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Streptococcus thermophilus bacteria, which are widely used as
fermented starter for dairy production, exert various beneficial
health effects. Nevertheless, even though pro-longevity effects of
various probiotics have been reported, no report has described
Streptococcus thermophilus effects on longevity. This study was
conducted to evaluate Streptococcus thermophilus effects on
lifespan extension and to elucidate the Streptococcus thermophilus-
mediated longevity mechanism using Caenorhabditis elegans
worms as a model animal. They were fed standard food
(Escherichia coli OP50) or Streptococcus thermophilus from the
young adult stage. Feeding with Streptococcus thermophilus,
compared to Escherichia coli OP50, to Caenorhabditis elegans
extend the lifespan, reduced lipofuscin accumulation, and
maintain vigorous locomotion. Feeding with Streptococcus
thermophilus did not alter the worm growth curve or the
offspring number, indicating that the Streptococcus thermophilus-
mediated lifespan extension is not attributable to caloric
restriction. The qRT-PCR data showed that Streptococcus
thermophilus increased the expression of daf-16 and some of its
downstream antioxidant genes. Furthermore, the pro-longevity
effects of Streptococcus thermophilus were decreased in loss-of-
function mutant of daf-16. Results show that Streptococcus
thermophilus extends the lifespan of Caenorhabditis elegans
through DAF-16-mediated antioxidant pathway activation.
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P robiotics, defined as living organisms which, when ingested
in adequate amounts, confer a health benefit on the host,

have been used for almost a century for the management of
various medical disorders.(1) Several lines of evidence indicate
that probiotics have various physiological effects on their host
intestine, such as decreasing the colonization of pathogenic
bacteria and regulating the mucosal immune response.(2) As
systemic effects, probiotic bacteria can prevent metabolic dis‐
orders such as obesity and type 2 diabetes by reducing
serum cholesterol and lipids.(3) Additionally, adequate intake of
probiotics has been reported to extend the lifespan of various
organisms.(4–6)

Streptococcus thermophilus (S. thermophilus), which are Gram
positive bacteria used widely as traditional fermented starters for
yogurt and cheese production, have positive health effects on the
host.(7) Knowledge has accumulated to elucidate their beneficial
effects against diseases such as chronic gastritis,(8) antibiotic-

associated diarrhea,(9) lactose intolerance,(10) and colorectal
tumorigenesis.(11) Moreover, some promising antioxidant activi‐
ties of S. thermophilus have been observed from both in vitro and
in vivo models.(12,13) Nevertheless, even though longevity effects
of various probiotics have been explained in the literature, no
report has described the influence of S. thermophilus on
longevity.

Caenorhabditis elegans (C. elegans), a bacteriophagous soil
nematode, has been used extensively as an experimental system
for biological studies because of its morphological simplicity,
transparent body, ease of cultivation, and amenability to genetic
analysis. Moreover, the short and reproducible lifespan of
C. elegans is very suitable for aging studies. The nematode
lifespan can be influenced by genetic and environmental factors,
including food factors. Genes involved in lifespan regulation are
related to several evolutionarily conserved pathways that regulate
aging processes, such as insulin/insulin-like growth factor-1.(14–16)

Therefore, C. elegans represents a suitable model organism for
evaluation of the impacts of nutritional stimuli and food factors
on pro-longevity. In fact, some probiotics (such as lactic acid
bacteria), compared with a standard food (such as Escherichia
coli), extend the lifespan of C. elegans.(4,17,18)

Given this context, we evaluated whether S. thermophilus
can extend the C. elegans lifespan. Additionally, we elucidated
the mechanism underlying S. thermophilus-mediated lifespan
extension in C. elegans using loss-of-function mutants.

