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Abstract
Purpose: Manual delineation (MD) of organs at risk (OAR) is time and labor intensive. Auto-delineation (AD) can reduce the need for
MD, but because current algorithms are imperfect, manual review and modification is still typically used. Recognizing that many OARs
are sufficiently far from important dose levels that they do not pose a realistic risk, we hypothesize that some OARs can be excluded
from MD and manual review with no clinical effect. The purpose of this study was to develop a method that automatically identifies
these OARs and enables more efficient workflows that incorporate AD without degrading clinical quality.
Methods and Materials: Preliminary dose map estimates were generated for n Z 10 patients with head and neck cancers using only
prescription and target-volume information. Conservative estimates of clinical OAR objectives were computed using AD structures with
spatial expansion buffers to account for potential delineation uncertainties. OARs with estimated dose metrics below clinical tolerances
were deemed low priority and excluded from MD and/or manual review. Final plans were then optimized using high-priority MD OARs
and low-priority AD OARs and compared with reference plans generated using all MD OARs. Multiple different spatial buffers were
used to accommodate different potential delineation uncertainties.
Results: Sixty-seven out of 201 total OARs were identified as low-priority using the proposed methodology, which permitted a 33%
reduction in structures requiring manual delineation/review. Plans optimized using low-priority AD OARs without review or
modification met all planning objectives that were met when all MD OARs were used, indicating clinical equivalence.
Conclusions: Prioritizing OARs using estimated dose distributions allowed a substantial reduction in required MD and review without
affecting clinically relevant dosimetry.
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Introduction

Organ-at-risk (OAR) delineation is a highly time- and
resource-intensive component of the radiation therapy
(RT) treatment planning workflow. This is due in large
part to the need for manual delineation (MD) of OAR
volumes by trained experts. Computer-aided auto-delin-
eation (AD) algorithms are widely available and can save
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time by reducing the need for MD.1-4 However, despite
advancement in the quality of AD algorithms, manual
review and modification of AD volumes are still typically
performed in the clinical setting to ensure accuracy before
planning.1 This additional step can substantially mitigate
the potential efficiency gains of AD and stifle adaptive
planning workflows.

Although accurate OAR delineation is an important
factor in generating and evaluating RT treatment plans,5

the level of required accuracy is likely to vary from
case to case. This is because dosimetric planning objec-
tives are specific to each OAR and achievable OAR doses
depend heavily upon patient-specific factors (eg, pre-
scription dose, tumor size/location, relative OAR posi-
tions, beam angles, etc). It is thus not clear when
delineation inaccuracies are or are not clinically mean-
ingful. In general, OARs that are sufficiently far from
target volumes that they do not approach their organ-
specific dose tolerances should not pose a realistic risk,
regardless of reasonable delineation inaccuracies. We thus
hypothesize that some OARs can be excluded from MD
or manual review in many cases with no clinical effect.
Automatically identifying these OARs before treatment
planning should allow clinics to more fully realize the
efficiency gain provided by AD.

The purpose of this work was to develop an automated
workflow that identifies OARs that can be excluded from
MD or manual review (ie, auto-contours can be used “as-
is”) without affecting plan quality. Our method combined
AD OARs with an automatically generated dose map
estimate to make conservative predictions of organ-
specific plan quality metrics (PQMs). These predictions
were used to identify structures that are at risk of
exceeding tolerances in the final treatment plan (ie, high-
priority OARs) and those that are not (ie, low-priority
OARs). We implemented this method in a cohort of pa-
tients with head and neck cancers due to the notable OAR
delineation burden in this treatment site and quantified the
resulting reduction of delineations requiring manual
interaction. The adequacy of priority designations was
evaluated in terms of their dosimetric effect on final plan
dosimetry compared with reference plans generated using
all MD OARs during optimization.
Methods and Materials

This study was performed using computed tomography
(CT) images and clinically used MD OAR structure sets
from 10 patients with head and neck cancers who were
previously treated at our center. Patient characteristics are
described in Table 1. The local institutional review board
approved the retrospective use of these data.

The required inputs to the proposed workflow are CT
simulation images, planning target volumes (PTVs), dose
prescriptions, and dosimetric OAR objectives. The
workflow can therefore be performed after the physician
has finalized their treatment strategy but before OAR
delineation or interactive treatment planning is performed.
This method is diagrammed in Figure 1 and consists,
broadly, of 3 fully automated steps that are described in
detail in the following sections: (1) dose map estimation;
(2) OAR auto-delineation; and (3) OAR PQM estimation.
Note that in the present work, each of these steps was
performed using software that is used clinically at our
institution but can easily be replaced with other methods.

Dose map estimation

An initial dose map estimate (Dest) was generated for
each case by creating a 2 full-arc volumetric modulated
arc therapy treatment plan using only target volumes and
target-based planning structures for optimization. Three
target-based planning structures were useddthe physician
delineated PTV(s) and 2 pseudo OARs: a 2-cm ring
structure that extended from 7 mm to 27 mm outside of
the union of all PTVs and all remaining tissue beyond the
ring structure. This plan was optimized to conformally
cover each PTV (plans had between 1 and 3 PTVs) with
prescribed doses at the 95% level using a consistent in-
house auto-planning algorithm developed in Pinnacle
16.2. The pseudo-OARs were used to encourage plan
conformity with optimization objectives of maximum
dose <35 Gy for the ring structure and 10% volume <13
Gy for all remaining tissue.

