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This work investigates the potential of magnetic Fe3O4 nanoparticles as an adsorbent for separation and preconcentration of trace
amounts of lead from water samples prior to electrothermal atomic absorption spectrometry (ETAAS) determination. No chemical
modifier is required in graphite furnace. Pb(II) ion was adsorbed on magnetic Fe3O4 nanoparticles in the pH range of 5.5–6.5, and
then magnetic nanoparticles (MNPs) were easily separated from the aqueous solution by applying an external magnetic field; so,
no filtration or centrifugation was necessary. After extraction and collection of MNPs, the analyte ions were eluted using HNO3

1.0 mol L−1. Several factors that may affect the preconcentration and extraction process, such as pH, type, and volume of eluent,
amount of MNPs, sample volume, salting out effect, and interference ions were studied and optimized. Under the best experimental
conditions, linearity was maintained between 0.005–0.5 ng mL−1. Detection limits for lead were 0.8 ng L−1 based on 3Sb. The re-
lative standard deviation of seven replicate measurements of 0.05 ng mL−1 of Pb(II) ions was 3.8%. Finally, the method was success-
fully applied to extraction and determination of lead ions in the water and standard samples.

1. Introduction

In recent years, water pollution caused by heavy metals is one
of the major economic and environmental problems all over
the world. Among heavy metal ions, Pb(II) is considered
to be a non-biodegrade-like organic pollutant in water and
attracted more attention due to its toxicity, persistent in
nature particularly, even at low concentrations [1–3]. Conse-
quently, the development of reliable methods for the removal
and determination of lead in environmental and biological
samples is of particular significance [4].

Several techniques have been used to determinate the
levels of lead in environmental and biological samples. These
include electrothermal atomic absorption spectrometry
(ETAAS) [5], inductively coupled plasma mass spectroscopy

[6], inductively coupled plasma optical emission spectros-
copy (ICP-OES) [7], and flame atomic absorption spectro-
scopy (FAAS) [8]. However, their sensitivity and selectivity
are usually insufficient for direct determination of the Pb(II)
ions at a very low concentration level in complex sample
matrices [9]. In order to overcome these problems, separa-
tion and preconcentration of Pb(II) ions become necessary,
particularly when it exists at trace levels of concentration. A
number of separation/preconcentration procedures have
been used for trace metal determinations: these include pre-
cipitation/coprecipitation [10], liquid-liquid extraction [11],
and solid phase extraction (SPE) [12].

Nowadays, SPE is a well-established technique and has
been applied for the preconcentration and cleaning-up of
numerous different classes of compounds in a variety of
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Table 1: Operating parameters for ETAAS determination of lead.

Heating step Temperature (◦C) Ramp (◦C min−1) Hold (s) Argon flow rate (mL min−1)

Drying 120 10 20 250

Pyrolysis 400 10 40 250

Atomization 1200 0 3 0

Cleaning 2000 1 2 250

matrices by virtue of its high enrichment factor, high recov-
ery, rapid phase separation, low consumption of organic sol-
vents, and compatibility with different detection techniques
[13–19]. In some cases, however, due to the limited rate of
diffusion and mass transfer, extraction time of ordinary
SPE processes is usually long [20], it is particularly evident
when extracting very low amount of the target analytes from
large volumes of samples. Thus, novel SPE modes that can
facilitate mass transfer are highly desirable.

It is commonly acknowledged that the sorbent plays a
very important role in the SPE technique, which is related to
the analytical sensitivity, precision, and selectivity. Recently,
various types of solid-phase sorbent have been developed
[21]. Magnetic nanoparticles such as magnetite (Fe3O4) and
maghemite (γ-Fe2O3) can be used as novel and excellent
adsorbents due to their unique advantages over traditional
microsized adsorbents [22]; they possess not only high sur-
face area which can exhibit higher adsorption capacity for
analytes, but also strong superparamagnetic properties
which can meet the need of rapid extraction of large volume
samples by employing a strong external magnetic field. In
recent years, MIONs have been applied for the separation of
trace organic compounds and metal ions in various samples
[23–29].

To the best of our knowledge, there has been no study
conducted on the use of magnetic iron oxide nanoparticles
(MIONs) for the separation and preconcentration of trace
metals without addition of chelating agent and without any
modification of MIONs. Therefore, the main objective of this
study is to investigate the preconcentration of Pb(II) on
MIONs, prior to ETAAS determination in water and certified
environmental samples.