Materials and Methods

Bacteria strains and culture conditions. Escherichia coli
OP50 (OP50), used as the standard feed, was grown in Luria–
Bertani broth for 48 h at 37°C. Two strains of S. thermophilus
isolated from fermented milk product were cultured using de
Man–Rogosa–Sharpe broth in an anaerobic condition for 48 h at
37°C. Strains T-1 (ST-T1) and 510 (ST-510) were obtained
respectively from Kyoto Prefectural Technology Center for Small
and Medium Enterprises (Kyoto, Japan) and Japan Dairy
Industry Association (Tokyo, Japan). After the OP50, ST-T1, and
ST-510 were collected by centrifugation and washed twice with S
basal buffer [100 mM NaCl, 50 mM potassium phosphate (pH
6.0)], the bacteria were diluted to a final concentration of 10 mg
(wet weight)/ml in S basal buffer.
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C. elegans strains and culture conditions. The wild-type
C. elegans strain Bristol N2 and its derivative mutant strains
were provided by the Caenorhabditis Genetics Center (CGC;
Minneapolis, MN). The loss-of-function mutants used for this
study were CF1038: abnormal Dauer formation (daf )-16 (mu86)
and TK22: mev-1 (kn1). Worms were maintained on nematode
growth medium (NGM) plates seeded with OP50 at 20°C.(19) For
synchronization, the worms were cultured on fresh NGM plates
for 2–3 generations without starvation. The young adult worms
were cleaned and collected, then broken up using a lysis solution
(0.6% sodium hypochlorite, 200 mM sodium hydroxide). After
12–14 h, the isolated eggs were hatched. Synchronized L1 larvae
were obtained.

Determination of C. elegans lifespan. The synchronized
L1 larvae were fed with OP50 and grown to young adults. Then
5-fluorodeoxyuridine (0.5 mg/ml) was added to prevent progeny
production.(20) The resultant synchronized hermaphrodites were
transferred to NGM plates covered with OP50, ST-T1, or ST-510
(10 worms per 35 mm plate). After the plates were incubated, the
numbers of live or dead worms were scored three times a week.
Worms were inferred as “dead” when they failed to respond to a
gentle touch with a worm picker. Worms that crawled off the
plate and showed non-natural death, such as internal hatching or
adhering to the plate wall, were regarded as lost and were not
included in the analysis. Experiments were performed at least in
triplicate. More than 82 worms for each group were used in the
longevity assay.

Measurements of body and brood sizes. Four-day-old
young adult worms were placed on NGM plates (one worm per
35 mm plate) seeded with OP50, ST-T1, or ST-510. For body size
measurement, the body sizes of the live worms were measured
every 24 h until 7 days of age. Images of the worms were taken
using a True Chrome II+ camera (Fuzhou Tucsen Photonics Co.,
Ltd., Fujian, China) and were analyzed using Image J software
(National Institutes of Health, Bethesda, MD). For this experi‐
ment, the area of a worm’s projection was estimated auto‐
matically and was used as an index of body size. To measure the
brood size, the parental worms were transferred every 24 h to
fresh NGM plates until the end of the reproductive period. The
resulting progenies were left to develop for 3 days; then the
number of progeny was ascertained.(21)

Lipofuscin accumulation. The autofluorescence of intestinal
lipofuscin was measured for use as an index of senescence.
Four-day-old young adult worms were placed on NGM plates
seeded with OP50, ST-T1, or ST-510 until they became 14-day-
old adult worm. Randomly selected worms were washed with S
basal buffer for 30 min and were then placed onto a 3% agar pad

coated with 1 M sodium azide to induce anesthesia. Lipofuscin
autofluorescence images were detected with excitation at 357 nm
and emission at 447 nm using an imaging system (EVOS M7000;
Thermo Fisher Scientific Inc., Waltham, MA). To calculate the
lipofuscin-positive area, densitometry measurements were taken
using Image J software.

Locomotory scoring. Four-day-old young adult worms
were placed on NGM plates (a worm per 35 mm plate) seeded
with OP50, ST-T1, or ST-510. The locomotory assay of worms
was performed every 48 h until 18 days of age using a scoring
method described in an earlier report.(22) Worms were classified
according to a four-point scale: Class “a” worms showed sponta‐
neous movement or vigorous locomotion in response to prod‐
ding. Class “b” worms did not move unless prodded or appeared
to have uncoordinated movement. Class “c” worms moved only
their head and/or tail in response to prodding. Class “d” worms
were dead.