OAR estimation

A standard set of head and neck OARs (OARAD) was
autogenerated for each case using Pinnacle’s model-based
AD algorithm [Smart Probabilistic Image Contouring
Engine (SPICE)].6 This set contained 19 OARs that were
used in the present analysis. Notably, this algorithm did
not delineate the esophagus, larynx, or brachial plexus,
which were clinically delineated in several cases. These
structures were thus always designated as “high-priority”
OARs in this study. Geometric agreement between AD
and MD OARs was evaluated by computing the Dice
overlap coefficient and the Hausdorff surface distance
(HD) metric at the 50%, 95%, and maximum levels
(HD50, HD95, HDmax).

Conservative PQM estimation

The head and neck treatment plans evaluated used
mean and maximum OAR dose metrics (Dmean and Dmax).
Dmean and Dmax were therefore conservatively estimated
from Dest and OARAD, while accounting for potential
delineation errors, with the following process:

Let OART,i be the true delineation of OARi. Let M be
the maximum potential delineation error of auto-
delineated OARAD,i from OART,i. That is, all points on



Figure 1 Flowchart of the proposed method.

Table 1 Patient characteristics

Patient Site Type Stage Rx

1 Supraglottis SCC III 70/56 Gy
2 BOT SCC III 70/56 Gy
3 Soft palate SCC III 70/56 Gy
4 Skull base SCC IVb 70/56 Gy
5 Nasopharynx SCC III 70/60/54 Gy
6 Tongue SCC III 60/54 Gy
7 Tongue SCC IVa 60/54 Gy
8 Oropharynx SCC IVb 70/60/54 Gy
9 Lt. tonsil SCC IVa 66/60/54 Gy
10 Rt. tonsil SCC IVa 66/54 Gy

Abbreviations: “BOT” Z base of tongue; PTV Z planning target
volume; SCC Z squamous cell carcinoma.
Prescriptions listed in terms of dose to PTV1, PTV2, and PTV3
(where applicable).
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the surface of OARAD,i must lie within M mm of the
OART,i surface. Although it is possible for OARAD,i to
underestimate Dmax for OART,i, Dmax for OART,i is al-
ways less than or equal to the maximum dose in OARAD,i

expanded by an M mm buffer. We thus expanded OAR-
AD,i by M mm and conservatively assigned Dmax(OART,i) to be
Dmax(OARAD,i þ M).

Because uniform OAR expansions can extend into
both high and low dose regions, the mean dose in
OARAD,i þ M does not represent the worst case scenario
Dmean for OART,i. The highest possible mean dose occurs
when an OAR with minimal volume extends only into the
highest dose region contained in the maximal-volume
OAR envelope (OARAD,i þ M). Assuming the surface
of OARAD,i lies within R mm of the OART,i structure
surface, the smallest possible structure can be generated
by contracting OARAD,i by R mm: OARAD,i - R. The
absolute volume of OARAD,i - R, Vmin, can then be treated
as a lower bound for the volume of OART,i. Given a voxel
volume, dV, this translates to a region containing Nmin Z
Vmin/dV voxels. Because this region can also lie outside
of OARAD,i, voxels in the expansion volume, OARAD,i þ
M, must also be considered. Thus, a conservative Dmean

estimate was computed by averaging the highest Nmin

dose voxels contained in the OARAD,i þ M envelope.
This process is demonstrated for 2 OARs in Figure 2.

For OARs that are small with respect to R, the
contraction step can potentially reduce the volume to few
or even zero voxels. To avoid this issue, cases in which
OARAD,i - R had a volume <10% of OARAD,i, Nmin was
set to 10% of the OARAD,i volume. Note that although, in
general, the expansion (M) and contraction (R) buffers do
not need to be equivalent, for simplicity we used M Z R
in this study.
OAR priority designation

OARs with conservatively estimated Dmean or Dmax

below their respective clinical objective values (Table 2)
were deemed low priority and thus eligible for exclusion
from MD or manual review. All other OARs were
deemed high priority and in need of MD or manual
review.

Because M is defined as the maximum potential
delineation error for an AD OAR, one might assume that
the optimal choice of M would be equal to the HD be-
tween AD and MD structures (ie, the maximum difference
between structure surfaces). However, because the con-
servative dose maps used to estimate OAR PQM values
differ from final clinical treatment plans, different values



Figure 2 Visualizations of the proposed method for a left parotid structure that was designated high priority (A, B) and a right eye
structure that was designated low priority (C, D) with an uncertainty buffer M Z 5 mm. Conservative dose estimates were computed
using an initial dose map estimate (A, C). Dmean estimates were computed in high dose subvolumes within auto-delineation (AD)
structure expansions (ie, red dashed line in A), and Dmax estimates were computed in the entirety of AD structure expansions (ie, black
dashed line in C). These estimates were compared with clinical objectives (black dashed lines in B,D) to determine organs at risk (OAR)
priority levels. For final planning, low-priority AD structures were used without review and high-priority AD structures were replaced
with manual delineation (MD) structures. Final plans were evaluated using all MD structures to evaluate clinical effect.

