate the identical breakpoint
are combined into one cluster by checking the identity of substrings
on the left of the breakpoint. Step 2: Consensus sequences are com-

puted in normal/mutated groups in a breakpoint cluster. Step 3: The
variant type of a breakpoint is inferred by comparing normal and

mutated consensus sequences. Step 4: If input reads are non-strand-
specific paired-end reads, clusters that indicate the identical break-
point on the reverse complementary strand are merged into one clus-

ter in the forward direction. Step 5: If a breakpoint cluster of
unassigned type is combined in Step 4, its variant type is inferred

again. In what follows, Steps 2–5 are described in more details.

2.5.1 Computing consensus sequences

In each sequence group, a consensus sequence can be computed by
majority voting, resulting in a pair of consensus normal and mutated

sequences (Supplementary Fig. S1). If a base to be extended cannot
be determined by this approach during computation, the extension

is halted.

2.5.2 Inferring variant type from consensus sequences

A predicted breakpoint is checked to determine whether its type is
indel, SNV, inversion or complex in that order by comparing con-
sensus normal and mutated sequences. Examples of the complex

variant type include contiguous SNVs, and a combination of SNVs
and indels. These are registered as individual variants again if the

complex is successfully decomposed into respective elements. If a
variant is not assigned to any variant type stated above, it is judged
as an unassigned breakpoint.

2.5.3 Dealing with non-strand-specific paired-end reads

If there are two different breakpoint clusters that show the same
breakpoint due to reads in different strand orientation (i.e. forward

and reverse) across paired FASTQ files, they should be integrated
into one cluster. To this end, for each breakpoint cluster, substring s
of fixed length (e.g. 15 bp) including the breakpoint in a consensus

normal sequence is cut out and stored in set S. Its reverse comple-
ment �s is then stored in set �S. Similarly, sets S0 and �S0 are constructed

for consensus mutated sequence s0 and its reverse complement �s 0, re-
spectively. If there are substrings t; u 2 S and t0; u0 2 S0 such that t ¼
�u and t0 ¼ �u 0 where �u 2 �S and �u0 2 �S0 , the cluster that derives t0 and

u0 is integrated into the other cluster that generates t and u
(Supplementary Fig. S2).

2.5.4 Re-inferring variant type for unassigned breakpoints

If two different breakpoint clusters with an unassigned variant type
are integrated as described earlier, consensus sequences in the inte-
grated cluster are likely to be extended on the basis of their pairing

information, leading to the possibility of inferring the variant type
of large size. More precisely, two consensus normal/mutated sequen-

ces in the integrated cluster are merged into a new longer consensus
normal/mutated sequence. The two resulting normal and mutated
sequences are then used to infer the variant type.

2.6 Post-mapping normal reads
If one needs to calculate genomic locations of predicted breakpoints,
a consensus normal sequence for each breakpoint cluster is mapped

onto a reference genome. To compute the positions of variants pre-
dicted by Bivartect in all computational tests, BWA-backtrack
0.7.17 (Li and Durbin, 2009) was used.

0.80 0.85 0.90 0.95 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Positive predictive value

S
en

si
tiv

ity

Bivartect
MuTect2
SomaticSniper
Strelka2

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Positive predictive value

S
en

si
tiv

ity

Bivartect
Manta
MuTect2
Pindel
SMuFin
Strelka2

(a) (b)

Fig. 2. Predictive performance of each variant caller on our simulated benchmark data. (a) Prediction accuracy of SNV callings. (b) Prediction accuracy of indel callings. The

24 red points plotted in these figures correspond to Bivartect results obtained from varying the hyper parameters shown in Supplementary Table S1. Note that the dashed gray

line plotted in each figure shows a y ¼ x line. (Color version of this figure is available at Bioinformatics online.)

Bivartect 2727

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data


2.7 Constructing simulated benchmark data
First, normal paired-end reads were generated by ART 2.5.8 (Huang
et al., 2012) using human GRCh38 chromosome 22 as a reference
sequence, where HiSeq 2500, 50, 200 and 10 were used for the
built-in profile, the read length, the mean and the standard deviation
of the fragment size, respectively.

Next, real mutations were downsampled from chromosome 22
of all common human variations compiled in dbSNP build 151
(Sherry et al., 2001). The downsampling was done in the following
order: (i) keep all SVs of length �50 bp; (ii) sample 200 000 variants;
(iii) choose variants of the distance to their neighboring variants be-
tween 25 and 50 bp (given two variants of positions x1 and x2

ðx1 < x2Þ, the distance between the two is defined as d such that
x2 ¼ x1 þ d). These processes resulted in 48 281 variants in total,
and the detailed numbers of SNV, indel and SV are shown in
Supplementary Table S2. After integrating these variants into the
reference, mutated reads were also generated by ART.