2. Experimental

2.1. Reagents and Solutions. All chemicals were of analytical-
reagent grade, and all solutions were prepared with deionized
water. The laboratory glassware was kept overnight in a
1.4 mol L−1 HNO3 solution. Before using, all the glassware
was washed with deionized water and dried. Stock solution of
lead at a concentration of 1000.0 μg mL−1 was prepared from
Merck (Darmstadt, Germany). Working reference solutions
were obtained daily by stepwise dilution from stock solution.
A solution of 10% (w/v) NaCl (Merck) was prepared by
dissolving of 10 g of NaCl in 100 mL of de-ionized water.
Buffer solution was prepared from 0.1 mol L−1 sodium dihy-
drogen phosphate and 0.1 mol L−1 disodium hydrogen phos-
phate for pH 6. The solution of alkali metal salts (1% w/v)
and various metal salts (0.1% w/v) was used to study the in-
terference ions.

2.2. Instrumentation. The measurements for lead determi-
nation were performed with a Shimadzu AA-680G atomic
absorption spectrometer equipped with GFA-4A graphite
furnace and deuterium background corrector. Lead hollow-
cathode lamp was used for absorbance measurements at
wavelength of 283.3 nm and operated at 7.0 mA, with a spec-
tral bandwidth of 0.3 nm. Peak area absorbance values were
measured. Pyrolytically coated graphite tubes (Schunk, Ger-
many) with a preinstalled pyrolytic graphite L’vov platform
were used. Argon was used as sheathing gas; the internal
gas flow in the graphite tube was interrupted during the
atomization step. The instrumental parameters for ETAAS
determination of lead are given in Table 1. A Metrohm 692
pH (Herisau, Switzerland) was used for pH measurements.

2.3. Preparation of MIONs. The MIONs were synthesized by
coprecipitation of a stoichiometric mixture of ferrous and
ferric chlorides (molar ratio 1 : 2) in an ammonium hydrox-
ide solution with constant stirring [30]. The nanoparticles
were collected by the magnet and thoroughly washed with
deionized water to remove excess amounts of ammonium
hydroxide.

2.4. Characterization of MIONPs. The microstructure of the
MIONs was observed by transmission electron micrograph
(TEM) image and showed that the adsorbent had a regular
surface with an average size less than 50 nm.

Relative magnetization curve was determined at room
temperature using a Quantum Design MPMS 5 supercon-
ducting quantum interface device magnetometer. The mag-
netic MIONs were characterized by a high magnetic moment
when placed under a high magnetic field. The magnetic mo-
ment in the absence of an applied field was subtracted from
the result. The magnetization curve exhibited zero magneti-
zation upon the removal of magnetic field, which is a charac-
teristic behavior of superparamagnetic particles. Magnetic
MIONs did not retain any magnetization after the removal
of an external magnetic field which proved the superparam-
agnetic characteristic of these nanoparticles.

Another important parameter for practical applications
of synthesized Fe3O4 is their magnetization. Due to the asy-
mptotic increase of magnetization for high fields, the satu-
ration magnetization value can be obtained from the fitting
of the M versus 1/H curves, extrapolating the magnetization
value of 1/H to 0 [31]. The results were shown that the sat-
uration magnetization for uncoated-NPs is 55.7 emu g−1,
which is lower than that of bulk magnetite (92 emu g−1) [32].
This reduction might suggest a mixture with the maghemite
phase.
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Table 2: Tolerance limit of the foreign ions.

Foreign ions Interference/Pb(II) ratio Recovery (%)

H2PO4
−, HPO4

2− 7000 95

Na+, K+ 5000 95

Ca2+, Mg2+ 3000 105

Co2+ 800 95

Cu2+, Mn2+ 1000 105

Fe2+, Fe3+ 400 95

Ni2+, Zn2+ 1000 105

Al3+ 100 95

Cr3+ 800 95

Sn2+, Cd2+ 600 105

Ag+ 200 95

Sb3+, Cd2+ 500 96

Conditions were the same as Figure 1.

2.5. General Procedure. The extraction procedure was carried
out in a batch process mode. Fifty mL of each standard and
sample was placed in a beaker. To each beaker, 2 mL of
0.1 mol L−1 phosphate buffer (pH 6), 1 mL of 10% (w/v)
NaCl, and 100 mg MIONs were added. Then, beakers were
stirred for 5 min. The beaker was placed on the magnet, and
nanoparticles were collected. After decanting the supernatant
solution, the collected MIONs were washed with 1.0 mL of
1.0 mol L−1 HNO3 solution in order to desorb the adsorbed
ions. Then, analyte ions in the eluent were determined by
ETAAS.