Quantitative real-time PCR. Four-day-old young adult
worms were placed on NGM plates seeded with OP50, ST-T1, or
ST-510 for 24 h. Worms were collected and washed with S basal
buffer for 30 min. Total RNA was then extracted and reverse-
transcribed. The resultant cDNA was subjected to quantitative
real-time PCR (qRT-PCR) using each specific primer described
in Table 1. PCR was performed using a PowerUP SYBR Green
PCR Master Mix and a real-time PCR system (StepOnePlus;
Applied Biosystems, Forster, CA). The PCR conditions were
denaturation at 95°C for 15 s, primer-annealing and elongation at
60°C for 1 min, with subsequent melting curve analysis during
which the temperature was increased from 60°C to 95°C. The
Ct values were transformed into relative quantification data using
the 2−ΔΔCt method. Data were normalized to the act-1 endogenous
control.

Fluorescent straining of H2O2 in the living worms. To
detect cellular H2O2 levels in worms, fluorescent probe
BES-H2O2-Ac (Fujifilm Wako Pure Chemical Corp., Tokyo,
Japan) was used. For use as a staining solution, the BES-H2O2-
Ac was diluted to a final concentration of 200 μM using S basal
buffer. Four-day-old young adult worms were placed on NGM
plates seeded with OP50, ST-T1, or ST-510 until they developed
to 14-day-old adult worms. Five to ten worms were treated with
450 ml of the staining solution for 1 h. The worms were washed
with S basal buffer for 30 min and were then mounted on a 3%
agar pad with 1 M sodium azide. The H2O2 levels were observed
with excitation at 470 nm and emission at 510 nm using the
EVOS M7000 Imaging System.

Statistical analysis. C. elegans survival was calculated
using the Kaplan–Meier method. Survival differences were tested

Table 1. Primers used for qRT-PCR analyses

Gene Forward Reverse

daf-2 5'-GCCCGAATGTTGTGAAAACT-3' 5'-CCAGTGCTTCTGAATCGTCA-3'

daf-16 5'-TCCTCATTCACTCCCGATTC-3' 5'-CCGGTATATTCATGAACGTG-3'

daf-12 5'-GTTCTGGTGAAGCCGAAGAG-3' 5'-AAGGGTGGTTGAGGTACGTG-3'

skn-1 5'-TCAGGACGTCAACAGCAGAC-3' 5'-CGTGGAGATTCCGAAGAGAG-3'

daf-7 5'-GTGCTGCTTGTATGACCTCG-3' 5'-GGTTTCCGCCAAGTTGAAGT-3'

sod-1 5'-CTGCCTGCGGTGTCATTG-3' 5'-GAGACGCGATTCAGGTAGTCACT-3'

sod-2 5'-AGGATCCACTTGAGGCAACAA-3' 5'-TGCTCCCAGACGTCAATTCC-3'

sod-3 5'-CCTGTGCAAACCAGGATCCT-3' 5'-CCCAAACGTCAATTCCAAAAA-3'

sod-4 5'-TTGGGACGCGGTACTTCAG-3' 5'-GCAAGTCGGCTTCCAGCAT-3'

sod-5 5'-GCCTCTTCGGAGCGAACA-3' 5'-TCTCGATCGACGTGGACAAC-3'

ctl-1 5'-GCCGGAGCCCATGGAT-3' 5'-CGGCCTTACAGTACTTGGTGATG-3'

ctl-2 5'-GGTCACCCATGACATCTCCAA-3' 5'-TGCTTCCCGACCTTGTTGA-3'

act-1 5'-CACGGTATCGTCACCAACTG-3' 5'-GCTTCAGTGAGGAGGACTGG-3'
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for significance using the log-rank test. In other experiments, the
significance of comparisons between OP50, ST-T1, and ST-510
was determined using Student’s t test. Statistical analyses were
conducted using statistical software (BellCurve Excel–Toukei
software; SSRI, Tokyo, Japan). All results are expressed as
mean ± SE. Differences for which *p<0.05 were inferred as
significance.