Table 2 List of PQMs used as dosimetric OAR objectives
in this study

OAR PQM Dose

Larynx Dmean 35 Gy
Esophagus 35 Gy
Pharyngeal constrictors 54 Gy
Parotid (rt. & lt.) 26 Gy
Cochlea (rt. & lt.) 35 Gy
Oral cavity 40 Gy
Brain Dmax 60 Gy
Brain stem 54 Gy
Optic nerve (rt. & lt.) 54 Gy
Chiasm 54 Gy
Spinal cord 45 Gy
Eye (rt. & lt.) 45 Gy
Mandible 70 Gy
Brachial plexus 70 Gy

Abbreviations: OAR Z organs at risk; PQM Z plan quality metrics.
PQMs were kept consistent between patients except when planning
directives specified alternative PQMs (there were varying PQMs for
larynx and cochlea). Note that not all OARs were present in all cases.
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may be optimal for the task of identifying high- and low-
priority structures. Therefore, the prioritization procedure
was repeated for a range of 6 M values (0, 2.5 mm, 5 mm,
10 mm, 20 mm, and 40 mm) to identify the technique’s
sensitivity to this parameter and identify the value that
minimizes manual contour review without violating OAR
dose tolerances.
Dosimetric evaluation

To determine the adequacy and clinical viability of
OAR priority designations, 4 treatment plans were
generated for each patient using different OAR structure
sets for optimization: plan MD, all clinically used
manually delineated OARs (OARMD); plan AD, all auto-
delineated OARs (OARAD) plus manual OARs not
included in the AD set (esophagus, larynx, and brachial
plexus); plan mix, a mixed OAR set with high-priority
OARs from OARMD and low-priority OARs from
OARAD; and plan ADHP, only the high-priority OARs
from OARMD (low-priority OARs excluded).

All plans used 2 360o coplanar volumetric modulated
arc therapy arcs and were optimized using consistent
target volumes and a consistent auto-planning algorithm
developed in Pinnacle 16.2. In this algorithm, plans were
optimized to meet clinical objective values for each OAR
(Table 2) in an iterative process. Optimization objectives
were first initialized with values ~10 Gy below clinical
objectives and an initial optimization run was performed.
Each OAR was then evaluated in the resulting plan
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according to its clinical objective value. Any OARs
whose clinical objectives were not met at this stage had
their optimization objectives reduced by 2 Gy to
encourage further dose reduction before rerunning the
optimization. This process was repeated twice for each
case to generate a final treatment plan. The planning al-
gorithm was uniform across all subjects. The PTV pre-
scription doses were patient specific (Table 1).

After optimization, OAR PQMs were evaluated for all
plans using OARMD (ie, OARMD was treated as ground-
truth, regardless of what was used for planning). PQMs
for each OAR and plan were then compared with clinical
objective values and values from plan MD (ie, planned
and evaluated using OARMD). Failed delineation priority
designations were identified by OARs that were initially
deemed low priority but, when used for optimization,
resulted in plans that did not meet clinical objectives.
PQM values were also compared directly between plans
by computing the differences in Dmean or Dmax between
each plan and plan MD (DPQM). A 1-sample t test was
performed on DPQM across all OARs to test whether it
significantly differed from 0.

Maximum point doses (ie, hotspots) and dose confor-
mity index (volume of the prescription isodose level
divided by PTV volume) were also compared between
plans (ie, between plan MD, AD, mix, and ADHP) to
ensure consistent plan quality across optimizations. Each
parameter was compared between plans across all subjects
using 1-way analysis of variance.

Results

OAR priority designation

The 10-patient data set contained a total of 201 OARs
that were contoured clinically. Of these, 168 were auto-
delineated with SPICE. The average Dice overlap be-
tween AD and MD OARs was 0.59 � 0.29. Average HD
metrics were HD50 Z 3.4 � 2.4 mm, HD95 Z 13.3 �
15.6 mm, HDmax Z 18.3 � 18.5 mm. OAR-specific
agreement metrics are shown in Table 3. The number of
OARs that were deemed low priority varied between
patients and with the choice of delineation uncertainty
parameter M (Fig 3). When no buffer was used (M Z 0),
a total of 67 OARs were deemed low priority, repre-
senting a 33.3% reduction in the number of OARs
requiring MD or manual review. This reduced to 54 low-
priority OARs (26.9% reduction) with M Z 2.5 mm, 49
with M Z 5 mm (24.4% reduction), 43 with M Z 10 mm
(21.4% reduction), 32 with M Z 20 mm (15.9% reduc-
tion), and 12 with M Z 40 mm (6.0% reduction). In
comparison, using all AD structures without modification
reduced the number of manual delineations by 168
(83.6% reduction). Patient-specific low-priority designa-
tions and contouring reductions are shown in Table 4.
Specific examples for OARs in a nasopharyngeal case
are shown in Figure 2. In this case (shown with M Z 5
mm), the mean left parotid dose was conservatively
estimated (within the red dotted area) to exceed the
clinical objective value of 26 Gy and thus was identified
as a high-priority structure (Fig 2A, B). Analysis of the
final plan using an MD left parotid structure showed a
final Dmean close to the objective value and a high-dose
gradient near contour edges, indicating that the structure
contributed appreciably to the optimization objective and
result (and thus a different OAR delineation could have
resulted in a significantly different plan). In contrast, the
right eye maximum dose was conservatively estimated
(within the black dotted area) to be below the clinical
objective value of 45 Gy and thus was considered low
priority (Fig 2C, D). The final plan showed little dose
gradient in the right eye area and a final Dmax well below
the 45 Gy objective, indicating that the specific structure
boundaries did not have a large effect on the plan. Note,
however, that the final Dmax did reduce considerably be-
tween the initial and final dose maps (though both were
substantially below 45 Gy). This is due to the presence of
other OARs that were deemed high priority (eg, the oral
cavity and right cochlea) between the target volume and
right eye, which indirectly reduced dose to this area.
Dosimetric evaluation