3 Results

3.1 Benchmarking Bivartect
In our benchmarking test with the simulated data described above,
Bivartect was compared with Manta 1.6.0 (Chen et al., 2016),
MuTect2 (Cibulskis et al., 2013) built-in GATK 4.1.0.0, Pindel
0.2.5b9 (Ye et al., 2009), SMuFin 0.9.3 (Moncunill et al., 2014),
SomaticSniper 1.0.5.0 (Larson et al., 2012) and Strelka 2.9.10 (Kim
et al., 2018) as competitive variant callers. Predictive performance
was evaluated by calculating sensitivity, positive predictive value
(PPV) and F-measure, defined in Supplementary Notes. The results
indicated that Bivartect achieved the high range of PPV (0.986) for
SNV detection, and the third best balanced accuracy (F-measure,
0.904) for indels after MuTect2 and Strelka2 (Fig. 2a and b and
Supplementary Table S3). Although the predictive performance of
Bivartect was comparable to that of two mapping-based variant call-
ers, Bivartect outperformed the mapping-free method SMuFin on
these benchmark data.

We also assessed CPU time and peak memory for running the
aforementioned tools by using the same benchmark data. It should
be noted that time for pre-/post-mapping with BWA-backtrack was
included in the CPU time. Bivartect was as fast as the other
mapping-based variant callers, and 10.4-fold faster and used 3.4
times less memory than SMuFin (Fig. 3a and b and Supplementary
Table S4). In addition, the peak memory use of Bivartect was 1.4
times less than that of MuTect2.

Figure 4 and Supplementary Table S5 provide insight into the
prediction accuracy as a function of indel size, indicating that Pindel
achieved better sensitivity than the others over all indel sizes. This
analysis also shows that Bivartect was better in sensitivity than
SMuFin for smaller indels, and comparable for larger indels.

Next, we examined how the predictive performance of each vari-
ant caller differs with the fold-coverage of simulated reads. In this

analysis, Bivartect and MuTect2 achieved the highest and the most
robust PPV regardless of coverage changes for SNV detection
(Supplementary Fig. S3a). For indel detection, Bivartect had a slight-
ly lower PPV than some of the other callers, but it was still high
(>0.90; Supplementary Fig. S3b). PPV of Pindel, which showed the
best sensitivity on the benchmark data, tended to deteriorate as the
fold-coverage increased, indicating the tradeoff between sensitivity
and PPV. In addition, Bivartect is included in the leading group with
respect to sensitivity for both SNV and indel detection when the
fold-coverage exceeded 30� (Supplementary Fig. S3c and d). Taken
together, these results indicate that Bivartect, MuTect2,
SomaticSniper and Strelka2 yielded robust and accurate predictions
for the coverage change.

We also investigated an effect of repeats in the genome on pre-
diction by each variant caller. Focusing only on repeat-annotated
variants in the evaluation on the benchmark data, repeats did not af-
fect the sensitivities of Bivartect, MuTect2, Pindel, SomaticSniper
and Strelka2 (Supplementary Table S6).

Unlike some other variant callers, Bivartect can also accept
single-end reads as input due to its simple framework (Fig. 1). More
precisely, the predictive performance for both SNVs and indels on

Pindel

Manta

SomaticSniper

Strelka2

Bivartect

MuTect2

SMuFin

Max memory (GB)

0 1 2 3 4 5 6 7

Pindel

Bivartect

Manta

SomaticSniper

Strelka2

MuTect2

SMuFin

CPU time (s)

0 5000 10000 15000 20000 25000 30000

(a) (b)

Fig. 3. Computational performance of each variant caller. (a) CPU time of each tool for the benchmark data on a machine with Intel Xeon Gold 6126 (Skylake/2.6 GHz 12

cores) and 192 GB RAM. Note that all but SMuFin were run with two threads, whereas SMuFin was run with two MPI processes. (b) The maximum memory usage of each

tool for the benchmark data. Of note, Bivartect would not be suitable for whole-genome data of higher organisms since its run-time and memory increase with data size more

than those of the other mapping-based callers. See Supplementary Notes S3.3 and S3.4 for further details

1 2 3 4 5 6 7 8 9 10 >10

Ground truth
Bivartect
Manta
MuTect2
Pindel
SMuFin
Strelka2

Indel size

C
ou

nt

0
50

0
10

00
15

00

Fig. 4. Sensitivity of each variant caller as a function of indel size on the benchmark

data of 50 bp paired-end reads of coverage 30�. Note that Manta detected indels of

size larger than 7 bp

2728 K.Shimmura et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data


single-end reads was comparable to that on paired-end reads
(Fig. 5a and b), which is one of the advantages over some competi-
tive variant callers that cannot deal with single-end reads.