Results

S. thermophilus extend the lifespan of C. elegans without
the participation of caloric restriction. To assess the effects
of S. thermophilus on the C. elegans lifespan, worms were fed
ST-T1 or ST-510 from an age of 5 days. As presented in Fig. 1,
the lifespans of the worms fed ST-T1 or ST-510 were signifi‐
cantly longer than those of worms fed the standard OP50. The
survival rates were similar among the three groups until day 8.
After day 11, the two groups fed S. thermophilus showed
different survival curves compared to those of the worms fed
OP50.

Caloric restriction can extend the lifespan of various organisms
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Fig. 1. Effects of S. thermophilus on the C. elegans lifespan. The
synchronized L1 larvae were fed with OP50 until the young adult
stage. The resultant worms were transferred to a fresh NGM plate
seeded with OP50 or S. thermophilus. Two strains were used: S.
thermophilus strain T-1 (ST-T1) and S. thermophilus strain 510 (ST-510).
The numbers of live and dead worms were scored three times a week
(n = 111–161 worms/group). Data were calculated using the Kaplan–
Meier method. Survival differences were tested for significance using
the log-rank test. Mean lifespans ± SE were as follows: OP50, 13.8 ± 0.2
days; ST-T1, 16.5 ± 0.4 days; ST-510, 16.7 ± 0.3 days. Significant differ‐
ences relative to OP50 (***p<0.001) are shown.

including C. elegans. The caloric-restricted worms exhibit small
body and brood sizes.(23) To elucidate whether the ST-T1-
mediated or ST-510-mediated lifespan extensions resulted
from caloric restriction, the body and brood sizes of worms fed
ST-T1 or ST-510 were compared with those of control worms fed
OP50. Feeding with ST-T1 or ST-510 did not alter the worm
growth curve (Fig. 2A). Similar results were obtained when the
brood size was determined (Fig. 2B). These results indicate that
ST-T1 or ST-510 extended the lifespan of C. elegans irrespective
of caloric restriction effects.

Effects of S. thermophilus on age-related biomarkers in
C. elegans. Lipofuscin accumulation and muscle function are
known to correlate with aging processes in C. elegans.(24)

Lipofuscin is a lipid peroxidation product and its accumulation is
determined by autofluorescence. The autofluorescence intensities
in worms fed ST-T1 or ST-510 were decreased significantly
compared with that of worms fed OP50 (Fig. 3A and B).

Locomotive capability was assayed as an indicator of muscle
function. The locomotory score was evaluated every 48 h until 18
days of age, as described in the Materials and Methods. During
the experimental period, the proportion of worms displaying
vigorous locomotion (class a) was always higher in ST-T1-fed or
ST-510-fed worms than in OP50-fed worms (Fig. 3C).

DAF-16-mediated antioxidant pathway involvement in
S. thermophilus-mediated longevity. The insulin/insulin-
like growth factor-1-mediated signaling (IIS) pathway and trans‐
forming growth factor-β (TGF-β) pathway contribute to lifespan
extension in C. elegans.(25) To investigate whether these two path‐
ways are involved in the pro-longevity effects of S. thermophilus,
the expression of these genes related to lifespan extension was
determined using qRT-PCR. As portrayed in Fig. 4A, the
expression levels of the daf-16, daf-12, and daf-7 were higher in
ST-T1-fed or ST-510-fed worms than in OP50-fed worms.
Results show that skinhead-1 (skn-1) expression was signifi‐
cantly lower in ST-T1-fed or ST-510-fed worms. Feeding with
ST-510, but not with ST-T1, suppressed daf-2 expression.