No significant differences in dose hotspot (1.14 �
0.07, P > .99) or conformity index (1.26 � 0.21, P > .99)
were observed across plans, indicating a consistent
auto-planning technique. The dosimetric effect of
the OAR prioritization workflow is demonstrated in
Figures 4 and 5. In each of these figures, the achieved
PQM (ie, Dmean or Dmax) for each OAR (computed using
OARMD) is plotted as a percentage difference from its
clinical objective value (DPQM) for plan MD in the
x-axis and plans AD, mix, (Fig 4), and ADHP (Fig 5) in
the y-axis. In these plots, the lower-left quadrant contains
OARs that met clinical objectives in both plan MD and
the indicated alternative plan, whereas the upper right
quadrant indicates objective failures in both cases. Simi-
larly, the upper left quadrant indicates OARs that met
objectives in plan MD but failed in the alternative plan.
Points highlighted in red indicate structures determined to
be low priority at the specified M setting. As M increased,
the structures that met low-priority criteria became limited
to those further from clinical tolerance levels (ie, toward
the lower left corners of the scatter plots). Interestingly, a
few low-priority points did remain, with doses close to
tolerance levels (ie, toward the plot centers), even with
large values of M. These points all represent OARs with
Dmax objectives that approach prescription dose levels.
For example, for M Z 40 mm, all 3 of the low-priority
points that are observed near the center of the plot are



Figure 3 The number of manual delineations (MDs) required
across 10 head and neck patients when using only MD, the
proposed organs at risk (OAR) prioritization strategy with
varying delineation uncertainty parameters (M), and using auto-
delineation (AD) for all available structures.

Table 3 Geometric agreement indices between manually
delineated and auto-delineated OARs

OAR Dice HD50

(mm)
HD95

(mm)
HDmax

(mm)

Brain 0.97 � 0.0 4.4 � 0.7 11.2 � 1.7 32.2 � 3.2
Brain
stem

0.83 � 0.0 2.0 � 0.2 5.1 � 1.1 8.5 � 2.0

Chiasm 0.19 � 0.2 6.2 � 2.7 11.8 � 4.7 12.7 � 4.4
Cochleae 0.20 � 0.1 4.6 � 1.6 8.8 � 2.0 9.2 � 2.0
Eyes 0.85 � 0.0 1.7 � 0.2 4.2 � 1.1 6.0 � 1.4
Glottis 0.49 � 0.1 3.7 � 0.2 8.0 � 2.4 9.8 � 2.5
Lenses 0.50 � 0.2 2.3 � 1.4 4.3 � 1.6 4.7 � 1.7
Mandible 0.86 � 0.0 1.3 � 0.1 5.9 � 4.8 13.0 � 7.1
Optic
nerves

0.47 � 0.1 2.3 � 0.7 7.1 � 2.9 7.9 � 3.2

Oral
cavity

0.57 � 0.1 8.3 � 4.6 21.3 � 4.7 25.7 � 5.1

Parotids 0.70 � 0.1 3.1 � 0.8 11.8 � 5.0 16.8 � 6.8
Pharynx
const

0.09 � 0.2 3.3 � 1.3 24.1 � 14.7 30.4 � 15.9

Spinal
cord

0.69 � 0.1 3.3 � 2.0 49.5 � 38.9 61.9 � 38.6

Abbreviations: HD Z Hausdorff distance; OAR Z organs at risk.
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mandible contours with 70 Gy Dmax objectives. The other
OARs that approach the center for M Z 10 mm and 20
mm are brain (Dmax objective: 60 Gy) and brain stem
(Dmax objective: 54 Gy). Because these plots are
expressed as percentages of objective values, a substantial
dose deviation may appear small (ie, a brain stem Dmax 14
Gy below the 54 Gy objective equates to DPQM Z
e26%). Additionally, when objectives approach the pre-
scription doses themselves (ie, mandible), OARs may
never exceed tolerances, despite large expansions that
closely approach targets, as long as the plan does not have
a hotspot in that area.

When all AD OARs, regardless of priority, were used
during optimization (plan AD), 7 structures that passed
clinical objectives in plan MD (DPQM < 0) exceeded
their objectives in plan AD, indicating clinically mean-
ingful variations (ie, points in the upper left quadrant in
Fig 4). Three of these failures were parotid glands, 2 were
spinal cords, 1 was cochlea, and 1 a lens. Notably, these
structures were not outliers in terms of geometric agree-
ment with MD (average Dice Z 0.67 among these 7 vs
0.59 overall) and were all deemed high priority for all
uncertainty settings (including M Z 0).

