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Abstract

resolution.

Background: Knowledge of when and in which cells each gene is expressed across multicellular organisms is
critical in understanding both gene function and regulation of cell type diversity. However, methods for
measuring expression typically involve a trade-off between imaging-based methods, which give the precise
location of a limited number of genes, and higher throughput methods such as RNA-seq, which include all
genes, but are more limited in their resolution to apply to many tissues. We propose an intermediate method,
which estimates expression in individual cells, based on high-throughput measurements of expression from
multiple overlapping groups of cells. This approach has particular benefits in organisms such as C. elegans where
invariant developmental patterns make it possible to define these overlapping populations of cells at single-cell

Result: We implement several methods to deconvolve the gene expression in individual cells from population-level
data and determine the accuracy of these estimates on simulated data from the C. elegans embryo.

Conclusion: These simulations suggest that a high-resolution map of expression in the C. elegans embryo may be
possible with expression data from as few as 30 cell populations.

Background

Multicellular organisms contain many different cell
types, each requiring expression of a distinct repertoire
of genes. The transcriptome of each cell is regulated by
many factors, including signals from neighboring cells
[1], long-range gradients of proteins [2], lineage history
[3], or environmental conditions. In addition to pro-
viding information about cell fate regulation, a gene’s
spatial expression pattern may provide clues as to its
function. Knowing the timing of gene expression
within a cell or lineage provides additional informa-
tion, such as placing limits on the direction of regula-
tory relationships between genes. A high-resolution
compendium of tissue-specific expression can be used
directly to infer regulatory networks, as was done re-
cently for the human hematopoietic lineage [4]. Thus,
it would be useful to be able to measure the expression
of every gene, in every cell of a multicellular organism,
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at every developmental time, with different genetic or
environmental perturbations.

Existing expression profiling methods have intrinsic
tradeoffs; in general, methods that measure expression
of more genes have lower spatial or temporal resolution
or are less comprehensive in their annotation of distinct
tissues. One can measure gene expression with very
high spatial resolution in fixed tissues, by staining pro-
tein or RNA with affinity reagents. The resulting images
can be manually curated to describe where genes are
expressed [5]. If the images can be aligned at high reso-
lution, then we get a measure of co-expression in indi-
vidual tissues, potentially even single cells. This high
resolution facilitates analyses such as automated predic-
tion of expression regulation [6]. At the highest spatial
resolution, methods such as RNA-FISH allow counting
of individual mRNA molecules in fixed tissues [7].
Fluorescent reporters provide a proxy for precisely
where and when a given gene is expressed in living cells
in vivo, and have been used in a wide variety of animal
models [6,8,9]. Despite better scalability than affinity
probe methods, reporter methods are limited by the rate
of transgenesis.
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A genome-wide alternative is to isolate tissues or
populations of cells from an organism at particular
times, and to measure gene expression in each popula-
tion, using techniques such as microarrays or RNA-seq.
This approach has been applied across a wide variety
of systems including tissues from human, mouse [10]
and C. elegans [11]. This approach has the advantage
of full transcriptome analysis, but spatiotemporal reso-
lution depends on the feasibility of purifying specific
cell populations. In addition, the requirement that each
tissue or cell population be purified and analyzed sep-
arately limits the number of distinct cell types for
which expression can be mapped at high resolution
across whole organisms.

One strategy to extract high-resolution expression
information genome-wide across full organisms or tis-
sues is to integrate data from multiple individual
lower-resolution experiments by computational infer-
ence. Inference methods take advantage of the fact that
genes expressed in a particular tissue or cell population
will show expression changes correlated with (possibly
subtle) changes in the distribution of cell types in
genome-wide expression experiments, even if those
experiments aren't designed to be location-specific (e.g.
[12]). However, these predictions are limited in reso-
lution by the spatial resolution of the training data,
and the amount of inherent spatial information present
in available datasets.

Deconvolution methods can be used to determine
cell or tissue-specific gene expression patterns from
measurements of gene expression in partially over-
lapping populations of an organism’s cells. One ap-
proach is to infer expression in tissues from
measurements of mixed tissues, but this typically re-
quires an overdetermined design with at least as
many measurements as there are tissues [13]. Others
have attempted to use an underdetermined design by
combining genome-wide expression measurements
from 13 temporal and 14 spatial samples to predict
expression in groups of cells in the Arabadopsis root
[14]. This successfully inferred tissue-specific expres-
sion of genes, even in some tissues that hadn't been
explicitly measured. This method requires spatial
and temporal measurements, such that the spatial
measurements are not mutually overlapping (and
similarly for the temporal measurements).