To elucidate whether the ST-T1-mediated or ST-510-mediated
lifespan extension is related to enhanced daf-16 expression, the
lifespan of daf-16 mutant worms fed ST-T1 or ST-510 was
compared with that of daf-16 mutant worms fed OP50. The
lifespans of the worms fed ST-T1 or ST-510 were significantly
longer than those of worms fed the standard OP50. The ST-T1-
mediated or ST-510-mediated elongation rates in wild type
worms was 18.9% or 20.4%, whereas that in daf-16 mutant
worms was 5.3% or 6.5%. These results suggest that the ST-T1-
mediated or ST-510-mediated lifespan extension is dependent to
some degree on the DAF-16 signaling pathway.
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Fig. 2. Effects of S. thermophilus on body and brood sizes of C. elegans. Young adult worms were transferred to NGM plates seeded with OP50 or
S. thermophilus (ST-T1 or ST-510): (A) body size was determined with 12–13 worms for each bacterial strain; and (B) brood size was determined
with 14–22 worms for each bacterial strain. Data represent the mean ± SE.
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To investigate whether the DAF-16 signaling contributes to the
ST-T1-mediated or ST-510-mediated lifespan extension further,
we ascertained the expression levels of antioxidant genes located
downstream of DAF-16.(26) As presented in Fig. 5A, the expres‐
sion levels of superoxide dismutase (sod)-3, sod-4, sod-5,
catalase (ctl)-1, and ctl-2 were higher in ST-T1-fed or ST-510-
fed worms than in OP50-fed worms. Both sod-1 and sod-2
expressions were significantly lower in ST-T1-fed or ST-510-fed
worms. When the worms fed with the respective bacteria were
treated with BES-H2O2-Ac as a fluorescent probe for detecting
H2O2, the intestinal tract and its neighboring tissues were stained
significantly in the OP50-fed worms, but not in the ST-T1-fed or
ST-510-fed worms (Fig. 5B). Furthermore, we investigated the
effect of ST-T1 or ST-510 on the lifespan of mev-1 mutant
worms, an oxidative stress hypersensitive strain.(27) They were
compared with the lifespan of mev-1 mutant worms fed E. coli
OP50. As presented in Fig. 5C, the lifespans of the worms fed
ST-T1 or ST-510 were significantly longer than those of worms
fed the standard OP50. These data suggest that DAF-16-mediated
antioxidant pathway is involved in the ST-T1-mediated and
ST-510-mediated longevity.

Discussion

During the C. elegans aging process, the worms change
biomarkers of aging such as lipofuscin and locomotory

activity.(24) Results obtained in this study demonstrate that
feeding the two strains of S. thermophilus (ST-T1 and ST-510),
compared to OP50, to C. elegans extends the lifespan, reduces
lipofuscin accumulation, and maintains vigorous locomotion.
Additionally, DAF-16-mediated antioxidant pathway is involved
in the S. thermophilus-mediated longevity.

Caloric restriction is recognized as a method to extend
lifespan not only in numerous non-mammalian taxa but also in
mammals, including primates.(23,28) Results of the present study
show that feeding with S. thermophilus did not alter the worm
growth curve or offspring number, indicating that caloric restric‐
tion is not involved in the S. thermophilus-mediated lifespan
extension in C. elegans. Accumulated evidence suggests that
probiotics of various type, including lactic acid bacteria, extend
the C. elegans lifespan independently of the effects of caloric
restriction. Kwon et al.(29) reported that Propionibacterium
freudenreichii, a candidate non-lactic acid probiotic used in the
fermentation of Swiss Emmental cheese, extends the lifespan of
C. elegans via activation of its innate immune system. A recent
study using a C. elegans model demonstrated the pro-longevity
effect of Lactobacillus fermentum strain JDFM216.(18) It is partic‐
ularly interesting that this strain attached actively to the worm
intestine and stimulated host defenses through nuclear hormone
receptor-related transcriptions. Additionally, Donato et al.(30)

found that biofilm-proficient Bacillus subtilis colonized the C.
elegans intestine and extended the worm lifespan significantly
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longer than did biofilm-deficient isogenic strains. The pro-
longevity effect of the Bacillus subtilis biofilms depended on
DAF-2/DAF-16 signaling. To elucidate the molecular mechanism
of S. thermophilus-mediated lifespan extension, it may be neces‐
sary to verify whether S. thermophilus have biofilm-forming
activity and intestinal colonization.