When OAR prioritization was used (with any value of
M) and low-priority AD structures plus high-priority MD
structures were used for optimization (ie, plan mix), no
objectives that were met in plan MD failed (Fig 4).
One OAR (a brain) that was deemed low priority with
M Z 0 did exceed its objective in all plans (MD, AD,
mix, and ADHP), indicating that the proposed workflow
understated the final OAR dose in this case. However,
with any M > 0, no low-priority OARs exceeded
objective values in plan MD or plan mix, indicating that
with the additional buffer for delineation uncertainty,
low-priority designations were always appropriate.

When low-priority OARs were ignored rather than
included using AD structures (plan ADHP), between 1 and
3 OARs (depending on M ) exceeded objectives that were
met in plan MD (Fig 5). This indicates that in all but a few
cases, low-priority OARs could be completely ignored
without consequence, but, in these few cases, AD OAR
objectives were required to guide the optimization to a
clinically acceptable dose distribution.

Absolute PQM values (ie, Dmean and Dmax) did not
increase significantly between plan MD and any of the
alternative plans (AD, ADHP, and mix) for any value of
M. For hybrid contour plans (plan mix) the following
DPQMs were observed across all OARs: M Z 0, DPQM
Z 0.32 � 6.28% (P Z .51); M Z 2.5 mm, DPQM Z
�0.36 � 7.25% (P Z .52); M Z 5 mm, DPQM Z 0.32
� 6.28% (P Z .51); M Z 10 mm, DPQM Z �0.42 �
6.13% (P Z .38); M Z 20 mm, DPQM Z �0.28 �
6.45% (P Z .57); M Z 40 mm, DPQM Z 0.18 � 6.76%
(P Z .73). Additionally, no significant increases were
found across specifically Dmean or Dmax objective OARs.

Discussion

The proposed workflow reduced the number of OARs
requiring manual delineation or review by 33% across 10
patients with head and neck cancers and up to 63% for
individual patients without affecting any clinically rele-
vant OAR doses. Importantly, this was accomplished
using auto-contours and dose map predictions generated
using commercially available software and thus can be



Table 4 Per-patient and total OAR reductions with each level of assumed DV (M)

Site Total OARs Number of low priority OARs (% of total)

M Z 0 M Z 2.5 mm M Z 5 mm M Z 10 mm M Z 20 mm M Z 40 mm

Supraglottis 23 12 (52.2) 11 (47.8) 10 (43.5) 9 (39.1) 8 (34.8) 7 (30.4)
BOT 17 5 (29.4) 4 (23.5) 4 (23.5) 4 (23.5) 4 (23.5) 1 (5.9)
Soft palate 28 7 (25.0) 5 (17.9) 5 (17.9) 5 (17.9) 5 (17.9) 0 (0.0)
Skull base 17 3 (17.6) 3 (17.6) 2 (11.8) 0 (0.0) 0 (0.0) 0 (0.0)
Nasopharynx 24 4 (16.7) 3 (12.5) 2 (8.3) 2 (8.3) 0 (0.0) 0 (0.0)
Tongue 16 10 (62.5) 6 (37.5) 6 (37.5) 6 (37.5) 5 (31.3) 2 (12.5)
Tongue 14 6 (42.9) 5 (35.7) 5 (35.7) 4 (28.6) 4 (28.6) 1 (7.1)
Oropharynx 22 10 (45.5) 8 (36.4) 6 (27.3) 5 (22.7) 2 (9.1) 0 (0.0)
Lt. tonsil 20 4 (20.0) 3 (15.0) 3 (15.0) 2 (10.0) 1 (5.0) 1 (5.0)
Rt. tonsil 20 6 (30.0) 6 (30.0) 6 (30.0) 6 (30.0) 3 (15.0) 0 (0.0)
Total 201 67 (33.3) 54 (26.9) 49 (24.4) 43 (21.4) 32 (15.9) 12 (6.0)

Abbreviations: BOT Z base of tongue; DV Z delineation variability; OARs Z organs at risk.
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easily implemented clinically. Furthermore, this workflow
can be fully automated to require no additional manual
effort. Once target volumes and prescriptions are defined
by a physician, the AD and dose map estimation pro-
cesses can be initiated such that priority designations are
available when OAR contouring and treatment planning
begins.

Decisions on which structures to contour or not con-
tour in a given plan currently rely on subjective and ad
hoc analysis. Although this may be adequate in obvious
situations (eg, omitting pelvic structures in a head and
neck plan), it is unlikely to be reliable in borderline sce-
narios and can result in over contouring. By quantifying
this intuitive logic, our approach can make objective de-
cisions in nonobvious situations and reduce unnecessary
contouring that would not otherwise be identified. This
will allow planners to both increase their efficiency and
improve the quality of their treatment plans by reducing
the time spent on clinically unimportant tasks (eg,
reviewing low-priority structures). Furthermore, by
explicitly identifying structures that do require review,
this method may improve compliance in thorough-
structure review and allow planners to spend more time
on high-priority structures that will consequently improve
the quality of important delineations.

The dosimetric equivalence of plans generated using
low-priority AD OARs and high-priority MD OARs for
optimization with reference plans (Fig 4) indicates that
our algorithm correctly identified high- and low-priority
OARs. Although in most cases, even ignoring low-
priority OARs led to equivalent plan quality (Fig 5),
this did lead to up to 3 failing OAR objectives that were
met in reference plans. This indicates that in most cases,
low-priority OARs were sufficiently far from objective
doses that they were not at risk of exceeding limits even if
excluded entirely from optimization, but that in some
cases, the inclusion of an AD structure was still necessary.