Advantages of deconvolution in the C. elegans embryo

The nematode worm C. elegans is an extensively
studied model organism with several experimental ad-
vantages that make it an ideal animal developmental
system for comprehensive gene expression mapping.
Each C. elegans embryo produces 671 cells through
an identical pattern of cell divisions, known as an
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“invariant lineage” [3] and hatches as a L1 larval
worm ~14 hours after fertilization. The invariant
lineage means that each embryo of a given stage has
an essentially identical cellular makeup and that
knowing a cell’s lineage history unambiguously pre-
dicts that cell’s position in the organism and what tis-
sue identity that cell will adopt. Despite this, the
basic body plan, tissue types, and molecular pathways
specifying those tissues are frequently conserved with
other animals, including humans (e.g. [13,14].) Fur-
thermore, C. elegans embryonic cells can be dissoci-
ated, and cells expressing a fluorescent reporter
purified by FACS. The resulting samples can then be
analyzed genome-wide for expression by methods
such as microarray hybridization or RNA-seq [11,15]
and the results related back to the lineage if the iden-
tity of the FACS-sorted cells is known.

Many reporter strains are available in C. elegans in
which cells expressing a particular gene are labeled
with a fluorescent protein, allowing visualization of
that gene's expression throughout development. We
and others have used automated lineage tracing
[16,17] to determine the expression of 127 C. elegans
fluorescent reporter strains across each cell in the
lineage [9,18]. This lineage tracing approach allowed
us to identify all cells expressing each of these re-
porters. While none of these reporters uniquely
identify a single cell, in combination they can distin-
guish most of the 671 terminal cells in the lineage
from each other. This collection of reporters pro-
vides a large set of overlapping cell populations that
could be analyzed by RNA-seq and used for decon-
volution at resolutions approaching single cells.
Here, we describe computational methods to infer
expression across each cell in the C. elegans embryo
from FACS sorted cell populations, and we test these
methods on simulated data to define the accuracy
bounds for the expression predictions. Although we
focus on estimating gene expression in the develop-
ing C. elegans embryo, the methods are general and
may be applicable in other stages of C. elegans de-
velopment [8], or in other organisms where reporter
overlap can be defined at similarly high resolution,
such as Drosophila [6].

Result and discussion

In this study, we test the feasibility of deconvolving
expression patterns from genome-wide expression
measurements in sorted cells from C. elegans reporter
strains. We propose to sort cells using the collection
of reporters for which we previously determined the
identity of all expressing cells using lineage analysis.
In the remainder of the paper we use the term “frac-
tion” to describe one population of cells that has been
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purified in this manner and whose constituent cells are
known. The overall strategy is then to deconvolve the ex-
pression patterns from several fractions to infer the ex-
pression patterns at higher resolution, either in individual
cells or small groups of cells.

We address a number of questions. How well do
different possible methods work for this deconvolu-
tion? How accurately can expression be inferred?
How many fractions need to be sorted for a given
level of accuracy? Can we accurately predict not only
the expression levels of a gene across cells, but also
the confidence of the predictions? How would experi-
mental noise influence the accuracy of the predic-
tions? We addressed these questions by comparing
the performance of several deconvolution methods on
synthetic datasets.

Model

Given a reporter expressed in a known pattern, we can
sort cells expressing (or not expressing) that reporter
and can then measure the total expression of all genes in
that fraction (Figure 1). Because each fraction contains a
mixture of cells, the measured expression of a gene in a
fraction is a linear combination of the expression of that
gene in the fraction’s constituent cells.

Suppose there are # cells, and the expression of some
gene in cell j is x; . We wish to estimate x; from mea-
surements of the gene’s expression in sorted fractions
from m different reporters. Let A;; be a number be-
tween 0 and 1: 0 if sample i doesn't contain cell j, and 1
if it does; we refer to this as the sort matrix. Let b; be
the total expression of a gene in fraction i . Then we
can cast this as an (underdetermined) constrained lin-
ear regression problem:

Ax=b, where x>0

Given that the expression values also were constrained
to be positive, the possible expression values form a con-
vex region in a linear space; the size of this space repre-
sents confidence in the expression levels in each cell.
For example, the reporters shown in Figure 1 corres-
pond to the system of linear equations:
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Depending on the available reporters and the expres-
sion pattern of the gene under consideration, such data
may indicate the exact expression pattern. For example,
if a gene is expressed in only one of the 1,341 embryonic
cells, an ideal set of measurements in log,(1,341) <11
sorted fractions would be enough to distinguish which is
the expressing cell, as each fraction could potentially
“rule out” expression in half of the cells. While expres-
sion in a single cell does occur (e.g. [19]), most genes
are expressed in broad collections of cells rather than in-
dividual cells, and in practice, the reporters available for
sorting do not match this ideal set.