3.2 Variant calling on mouse genome-editing data
We next examined the predictive performance of Bivartect relative
to some leading mapping-based callers (MuTect2 and Strelka2)
using real genome-editing data (DRA007211) compiled in the litera-
ture (Nakajima et al., 2016). In this reported study, whole exomes
of heterozygous knock-in (KI) mice carrying a single missense muta-
tion in the Ntrk1 gene, which were generated using CRISPR/Cas9,
were sequenced with 101 bp paired-end reads of a depth 100–120�
and compared with a wild-type (WT) mouse from the same breeding
colony. Note that BWA-MEM was used to initially map reads when
MuTect2 and Strelka2 were run. When the sequencing data of two
heterozygous KI mice (Nos. 306-1 and 316-2) were compared with
the WT, all three callers correctly detected four validated SNVs
including an edited mutation in the Ntrk1 gene (Table 1). However,
it should be noted that the number of SNVs predicted by Bivartect
was two orders of magnitude lower than predicted by MuTect2 and
Strelka2. As for indels, both Bivartect and MuTect2 correctly
detected one indel validated in No. 316-2, whereas Bivartect again
predicted 100-fold fewer variants than MuTect2 (Table 1). Of these
three tools, Strelka2 reported the fewest indels, although the vali-
dated indel was not included in the results (Table 1). These data sug-
gest that Bivartect can detect the true variants by lining up fewer
candidates, which would be an advantage in subsequent narrowing
down of the potential off-target sites inserted during genome editing
(Anderson et al., 2018).

4 Discussion

Among state-of-the-art variant callers compared in this work,
SMuFin, based on direct comparison of sequence reads, requires
huge memory. In contrast, Bivartect not only used less memory but
also achieved higher accuracy than SMuFin as demonstrated in the
benchmarking test. This may be due to the simple framework of
Bivartect, which is contrast to SMuFin’s complicated implementa-
tion with a message-passing interface dependent on hardware, lead-
ing to the possibility of the reduced accuracy of variant calling on
the benchmark data.

The initial mapping-based approaches have a fair number of
controllable parameters of constituent tools in the analysis pipeline,
particularly for complex filtering after the initial mapping, whereas
the direct read comparison has fewer parameters than the former
due to the simple framework. In real applications, optimizing a com-
plex set of parameters depending on the input would be hard and
painstaking, and an arbitrary parameter setting (e.g. the default set-
ting) might cause some problems such as having lower sensitivity or
higher false-positive rate in the predictions. In fact, the number of
predicted variants in the mapping-based callers was much larger
than in the direct read comparison (Table 1). Note that Bivartect’s
high PPV on the benchmark data does not necessarily mean the low
number of false positives on other data. Although the number of
variants detected by Bivartect in this table might be still so many
that one could not validate these experimentally, information on
known variants available in the future would be useful for reducing
the candidates further, enabling the tool to overcome this problem.

0.984 0.986 0.988 0.990 0.992

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Positive predictive value

S
en

si
tiv

ity

Paired−end
Single−end

0.88 0.89 0.90 0.91 0.92 0.93 0.94

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Positive predictive value

S
en

si
tiv

ity

Paired−end
Single−end

(a)

(b)

Fig. 5. Comparison of predictive performance of Bivartect on single- and paired-end

reads. Both reads are of coverage 30� and of length 50 bp. (a) The performance for

SNVs. (b) The performance for indels

Table 1. The number of variants predicted by three tools on the mouse genome-editing data where whole exomes of two F1 heterozygous

KI mice (Nos. 306-1 and 316-2) were compared with that of a WT mouse

Mouse sample (F1) 306-1 316-2

Variant type SNV Indel SNV Indel

Predicted Validated (4) Predicted Validated (N/A) Predicted Validated (5) Predicted Validated (1)

Bivartect 416 4 115 N/A 425 5 119 1

MuTect2 50 694 4 12 526 N/A 45 055 5 12 982 1

Strelka2 62 065 4 31 N/A 51 898 5 39 0

Note: The total number of validated variants is indicated in parentheses.

N/A, not available.

Bivartect 2729



Hence, the framework of the direct read comparison would be more
general and accessible than the initial mapping-based methods.

Bivartect is a memory-efficient variant caller with high accuracy,
particularly for detecting SNVs, which is achieved without initial
mapping. Despite its simplicity, Bivartect can handle a wide range of
applications irrespective of biological species, from the detection of
germline mutations in the same individual, to the confirmation of
off-target mutations in genome-editing data using any exome se-
quence data. In addition, Bivartect is applicable to whole-genome
sequence data from lower organisms, where there may not be suffi-
cient information available on the reference genome. Details of deal-
ing with whole-genome sequence data for higher organisms such as
human are discussed in Supplementary Notes. Considering that gen-
ome-editing technologies have been rapidly utilized for different
organisms, detection of variants without initial mapping is expected
to increase in importance.