The choice of uncertainty parameter M did not affect
clinically significant dose metrics, but did have a strong
effect on the number of OARs deemed low priority by our
algorithm (and thus the associated efficiency gains, Fig 3).
M describes the size of the buffer used to conservatively
estimate Dmean or Dmax from AD structures and thus
should, in principle, reflect the confidence that one has in
the AD strategy being used. However, even the most
aggressive setting (M Z 0, ie, no buffer) resulted in zero
objective failures among low-priority OARs despite
imperfect agreement between AD and MD structures
(mean Dice Z 0.59). This indicates that in the present
implementation, M Z 0 provides optimal results (ie,
maximum efficiency with no clinical effect). However,
this is likely due to the highly conservative nature of our
dose map estimates, which did not attempt to predict any
conformal OAR avoidance, which likely balanced out the
delineation differences between MD and AD OARs. Use
of a different AD algorithm or different treatment site
might yield a different optimal M.

Several other techniques have been developed to esti-
mate OAR doses before planning by predicting dose
volume histograms (ie, knowledge based planning)7-12

and/or full 3-dimensional dose maps.13,14 Any of these
methods could be used to provide initial OAR dose esti-
mates for our algorithm. However, it is worth noting that
these methods generally aim to predict achievable
dosimetry, whereas our method aims to conservatively
estimate potential OAR doses. Although these methods
might more accurately predict final dose distributions than
our approach, they would likely make the OAR prioriti-
zation workflow more sensitive to contouring variability
and necessitate larger buffers (M ) to achieve optimal
performance. Dosimetric buffers could also be used to
account for uncertainty in dose prediction (ie, comparing
OAR doses with a dose criterion below the desired
objective value) in addition to or in place of geometric
buffers.

Pinnacle’s model-guided auto-contouring algorithm
(SPICE)6 generally produced OARs that were in reason-
able agreement with manual delineations. However,



Figure 4 Percent differences between achieved organs at risk (OAR) plan quality metrics (PQMs) (Dmean or Dmax) and objectives
(DPQM) from reference plans that used manual delineation (MD) OARs for optimization (x-axis, plan MD) and test plans
that incorporated auto-delineation (AD) OARs (y-axis, plan AD: black dots or plan mix: gray dots). Negative DPQM values
indicate OAR PQMs below objectives and positive values indicate failed objectives.

Figure 5 Scatter plots analogous to those in Figure 4 showing percent differences from plan quality metrics (PQM) objectives
(DPQM) achieved from plans generated using only high-priority auto-delineation (AD) organs at risk (OAR) for planning (y-axis, plan
ADHP) as functions of baseline values from plans generated using all manual delineation (MD) OARs (x-axis, plan MD). Numbers in
the upper left corners indicate the number of OARs that passed their objectives in plan MD but failed in plan ADHP.
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simply using all (unmodified) AD OARs in plan optimi-
zations resulted in 7 failing objectives that were met when
MD OARs were used (Fig 4). Although this is only a
small portion (3.5%) of the 201 OARs examined, this
clearly indicates that not all AD OARs could safely be
omitted from manual review. However, this also shows
that for the vast majority of OARs (96.5%), manually
tweaking or redrawing would not have been clinically
consequential. This underscores the importance of
methods that can identify specifically which OARs will
benefit from manual modification to both ensure plan
quality and efficient use of human attention.

The proposed workflow is also fully compatible with
other auto-delineation methods and could therefore benefit
from the rapid advancements that are occurring in that area.
For example, state-of-the-art machine-learning-based AD
methods15-22 could generate structures that more closely
agree with MD volumes and improve our method’s ability
to prioritize OARs. As auto-delineation accuracy improves,
more conformal dose estimates can also be used to estimate
OAR doses without the need for large spatial buffers.
However, given a perfect AD technique (ie, one with zero
disagreement with MD), all structures could in principle be
excluded from review with no effect on dosimetry. The
imperfect AD technique used in this work was thus a
valuable test case for our method.

Minimizing the time spent on OAR delineation and
review is particularly important in adaptive RT due to the
need for new delineations for each treatment fraction. AD
is routinely used in this context and is typically accom-
plished using deformable image registration to propagate
contours from a previous CT or magnetic resonance im-
aging onto a daily image.23-27 Manual or programmatic
supervision of this process is generally required to ensure
the accuracy of contour propagations.28 Our OAR prior-
itization workflow can be used in concert with such
quality assurance measures to reduce the number of
structures requiring manual attention while a patient is on
the treatment table. In this context, existing dose maps
and achieved OAR dose metrics from previous fractions
can be used to more accurately initialize the prioritization
process. Further efficiency gains could also be achieved
within our methodology by identifying specific high-
priority slices or regions within OARs and/or providing
a graphical indication of OAR-specific delineation accu-
racy requirements.