Simulations

We tested the performance of different deconvolution
algorithms on several synthetic expression datasets. Each
dataset contained from 123 to 371 synthetic genes for
which the true expression across all embryonic cells was
known. We then generated simulated expression
measurments for each of these genes in each fraction, by
summing expression in the fractions containing the cells
positive or negative for reporters whose expression pat-
tern across all cells we determined previously [9].

We wanted to test whether methods could correctly
deconvolve expression of patterns similar to those seen
previously, as well as novel patterns. We expect the ac-
curacy of a method for deconvolution to depend on the
expression pattern being predicted, with simple patterns
or patterns similar to the sort markers being easier to
predict. We therefore measured accuracy on an expres-
sion dataset including 123 of the known reporter expres-
sion patterns [9], augmented with several synthetic
patterns (Additional file 1: Figure S1). One collection
was designed to have a random expression pattern, such
that the overall correlation between cells was similar to
the correlation structure of the known expression pat-
terns. For example, in real expression patterns, cells with
very close lineal relationships, similar tissue identities, or
left-right symmetric equivalents are more correlated in
their expression than random cells. We also generated a
collection containing each pattern corresponding to ex-
pression in a single cell or lineage. Finally, because most
C. elegans cells exist as left-right symmetric pairs [3], we

1 all

0 fractionl

0 |x = | fraction2 | ,where x>0
1 fraction3

0 fraction4
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Figure 1 lllustration of the method. We assume that we know the expression patterns of a set of reporters (subset of four reporters expression
across ~31 terminal cells and their ancestors shown on the left — the full dataset annotates the expression of 127 reporters across all cells). Each
expression pattern is drawn superimposed on a lineage tree. These trees show a group of related cells from the C. elegans lineage with divisions
denoted by bifurcations on the on the x axis and time on the y axis. Because of the invariant development, each embryo expressing a given
reporter always has reporter expression in the same cells on the lineage, and this is a perfect proxy for cell fate and position. We then flow-sort
cells which are expressing each reporter, and perform RNA-seq on the resulting fractions of cells. Based on these measurements, we attempt to
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also generated patterns with expression in each left-right
lineage pair. While we cannot simulate every possible
expression pattern, these data sets should be representative
of the diversity of expression patterns that may exist.

Choice of fractions

The performance of a deconvolution method likely
depends on both the total number of fractions assayed,
and which fractions are analyzed. While accuracy may be
highest if all 127 fractions were analyzed, assaying that
many fractions would be expensive and time-consuming.
Ideally, we would like to identify collections of fractions
that maximize the accuracy of deconvolution. Compres-
sive sensing theory suggests that any orthogonal set of
expression patterns should perform well [20]. To select
such a set, we designed a greedy approach to iteratively
choose fractions to analyze from the reporters with known
expression patterns [9]. We chose reporters based on
which maximizes the accuracy of predictions, as defined
by correlation coefficient, on the collection of 371 patterns
with expression in one lineage. A single set was selected
using the simplest deconvolution algorithm, the naive
pseudoinverse (see below). The reporters chosen for
sorting by this method tended to be orthogonal; of the
first 30 reporters chosen, the mean absolute correlation
between pairs was 0.15 (very similar to 0.17, for all pairs
of reporters). Reporters chosen by this method were
slightly more accurate than randomly chosen reporters

(data not shown). We used this same ordered list of
reporters in evaluating all of the deconvolution methods
on all of the simulated datasets.

Methods for deconvolution

We tested deconvolution methods based on two general
approaches: the pseudoinverse and expectation propagation
(EP). We describe each strategy and their variations below,
then overview the performance of the different methods
on the simulated data.