It is particularly interesting that some favorable antioxidant
activities of S. thermophilus have been observed from both in
vitro and in vivo models.(7) Ito et al.(13) reported that feeding with
S. thermophilus strain YIT2001 caused a decrease in lipid peroxi‐
dation in the mouse colonic mucosa. The underlying mechanisms
of the antioxidant activities remain unknown, but they can be
related to the activity of antioxidant enzymes produced by S.
thermophilus, such as SOD.(31) Our data showed that lipofuscin
accumulation in worms fed S. thermophilus was significantly
lower than that in worms fed OP50. Furthermore, results of qRT-
PCR analyses revealed that feeding with S. thermophilus upregu‐
lated daf-16 expression. The pro-longevity effects of S.
thermophilus were slight in daf-16 mutant worms. DAF-16, an
orthologue of the forkhead box-containing protein O subfamily
(FoxO) transcription factor, acts in IIS pathway that regulates
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longevity under the conditions of oxidative stress and caloric
restriction. In fact, in the worms fed S. thermophilus, the expres‐
sion of several antioxidant genes was increased. The accumula‐
tion of H2O2 was suppressed. Earlier reports have described
that the expressions of sod-3, ctl-1, and ctl-2 were positively
regulated by DAF-16, whereas those of sod-1 and sod-2 were
negatively regulated by DAF-16.(26,32,33) Actually, sod-4 and sod-5
are putative target genes of DAF-16.(34,35) These data suggest
that DAF-16-mediated antioxidant pathway is involved in the
S. thermophilus-mediated lifespan extension. This assertion is
supported by the data of mev-1 mutant worms.

The expression and activity of DAF-16 are regulated tightly by
several signaling pathways. Two well-known pathways are the
IIS and TGF-β pathways. The former is initiated by the binding
of insulin-like peptides to the receptor DAF-2; the DAF-2-
mediated signaling negatively regulates DAF-16 function.(36) By
contrast, the TGF-β pathway is related to innate immunity, body
morphology, and longevity. DAF-7 is the TGF-β-related ligand
for the regulation of longevity.(37) The qRT-PCR data obtained
from the present study indicate that expression levels of daf-7
and daf-12 are increased in worms fed S. thermophilus. No
drastic change was observed in the expression of daf-2. The
expression of skn-1, an orthologue of nuclear factor-erythroid-
related transcription factor, is negatively regulated by DAF-12.(38)

This finding is consistent with our obtained data. In addition,
DAF-12, which is a putative target gene of DAF-7, is a well-
known nuclear hormone receptor. It affects the innate immune
system by inducing the production of antimicrobial peptides.(39)

Several reports have indicated that DAF-7 and DAF-12 posi‐
tively regulate DAF-16 function.(40,41) Based on those findings,
one might infer that S. thermophilus-mediated daf-16 upregula‐
tion is related to the activation of DAF-7/TGF-β pathway, but
not of IIS.

In conclusion, results presented herein suggest that S.
thermophilus ingestion enhances DAF-16-mediated antioxidant
system through activation of DAF-7/TGF-β pathway. It then
delays C. elegans aging processes and extends their lifespan.
Although our data represent results only of this nematode model,
DAF-16-mediated antioxidant system and TGF-β pathway are
universal in regulating aging. They are conserved among living
organisms, including primates.(25) Therefore, the mechanisms
identified in this study may apply to other species, including
Homo sapiens. To elucidate the detailed molecular mechanisms
of S. thermophilus-mediated lifespan extension, further investiga‐
tions must be conducted using some loss-of-function mutants
such as DAF-12 defective worms. However, our data have
revealed a part of the beneficial effect of S. thermophiles for our
health.
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