One related approach that has been proposed for
magnetic resonance imagingeguided adaptive RT in the
abdomen is to only review and/or modify deformably
mapped OARs in regions that lie within 3 cm of the PTV
surface.29 This method is effective for prioritizing OARs
with Dmax objectives that are close to prescription dose
levels but cannot accurately account for Dmean objectives
or OARs that are sensitive to lower dose levels. Our
method overcomes these limitations by using dosimetric
rather than geometric criteria.
The present study did have some limitations that
should be discussed. First, a key assumption in our
workflow is that the initial dose estimate delivers more
dose to all OARs than will be delivered by the final plan.
This was a reasonable assumption for our particular dose
prediction strategy because it did not attempt to model
conformal OAR avoidance, but, as discussed previously,
may not hold in future implementations with more so-
phisticated dose prediction strategies. This issue could be
addressed with an additional loop in the workflow
wherein OAR priority level is reassessed after a final plan
is generated and previously low-priority OARs may be
recommended for MD or manual review. We also relied
on an assumption that AD OARs were free of gross errors
such as placement in a completely disparate region of the
body. We did not encounter such errors in the present
study but, if present, they could confound our algorithm
and potentially misidentify low-priority OARs. Clinically
validated AD algorithms or automated OAR quality
control programs30 should therefore be used to mitigate
this risk. Furthermore, although the present method relied
on simple OAR expansions and contractions to account
for delineation uncertainties, additional steps could be
taken to refine these operations in making conservative
dose estimates. For example, expansions of soft-tissue
structures into bone could be automatically cropped out,
which would likely improve performance.

Finally, although low-priority OARs do not meaning-
fully affect plan quality, their inaccurate delineation could
result in inaccuracies in dose volume histogram and PQM
reporting if not indicated properly. Although these inac-
curacies would not be clinically meaningful, it is impor-
tant that nonreviewed low-priority AD structures be
clearly labeled as such in the treatment plan to ensure
clear reporting. This would emphasize low-priority
structures that were not clinically relevant in the current
treatment plan but must be reviewed for any subsequent
usage. For example, if a patient is retreated, previously
low-priority structures may become high priority in the
context of their new treatment plan and therefore must be
reviewed before clinical decisions are made. This labeling
would also indicate that these structures must be reviewed
before their use in clinical research. Alternatively, one
could choose to simply exclude nonreviewed low-priority
structures from the patient chart.
Conclusions

We have presented an automated workflow that iden-
tifies OARs that do and do not require manual attention
before treatment planning, facilitating the safe and effi-
cient clinical integration of auto-delineations. Our method
correctly identified OARs that were likely to benefit from
manual review and/or modification before planning and



Advances in Radiation Oncology: NovembereDecember 2020 Automated organ-at-risk prioritization 1333
permitted a 33% reduction in manual effort without
affecting clinically relevant OAR doses.
References

1. Sharp G, Fritscher KD, Pekar V, et al. Vision 20/20: Perspectives on
automated image segmentation for radiotherapy. Med Phys. 2014;
41:050902.

2. Lustberg T, van Soest J, Gooding M, et al. Clinical evaluation of
atlas and deep learning based automatic contouring for lung cancer.
Radiother Oncol. 2018;126:312-317.

3. Reed VK, Woodward WA, Zhang L, et al. Automatic segmentation
of whole breast using atlas approach and deformable image regis-
tration. Int J Radiat Oncol. 2009;73:1493-1500.

4. Hoang Duc AK, Eminowicz G, Mendes R, et al. Validation of
clinical acceptability of an atlas-based segmentation algorithm for
the delineation of organs at risk in head and neck cancer. Med Phys.
2015;42:5027-5034.

5. Vinod SK, Jameson MG, Min M, Holloway LC. Uncertainties in
volume delineation in radiation oncology: A systematic review and
recommendations for future studies. Radiother Oncol. 2016;121:
169-179.

6. Qazi AA, Pekar V, Kim J, Xie J, Breen SL, Jaffray DA. Auto-
segmentation of normal and target structures in head and neck CT
images: A feature-driven model-based approach. Med Phys. 2011;
38:6160-6170.

7. Wu B, Ricchetti F, Sanguineti G, et al. Data-driven approach to
generating achievable doseevolume histogram objectives in
intensity-modulated radiotherapy planning. Int J Radiat Oncol.
2011;79:1241-1247.

8. Moore KL, Brame RS, Low DA, Mutic S. Experience-based quality
control of clinical intensity-modulated radiotherapy planning. Int J
Radiat Oncol. 2011;81:545-551.

9. Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL.
Predicting dose-volume histograms for organs-at-risk in IMRT
planning. Med Phys. 2012;39:7446-7461.

10. Tol JP, Delaney AR, Dahele M, Slotman BJ, Verbakel WFAR.
Evaluation of a knowledge-based planning solution for head and
neck cancer. Int J Radiat Oncol. 2015;91:612-620.

11. Tran A, Woods K, Nguyen D, et al. Predicting liver SBRT eligibility
and plan quality for VMAT and 4p plans. Radiat Oncol. 2017;
12:70.

12. Ahmed S, Nelms B, Gintz D, et al. A method for a priori estimation
of best feasible DVH for organs-at-risk: Validation for head and
neck VMAT planning. Med Phys. 2017;44:5486-5497.

13. Nguyen D, Jia X, Sher D, et al. 3D radiotherapy dose prediction on
head and neck cancer patients with a hierarchically densely connected
U-net deep learning architecture. Phys Med Biol. 2019;64:065020.

14. Shiraishi S, Moore KL. Knowledge-based prediction of three-
dimensional dose distributions for external beam radiotherapy.
Med Phys. 2015;43:378-387.