2.6. Sample Preparation. Tap, river, mineral, and seawater
samples were collected in acid-leached polyethylene bottles.
The only pretreatment was acidification to pH 2 with nitric
acid, which was performed immediately after collection, in
order to prevent adsorption of the metal ions on the flask
walls. The samples were filtered before analyses through a
cellulose membrane (Millipore, Bedford, MA) of 0.45 μm
pore size. Ten milliliter of each water sample was transfered
to calibrated flask and was made to 250.0 mL with deionized
water in a calibrated flask.

Twenty milliliter of urine samples was given and heated
for 1 h after addition of 15 mL concentrated HNO3 and 4 mL
HClO4 70%. The content of the flasks was diluted with de-
ionized water and filtered through a Whatman no. 40 filter
paper into a 100 mL calibrated flask, and its pH was adjusted
to 6 [18].

3. Results and Discussion

In this study, a combination of SPE and ETAAS was devel-
oped for determination of trace amounts of lead. Several
factors that may affect the preconcentration and extraction
process, including pH, type, and volume of eluent, sample
volume and matrix effect were optimized. The optimizations
were carried out on 50 mL of aqueous solution containing
2.5 ng of lead ions.

3.1. Effect of pH. Since the pH of the aqueous sample solu-
tions is an important analytical factor in the SPE studies of
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Figure 1: Effect of pH on the recovery of lead. Conditions: Pb(II),
2.5 ng; buffer, 2 mL; NaCl 10% (w/v), 1 mL; MIONs, 100 mg; sam-
ple volume, 50 mL.

metal ions, the influence of pH on the preconcentration of
lead ions was examined in the pH range of 3–9, keeping the
other parameters constant. It was found that the lead was
quantitatively adsorbed on the sorbent in the pH range
5.5–6.5. The pH curves for adsorption of Pb(II) ions are
shown in Figure 1. In subsequent studies, the pH was main-
tained at approximately 6. Addition of 1–6 mL of buffer did
not have any effect on the adsorption. Therefore, 2 mL of
0.1 mol L−1 phosphate buffer solution was used in all sub-
sequent experiments.

3.2. Effect of Contact Time. Effects of contact time on the
adsorption of Pb(II) by MIONPs were studied in the range
of 1 to 30 min. The results showed that the recovery percent
increased sharply to 4 min and remained constant. Therefore,
5 min was used in all subsequent experiments.

3.3. Effect of the Adsorbent Amount. The required amount of
MIONs (5–200 mg) for the complete adsorption of the lead
ions in 50 mL solution containing 2.5 ng of lead ions was
also studied. The results showed that the recovery per-
cent increased to 10 mg and remained constant. Therefore,
100 mg of MIONPs was used in all subsequent experiments.

3.4. Effect of Salt. Sodium chloride was used to investigate the
influence of ionic strength on the extraction efficiency. For
investigating the influence of the ionic strength on the extrac-
tion of Pb(II) ions, several experiments were performed by
adding varying volumes of NaCl 10% from 0.0 to 1.5 mL.
The rest of the experimental conditions were kept constant.
The results were showed that the extraction efficiency was
increased to 0.75 mL and then remained constant in the
range of 0.75 to 1.5 mL. Therefore, 1 mL NaCl 10% was used
in all further experiments.

3.5. Elution of the Adsorbed Ions. Another important factor
which affects the preconcentration procedure is the type, vol-
ume, and concentration of the eluent used for the removal of
the analyte ions from the sorbent. Optimization of the elu-
tion conditions was performed in order to obtain the maxi-
mum recovery with the minimal concentration and volume
of the eluent. For this purpose, HNO3, HCl, KSCN, and
Na2S2O3 (1 mL of 1.0 mol L−1) were used as eluent solu-
tion. The extraction efficiency for HNO3, HCl, KSCN, and
Na2S2O3 as an eluent solutions was 98.7 and 93.4; 84.9 and
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Table 3: Determination of lead in real samples.

Sample
Lead amount (ng mL−1)

Recovery (%)
Added Found∗

Tap water
0.0
5.0

5.6± 0.3
10.5± 0.6

—
98.0

Mineral water 1
0.0
5.0

6.9± 0.4
12.1± 0.7

—
104.0

Seawater
0.0
5.0

4.7± 0.3
9.8± 0.7

—
102.0

River water,
Kohpayeh,
Kerman

0.0
5.0

2.9± 0.2
7.7± 0.7

—
96.0

Urine
0.0
1.0

0.073± 0.004
1.085± 0.068

—
101.2

∗
Average ± standard deviation (n = 3).