The pseudoinverse
In our simulations, the expression of each gene in each
fraction is described by a potentially underdetermined
linear system of equations, as there are more cells than
available fractions. The Moore-Penrose pseudoinverse
provides a single solution to such a system based on a
minimal least-squares fit. However the solution obtained
by calculating the pseudoinverse may contain negative
entries, corresponding to the biologically unmeaningful
“negative expression.” We thus tested two variants of the
pseudoinverse that produce only positive solutions. We
either replaced negative numbers with zero, referred to as
the “naive pseudoinverse,” or incorporated the constraint
that expression is positive along with the linear constraint,
referred to as the “constrained pseudoinverse.”
Compressed sensing theory states that it can be possible
to reconstruct a signal from fewer measurements if there
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is some regularity to that signal [20]. In existing data, cells
sharing similar lineage histories, symmetry relationships
or tissue types are more likely to have similar gene ex-
pression [9]. To take advantage of this, we tested an
additional variant of the pseudoinverse which weights
potential solutions based on the covariance between each
pair of cells, as estimated from the known gene expression
patterns.

Expectation Propagation

We also deconvolved expression by using Expectation
Propagation (or “EP”), which is an iterative strategy for
approximating a probability distribution [21]. Unlike the
pseudoinverse, EP predicts a range of possible expression
patterns compatible with the data, and thus provides an in-
trinsic estimation of the confidence of the prediction. When
comparing accuracy between EP and pseudoinverse-based
methods, we used the mean of the EP solution. Although
the iterative steps in EP usually converge, they sometimes
diverge, resulting in numerical problems, and no prediction.
For instance, predictions for 10 of 127 genes failed to
converge when predicting the real expression patterns
with 75 fractions, and 27 genes failed to converge when
predicting with 100 fractions (Table 1). In general, EP's
convergence is difficult to prove; failure to converge
may indicate that the approximating distribution doesn't
fit the posterior well [22]. Many of the cases in which con-
vergence failed were cases in which only a few cells were
expressing; suggesting that these cases may be poorly fit by
the approximating distribution. We found that we could
increase the convergence rate by adding a damping step,
and modifying the algorithm to report the expression pre-
dictions of the last iteration irrespective of convergence.
This produced an answer in all cases, but resulted in
slightly lower accuracy (about 5% lower correlation on the

Table 1 Number of problem instances in which EP failed
to converge

Dataset Number of  Number of cases
fractions which failed to
converge
measured expression 10 2 (2%)
(n=123 synthetic genes)
75 10 (8%)
" 100 27 (22%)
synthetic patterns based on 50 2 (1%)
correlation (n=200 synthetic genes)
" 75 8 (4%)
100 49 (25%)
synthetic one-lineage patterns 100 1 (0.3%)
(n=371 synthetic genes)
synthetic two-symmetric-lineage 100 2 (0.8%)

patterns (n=245 synthetic genes)

(EP converged in all other cases).
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actual expression patterns with 30 reporters), and was
about eight times slower, compared to the undamped ver-
sion. Computing the EP prediction required more CPU
time than the naive pseudoinverse, but was faster than the
other methods when accounting for the time required to
estimate the confidence of deconvolution (Table 2).

Accuracy of deconvolution increases with number of
fractions

We measured the accuracy of each algorithm's predictions
both in quantitative terms, and as classification accuracy of
on-off predictions. For each of the simulated data sets, we
simulated the measurements from each FACS-sorted
fraction. We then applied each deconvolution algorithm,
and compared the simulated expression patterns with the
predicted pattern from deconvolution. When deconvolving
expression for a gene in the known expression pattern set,
we excluded that gene from also being used as a sort
marker for a fraction, replacing it with the next fraction on
the list if necessary. We observed that in many cases, the
deconvolved pattern was visually similar to the true
pattern, and that the precision of the prediction increased
with the number of fractions. For example, Figure 2 shows
a measured expression pattern (for the gene lin-32), and
expression predicted by the constrained pseudoinverse
method, using either 20 or 30 fractions.

We first assessed which methods most accurately
determine which cells are on or off, without regard for
level. We made binary predictions by thresholding the
quantitative predictions, and compared these by using
the area under the receiver-operating-characteristic
(ROC) curve (Area Under Curve (AUC); Figure 3a). This
measures the sensitivity-specificity tradeoff for different
thresholds of the predictions. An AUC of 1.0 indicates
that all expressing cells are predicted to have higher
predictions than all non-expressing cells, while an
AUC of 0.5 would be expected from completely random
predictions. By this metric, EP performed slightly better
than all of the other methods on each simulated dataset.