15. van Rooij W, Dahele M, Ribeiro Brandao H, Delaney AR,
Slotman BJ, Verbakel WF. Deep learning-based delineation of head
and neck organs at risk: Geometric and dosimetric evaluation. Int J
Radiat Oncol. 2019;104:677-684.

16. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D
U-net: Learning dense volumetric segmentation from sparse anno-
tation. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bio-
informatics). Cham, Switzerland: Springer Nature; 2016:424-432.

17. Fritscher K, Raudaschl P, Zaffino P, Spadea MF, Sharp GC,
Schubert R. Deep neural networks for fast segmentation of 3D
medical images. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). Cham, Switzerland: Springer Nature; 2016:158-
165.

18. Tong N, Gou S, Yang S, Ruan D, Sheng K. Fully automatic multi-
organ segmentation for head and neck cancer radiotherapy using
shape representation model constrained fully convolutional neural
networks. Med Phys. 2018;45:4558-4567.

19. Ren X, Xiang L, Nie D, et al. Interleaved 3D-CNNs for joint seg-
mentation of small-volume structures in head and neck CT images.
Med Phys. 2018;45:2063-2075.

20. Nikolov S, Blackwell S, Mendes R, et al. Deep learning to achieve
clinically applicable segmentation of head and neck anatomy for
radiotherapy. arxiv. 2018:1809.04430.

21. Zhu W, Huang Y, Zeng L, et al. AnatomyNet: Deep learning for fast
and fully automated whole-volume segmentation of head and neck
anatomy. Med Phys. 2019;46:576-589.

22. Ibragimov B, Xing L. Segmentation of organs-at-risks in head and
neck CT images using convolutional neural networks. Med Phys.
2017;44:547-557.

23. Zhang T, Chi Y, Meldolesi E, Yan D. Automatic delineation
of on-line head-and-neck computed tomography images:
Toward on-line adaptive radiotherapy. Int J Radiat Oncol. 2007;68:
522-530.

24. Kumarasiri A, Siddiqui F, Liu C, et al. Deformable image regis-
tration based automatic CT-to-CT contour propagation for head and
neck adaptive radiotherapy in the routine clinical setting. Med Phys.
2014;41:121712.

25. Hou J, Guerrero M, Chen W, D’Souza WD. Deformable planning
CT to cone-beam CT image registration in head-and-neck cancer.
Med Phys. 2011;38:2088-2094.

26. Lamb J, Cao M, Kishan A, et al. Online adaptive radiation therapy:
Implementation of a new process of care. Cureus. 2017;9.

27. Lim-Reinders S, Keller BM, Al-Ward S, Sahgal A, Kim A. Online
adaptive radiation therapy. Int J Radiat Oncol Biol Phys. 2017;99:
994-1003.

28. Beasley WJ, McWilliam A, Slevin NJ, Mackay RI, van Herk M. An
automated workflow for patient-specific quality control of contour
propagation. Phys Med Biol. 2016;61:8577-8586.

29. Bohoudi O, Bruynzeel AME, Senan S, et al. Fast and robust online
adaptive planning in stereotactic MR-guided adaptive radiation
therapy (SMART) for pancreatic cancer. Radiother Oncol. 2017;
125:439-444.

30. Hui CB, Nourzadeh H, Watkins WT, et al. Quality assurance tool
for organ at risk delineation in radiation therapy using a parametric
statistical approach. Med Phys. 2018;45:2089-2096.

http://refhub.elsevier.com/S2452-1094(20)30161-5/sref1
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref1
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref1
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref2
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref2
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref2
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref3
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref3
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref3
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref4
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref4
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref4
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref4
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref5
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref5
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref5
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref5
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref6
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref6
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref6
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref6
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref7
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref7
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref7
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref7
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref7
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref8
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref8
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref8
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref9
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref9
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref9
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref10
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref10
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref10
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref11
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref11
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref11
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref12
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref12
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref12
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref13
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref13
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref13
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref14
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref14
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref14
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref15
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref15
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref15
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref15
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref16
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref16
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref16
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref16
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref16
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref17
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref17
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref17
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref17
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref17
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref17
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref18
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref18
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref18
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref18
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref19
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref19
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref19
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref20
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref20
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref20
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref21
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref21
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref21
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref22
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref22
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref22
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref23
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref23
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref23
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref23
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref24
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref24
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref24
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref24
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref25
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref25
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref25
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref26
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref26
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref27
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref27
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref27
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref28
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref28
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref28
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref30
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref30
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref30
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref30
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref29
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref29
http://refhub.elsevier.com/S2452-1094(20)30161-5/sref29

	An Automated Workflow to Improve Efficiency in Radiation Therapy Treatment Planning by Prioritizing Organs at Risk
	Introduction
	Methods and Materials
	Dose map estimation
	OAR estimation
	Conservative PQM estimation
	OAR priority designation
	Dosimetric evaluation

	Results
	OAR priority designation
	Dosimetric evaluation

	Discussion
	Conclusions
	References