91.5, respectively. Therefore, 1.0 mL of 1 mol L−1 HNO3 was
used in all subsequent experiments.

3.6. Effect of the Sample Volume. The volume of an aqueous
solution containing 1.0 ng of Pb(II) ions was varied in the
range of 10–250 mL in steps under the optimum conditions.
It was observed that absorbances were almost constant up to
200 mL of the aqueous phase. With respect to eluent volume
(1.0 mL), preconcentration factor (the ratio of the highest
sample volume to the lowest eluent volume) for the analyte
ions was obtained 200. However, for convenience, all the
experiments were carried out with 50 mL of the aqueous
phase.

3.7. Effect of Interference. Various salts and metal ions were
added individually to a solution containing 2.5 ng of Pb(II)
ions, and the general procedure was applied. The tolerance
limit was set as the concentration of the diverse ion required
to cause ±5% error. The results obtained are given in
Table 2. Most of the ions examined did not interfer. Thus,
the proposed method is selective and can be used for de-
termination of Pb(II) ions in complex samples without any
prior separation.

3.8. Adsorption Capacity. To determine adsorption capacity
of MIONs, 50 mL of aqueous solution containing 3.0 mg of
Pb(II) ion at pH 6 was added to 100 mg of MIONs. After
shaking for 30 min, the MIONs were separated and the sup-
ernatant solution was determined by FAAS. The capacity of
MIONs for Pb(II) ions was found to be 28.6 mg g−1.

3.9. Analytical Figures of Merit. Under the optimized con-
ditions, calibration curves were constructed for the deter-
mination lead according to the general procedure. Linearity
in the original solution was maintained between 0.005–
0.5 ng mL−1 with a correlation coefficient of 0.9985 (A =
1.481C + 0.002, where A is the absorbance value of the
eluent and C is the concentration of Pb (ng mL−1)). Seven
replicate determinations of 0.05 ng mL−1 of Pb(II) ions in the
original solution gave a mean absorbance of 0.078 with a
relative standard deviation 3.8%. The detection limit was
determined as three times the standard deviation (7 repli-
cate measurements) of the absorbance of a blank sample.

The detection limit for lead in the original solution was
0.8 ng L−1.

3.10. Accuracy of the Method. The accuracy and applicability
of the proposed method has been applied to the determina-
tion of Pb(II) ions in NIST CRM 1643e (National Institute
of Standard and Technology, Trace elements in water). The
amount of lead in NIST CRM 1643e was found to be
19.47 ± 0.26 ng mL−1. It was found that there is no signifi-
cant difference between the result obtained by the general
procedure and the certified result (19.63 ± 0.21). The t-test
was applied to both sets of results and showed that there was
no significant difference at the 95% confidence level.

3.11. Application to Real Samples. The general procedure has
been applied to the determination of Pb(II) ion content
in tap water, seawater, mineral water, and urine samples
by using 50.0 mL of each sample. The results are given in
Table 3. Also, the recovery of Pb(II) ions from samples spiked
with known amounts of lead ions was studied. The results
are shown in Table 3. As can be seen from the results in
Table 3, the added lead ions were quantitatively recovered
from the water samples by the general procedure. These
results demonstrate the applicability of the procedure for
lead determination in water samples.

3.12. Comparison. A comparison between the proposed met-
hod and the other reported preconcentration methods [5,
33–36] for the Pb(II) ion extraction from water samples is
given in Table 4. The obtained detection limits by the pro-
posed method are comparable to most of those reported in
the literature.

4. Conclusions

It can be concluded from the results that MIONs are an ef-
fective sorbent for separation and preconcentration of trace
amounts of lead from various water samples. The greatest
advantage of this method is that desired materials are sepa-
rated from solution by a simple and compact process while
less secondary wastes are produced. Other advantages are
avoidance of channeling effects that are common in packed
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Table 4: Comparison of the proposed methods with the other method.

Enrichment method Detection method Sample volume (mL) Detection limit (ng mL−1) Reference

SPE ETAAS 100 0.11 [5]

HF-LLSMET∗ ETAAS 20 7.0 [33]

— ETAAS 2 g blood 1.77 [34]

Slurry ETAAS 0.02 0.4 [35]

SPE ICP-OES 3 1.13 [36]

SPE ETAAS 50 0.8 This work
∗

Hollow-fiber liquid-liquid-solid microextraction technique.

beds; simple, rapid, reproducible, and low analysis cost. Also,
MIONs did not retain any magnetization after the removal of
an external magnetic field which proved the superparamag-
netic characteristic of these nanoparticles.
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