To quantify this similarity of expression levels between
real and deconvolved patterns, we calculated the Pearson
correlation between the original pattern and the
deconvolved prediction (Figure 3b). By this measure, the

Table 2 Comparison of running time per gene for various
deconvolution methods (on a machine with a 2.4 GHz
Intel Xeon processor, and 4 GB RAM)

Method time (seconds)
naive pseudoinverse 0.01

EP 05

constrained pseudoinverse 19

constrained pseudoinverse with correlation 23

sampling 583
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constrained pseudoinverse gave the highest accuracy on the
“measured expression” and “simulated patterns based on
correlation” datasets, although the differences with EP were
not statistically significant. In contrast, the mean of the EP
prediction performed significantly better on the simulated
one- and two-lineage datasets. In these experiments, adding
the covariance constraint to the pseudoinverse predictions
didn't improve accuracy; instead it reduced accuracy
for one- and two-lineage patterns, possibly because
these patterns are fairly different from the patterns
used to compute the correlation matrix. The constrained
pseudoinverse (with or without the correlation-based
prior) performed best when predicting the random

patterns generated from the correlation distribution calcu-
lated for real genes.

The one- and two-lineage datasets were simulated with
a low level of normally-distributed noise. To test accuracy
with non-normal distributions, we repeated the EP simu-
lations, with “on” and “off” levels randomly drawn from
gamma distributions (Additional file 2: Figure S2). The
results from this with lower levels of noise were comparable
to results using normally-distributed noise, although
higher levels of noise decreased accuracy considerably.

For all methods, adding additional fractions increased
accuracy by either AUC or correlation. Eventually, the
accuracy began to plateau with very little improvement
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with more than 50 fractions, and the biggest improvements
in accuracy at less than 30 fractions. We conclude that for
most patterns, EP deconvolution appears to be a slightly
more accurate approach, and that while more fractions
is better, at least 30 fractions are needed to approach
the rate of diminishing returns for deconvolution across
the entire lineage.

Confidence measurements accurately predict error
bounds for predictions

An ideal deconvolution method would include some
estimate of the confidence of its predicted patterns,
because some patterns are likely to be predicted with
higher confidence than others. For the pseudoinverse-
based methods, we used a sampling approach to estimate
confidence, while EP gives a direct measure of uncertainty.
We tested these methods for measuring confidence
and compared the predicted confidence to the measured
deconvolution error across the simulated datasets.

The process of combining expression from groups of
cells, and then deconvolving using the naive pseudoinverse,
is a linear transformation. This transformation can be
represented as a matrix (A"A, where A" is the pseudoinverse

of the sort matrix, A), known in geophysical modeling as
the model resolution matrix [23]. This resolution matrix
depends on both the sort markers used, and the under-
lying expression pattern for a given gene, resulting in a
distinct resolution matrix for each deconvolved gene. As
we add linearly independent reporters, the resolution
matrix approaches the identity matrix. Large blocks on (or
off) of the diagonal represent sets of cells which the
experimental design has difficulty distinguishing and for
which expression is “blurred” together (Figure 4). This
provides a graphical display of which cells’ expression
values are conflated for any given gene.

The uncertainty of the pseudoinverse predictions can be
predicted by sampling. When using the pseudoinverse
with the constraint that expression is positive, the possible
solutions form a convex region in a linear space. While
the true solution could be anywhere in this region, one
model of prediction uncertainty is to assume uniform
probability across the region. We used Monte Carlo
Markov Chain sampling [24] to approximate the range
of possible expression patterns. Specifically, we used
random-directions sampling, which is guaranteed to
mix eventually when sampling from a convex region,
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Figure 4 Expression prediction for ceh-27 computed using expectation propagation (EP), showing a) the actual expression pattern
(red), b) the predicted expression pattern (green), ) the resolution matrix weighted by expression, and d) the resolution matrix. Dark
blocks in the expression-weighted resolution matrix indicate potentially conflated expression predictions.

although the amount of sampling needed depends on the
shape of the region [25]. These error bounds usually,
encompassed the true expression pattern (Figure 5). How-
ever, this was computationally demanding enough that it
would be slow (but not impossible) to apply genome-wide
(Table 1). Sampling also occasionally underestimated the
uncertainty by not including the entire feasible solution
space (Figure 6) (10% of estimates had z > 4).