Acknowledgements

We would like to thank Drs Tadafumi Kato and Kazuo Nakajima at RIKEN

for helpful comments on their genome-editing data. This work was partly

achieved through the use of large-scale computer systems at the Cybermedia

Center, Osaka University and the NIG supercomputer at ROIS National

Institute of Genetics.

Funding

This work was supported by Japan Society for the Promotion of Science

KAKENHI [15K00401 and 18K11526 to Y.K.].

Conflict of Interest: none declared.

References

Alkan,C. et al. (2011) Genome structural variation discovery and genotyping.

Nat. Rev. Genet., 12, 363–376.

Anderson,K.R. et al. (2018) CRISPR off-target analysis in genetically engi-

neered rats and mice. Nat. Methods, 15, 512–514.

Audano,P.A. et al. (2018) Mapping-free variant calling using haplotype recon-

struction from k-mer frequencies. Bioinformatics, 34, 1659–1665.

Chen,K. et al. (2009) BreakDancer: an algorithm for high-resolution mapping

of genomic structural variation. Nat. Methods, 6, 677–681.

Chen,X. et al. (2016) Manta: rapid detection of structural variants and indels

for germline and cancer sequencing applications. Bioinformatics, 32,

1220–1222.

Cibulskis,K. et al. (2013) Sensitive detection of somatic point mutations in im-

pure and heterogeneous cancer samples. Nat. Biotechnol., 31, 213–219.

DePristo,M.A. et al. (2011) A framework for variation discovery and

genotyping using next-generation DNA sequencing data. Nat. Genet., 43,

491–498.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using col-

ored de Bruijn graphs. Nat. Genet., 44, 226–232.

Kim,S. et al. (2018) Strelka2: fast and accurate calling of germline and somatic

variants. Nat. Methods, 15, 591–594.

Kuscu,C. et al. (2014) Genome-wide analysis reveals characteristics of off-target

sites bound by the Cas9 endonuclease. Nat. Biotechnol., 32, 677–683.

Lai,Z. et al. (2016) VarDict: a novel and versatile variant caller for

next-generation sequencing in cancer research. Nucleic Acids Res., 44, e108.

Larson,D.E. et al. (2012) SomaticSniper: identification of somatic point muta-

tions in whole genome sequencing data. Bioinformatics, 28, 311–317.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows–Wheeler transform. Bioinformatics, 25, 1754–1760.

Martincorena,I. and Campbell,P.J. (2015) Somatic mutation in cancer and

normal cells. Science, 349, 1483–1489.

Moncunill,V. et al. (2014) Comprehensive characterization of complex struc-

tural variations in cancer by directly comparing genome sequence reads.

Nat. Biotechnol., 32, 1106–1112.

Nakajima,K. et al. (2016) Exome sequencing in the knock-in mice generated

using the CRISPR/Cas system. Sci. Rep., 6, 34703.

Pajuste,F.D. et al. (2017) FastGT: an alignment-free method for calling com-

mon SNVs directly from raw sequencing reads. Sci. Rep., 7, 2537.

Rahman,A. et al. (2018) Association mapping from sequencing reads using

k-mers. Elife, 7, e32920.

Rausch,T. et al. (2012) DELLY: structural variant discovery by integrated

paired-end and split-read analysis. Bioinformatics, 28, i333–i339.

Sherry,S.T. et al. (2001) dbSNP: the NCBI database of genetic variation.

Nucleic Acids Res., 29, 308–311.

Standage,D.S. et al. (2019) Kevlar: a mapping-free framework for accurate dis-

covery of de novo variants. iScience, 18, 28–36.

Sudmant,P.H. et al. (2015) An integrated map of structural variation in 2,504

human genomes. Nature, 526, 75–81.

The 1000 Genomes Project Consortium (2015) A global reference for human

genetic variation. Nature, 526, 68–74.

Wang,J. et al. (2011) CREST maps somatic structural variation in cancer

genomes with base-pair resolution. Nat. Methods, 8, 652–654.

Weischenfeldt,J. et al. (2013) Phenotypic impact of genomic structural vari-

ation: insights from and for human disease. Nat. Rev. Genet., 14, 125–138.

Ye,K. et al. (2009) Pindel: a pattern growth approach to detect break points of

large deletions and medium sized insertions from paired-end short reads.

Bioinformatics, 25, 2865–2871.

2730 K.Shimmura et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa059#supplementary-data

	l
	btaa059-TF1
	btaa059-TF2