In contrast to the pseudoinverse, the EP approach
provides an intrinsic measure of uncertainty because it
predicts expression to occupy a convex region, which is
approximated by a multivariate normal distribution in a
linear space [21]. The marginals of this distribution
provide a potential estimate for the uncertainty of each
cell’s expression prediction. We plotted the mean and
standard deviation of the expression predictions for
each gene in each cell (Additional file 3: Figure S3b).
Few cells have error bounds which were confidently

greater than zero, probably because we sometimes cannot
distinguish low expression in a group of cells from high
expression in a few of them. However, we reasoned we
might be able to make more confident predictions for
groups of related cells. To test this, we estimated the total
expression in lineage groups of cells, by summing part of
the mean and covariance obtained by EP across sublineages.
For instance, we can estimate the mean expression of a
gene, in all cells in a particular lineage (Additional file 3:
Figure S3c). In most cases, this allowed the identification
of specific lineages where there was high confidence of
expression somewhere in that lineage. Such predictions of
total expression in larger groups of cells are narrower, as
they don't attempt to predict precisely which cells express
a given gene (Figure 7a).

We modeled the deconvolution error by normalizing
each expression measurement by the prediction standard
deviation. The resulting distribution resembles a normal
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distribution with a mean of zero and standard deviation
less than 0.31 both for small and large cell groups
(Figure 7b). This suggests that EP is conservatively
estimating the confidence of its expression predictions.
We also compared the uncertainty estimates computed
using the sampling to those computed by EP. The regions
computed using sampling had comparable means, but
smaller standard deviations by a factor of about 2
(Additional file 4: Figure S4). Comparing the uncertainty
estimates with the actual error in the predictions indicates
that the sampling uncertainty estimates are narrower than
the range of possible solutions, and that the EP uncertainty
estimates are wider than the actual possible region. EP
provides a prediction based on a multivariate normal
distribution, while real expression levels are likely not to
be normally distributed. Nonetheless, we found that the
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Figure 6 Comparison of sampling prediction intervals with actual
expression. z-score of actual expression was plotted, scaled to the mean
and standard deviation of the prediction from sampling. For example, if
the real error were equal to the prediction interval standard deviation,
then the z-score would be 1. Values outside of + 5 are shown at + 5.

mean and standard deviation of the EP uncertainty bounds
were highly correlated (Pearson r of 0.96 and 0.93,
respectively) with those produced by sampling. This
suggests that these metrics are not strongly affected by this
assumption. We conclude that in addition to providing
more accurate deconvolution for most patterns as de-
scribed above, the EP method also provides accurate,
and possibly more conservative, uncertainty estimates
compared with sampling, and is computationally more
scalable than sampling-based approaches.

Prediction accuracy is sensitive to sort-matrix errors but
robust to measurement noise
The simulations described so far have assumed that the
gene expression levels themselves have noise but that we
have noise-free information about which cells are present
in each fraction and about expression levels in each frac-
tion. In practice, some level of experimental error in these
measurements is unavoidable. Therefore, we assessed the
methods' ability to tolerate various kinds of noise by
perturbing different parts of the input data and measuring
the resulting effect on prediction accuracy. All of the noise
simulations were performed using a set of 30 sort fractions.
It is possible that errors in the lineage data or experimen-
tal differences between FACS and confocal microscopy
could introduce errors into this step. Therefore we tested
how sensitive the deconvolution approaches are to er-
rors in the sorting assignments by randomly perturbing
different entries in the sort matrix, without making
compensatory changes to the simulated expression data.
This treatment mimics the situation when some cells
are systematically sorted into a different fraction than
predicted. Even minor perturbations of the sort matrix
reduce accuracy, whether measured by correlation or
area-under-the-curve (Figure 8a), with a roughly 3%
decrease in AUC accuracy (or 16% decrease in correlation
accuracy) for each 1% increase in systematic sort error.
Thus, in any application of this deconvolution approach, it
will be important to accurately determine the sort matrix.
In contrast to this systematic sort error, deconvolution is
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robust to random noise in sorting, especially if the amount
of random sort error is known (as can be measured directly
by resorting FACS-sorted cells) and included in the sort
matrix used for deconvolution (data not shown).

It is also possible that specific cells or cell types could be
lost during the dissociation and FACS sorting process. For
instance, large cells present in the early embryo might be
removed by filtering steps, or may be damaged by shear
forces during the isolation of single cells [26]. If FACS
approaches to remove cell clumps by gating on forward
and side-scattered light are employed, these approaches
may also eliminate real cells with complex morphologies.
To estimate the effects of this type of error, we simulated
a sort process where some cells were specifically lost, and
then deconvolved the resulting perturbed measurements
without knowledge of which cells were lost. The EP
method was fairly robust against such errors (Figure 8b),
even when up to ~25% of cells (300) were missing.

Measurements of expression include both biological
variability, such as differences in growing conditions be-
tween embryos, and technical variability, such as variation

in RNA amplification, sequencing biases and random noise
resulting from sampling of sequence reads. To estimate the
effects of measurement noise, we simulated deconvolution
with each fraction's measurement in the simulated expres-
sion dataset scaled by various levels of random noise
(Figure 8c). The EP method was very robust against such
noise, with little decrease in either quantitative accuracy or
classification accuracy even with a noise standard deviation
of ~1 (corresponding to roughly 2-fold average error in
the expression measurements.) The naive pseudoinverse
was somewhat more sensitive to such noise.

In conclusion, we find that the EP algorithm gives the
most reliable deconvolution of expression values in single
cells from mixed cell populations, and provides accurate
uncertainty estimates in a computationally tractable
manner. Systematic loss of particular cell types or random
measurement noise have little effect on overall deconvolu-
tion accuracy. However, errors in the assignment of cells
to sort fractions do decrease accuracy, suggesting that
optimizing this parameter is critical in experimental appli-
cation of these methods.
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Conclusion

We have described a method for deconvolving gene
expression in a large number of single cells, starting
from a smaller number of measurements in overlapping
fractions of cells. Our simulations indicate that for

C. elegans embryos, the fact that we have many orthog-
onal reporters for use as sort markers should make it
possible to deconvolve expression with good accuracy
from a fairly modest number of sort fractions. The same
strategy is also applicable to other sorts of measurements
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for which a global collection of measurements across cells
would be useful, such as ChIP-seq and proteomic assays.
All methods based on cell-sorting are subject to the caveat
that FACS sorting can cause cell death, and alter measure-
ments of properties such as gene expression, so observed
expression patterns should be confirmed in vivo. Similar
deconvolution should be possible in other systems where
the overlap of different markers can be determined with
high accuracy, such as in the Drosophila blastoderm [6].

Our predictions are not exact, but do provide an estimate
of their uncertainty. Surprisingly, the deconvolution is
fairly robust to certain types of measurement noise,
such as random noise in the expression measurements
and loss of specific cells during sorting into fractions. Not
surprisingly, the method is more sensitive to systematic
errors in the sort matrix that indicates which cells are
present in which fraction. Together this suggests that
while deconvolution may be possible with fairly modest
numbers of replicates for each sort fraction, the cells
present in each fraction must be well-defined. This can be
accomplished by only using fractions based on fluorescent
reporters that show clear on-off patterns of expression
(as opposed to quantitative patterns that may be harder
to gate for sorting).

The accuracy and efficiency of deconvolution could be
further improved by focusing on a smaller subset of cells
in the organism. The C. elegans embryonic cells can be
divided into 12 sublineages of ~100 cells based on their
descent from a common founder cell. Simulation data
suggests that expression patterns in these sublineages could
be deconvolved with similar accuracy to that reported here
with even fewer (~10-15) reporters (data not shown).
Additional improvements could be obtained by the
availability of more sort markers, either by using lineage
tracing to annotate the expression of more reporters, or
by using existing different color (e.g. GFP and RFP)
reporters for multicolor sorting to collect smaller fractions
of cells based on coexpression of two or more markers.

The EP method provided predictions with competitive
accuracy, including an estimate of confidence, at moderate
computational cost. One challenge of EP is that it doesn’t
converge in all circumstances. In our simulations, EP
generally converged in circumstances with fewer than
fifty reporters, which are sufficient to give reasonable
accuracy across the entire lineage. In cases in which EP
doesn't converge, we modified the method to use
damping or to show the non-converged prediction.
The sampling method also appeared to give reasonable
estimates of confidence. Applying the current sampling
method genome-wide would require 1,600 CPU hours
(assuming 10,000 C. elegans genes are tissue-specific),
which is expensive but not prohibitively so, even with-
out using methods such as adaptive sampling [24] to
accelerate it.
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Several related studies (reviewed in [27]) attempt to
deconvolve expression measurements from mixed tissues.
Most of these assume, like us, that measurements are
linear combinations of tissues [28]. One related method is
[29], which combines a set of non-overlapping spatial
measurements with a set of non-overlapping temporal
measurements, and assumes these are independent,
resulting in an overdetermined problem. However, our
model differs by allowing measurements that may or may
not be independent, and by treating the problem as
underdetermined. Our current model can also incorporate
explicit temporal data by including sort matrix entries
corresponding to cells at a particular time. Its temporal
resolution could be improved by integrating existing
embryonic time course data [30], using methods specifically
designed for timeseries data [31,32].

Another class of existing deconvolution methods infer
the components of a mixture based solely on expression
profiles [33,34]. These approaches don't require purification
of cells but may not be applicable to the overlapping
fractions in our setting or to organisms like C. elegans
where the cellular composition of intact tissues is invari-
ant between samples from the same developmental stage.
Furthermore, they don't allow explicit incorporation of
the information about mixture compositions we obtained
from imaging data. Other methods estimate the propor-
tions of a mixture, assuming expression profiles of its
components are similar to known reference expression
profiles [27,35]; in our case, such reference expression
profiles aren't available.

Alternative approaches become available if we can
measure expression in many more cell populations
than there are cells (in this case, >~1,341 measurements).
For example, csSAM [36] and DSection [37] estimate ex-
pression in groups of cells from measurements of mixtures
of cells with unknown (or partially known) proportions
using regression. However, this method requires many
more samples than are feasible with current methods in C.
elegans. The methods used in that model might be adapted
to our situation, especially if methods are developed to
allow expression profiling of extremely large numbers of
cell populations. With the methods we describe and the
increasing availability and decreasing cost of sequencing, a
comprehensive description of expression patterns across
all cells of a developing organism may soon be possible.

Methods

Sort matrix

We based our sort matrix on per-cell expression inten-
sities of fluorescent reporters [9]. We classified cells as
“on” or “off” using a logistic model, in which “off” cells
had intensity with mean O and standard deviation
1,000, and “on” cells had intensity with mean 2,000 and
standard deviation 1,000. In some cases, this resulted
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in probabilistic sort matrix entries between 0 and 1
(which is compatible with all the methods we tested).

Synthetic datasets

We measured accuracy using expression data with cellular
resolution from 123 of the 127 fluorescent reporters in
[9]. We also measured accuracy on three synthetic data
sets (Additional file 1: Figure S1):

e Synthetic expression data, drawn from a multivariate
normal distribution with mean 0, and covariance
estimated from the expression of those reporters.

e Synthetic expression, in which one lineage of cells is
“on” (with expression randomly drawn from a
normal distribution with mean 0 and variance 1),
and the others are “off” (with expression randomly
drawn from a normal distribution with mean 10 and
variance 11.) There are 371 such lineages containing
at least five cells.

e Synthetic expression in which two symmetric lineages
are “on” or “off’, as above. There are 245 such lineage
pairs in which each lineage contains at least five cells.

In all cases, negative expression values were truncated
to zero.

Naive pseudoinverse

Our simplest prediction was A"h , where A" is the
Moore-Penrose pseudoinverse of A. This prediction is
the solution to Ax=b having minimum 2-norm. We
truncated negative entries of this solution at zero (although
doing so will, in general, violate the linear constraint).

Constrained pseudoinverse

We can also incorporate the constraint that x>0 while
solving for x, finding the maximum likelihood estimate
of n

x ~N(0, I) subject to Ax=b,x>0

(Since the covariance is I, this is equivalent to finding a
value of x which satisfies the constraints, and minimizes
the 2-norm of x .) We used the Isei R function to solve this
problem as this includes explicit equality contraints. We
also tested an alternative R function, nnls. This is more
complex because it requires encoding the constraints in a
cost function, but has the advantage of being around ten
times faster, and gave similar results.

Pseudoinverse deconvolution with correlation constraint
To include correlation in our model, we assumed that x

has a normal distribution with known covariance X :

x~N(0,X), subject to Ax=b,x>0
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We estimated correlation based on 123 of the known
reporter expression patterns. We used a shrunken esti-
mate of correlation, from the corpcor R package [38], and
manually set the shrinkage value to 0.05 (the default
shrinkage value estimated by the corpcor package resulted
in a very flat correlation.) Again, we used the Isei R
function to estimate the most likely value for x.

Sampling

We used random-direction Markov chain Monte Carlo
sampling. Initially we used the xsample function (with
the “cda” option) from the limSolve package [39]; we
then re-implemented the core of the algorithm in C++
using the Rcpp package [40]. We used the mean and
variance of ten million iterations as our prediction, after
ten million iterations of burn-in. (We computed statistics
on chains thinned to every 1,000™ sample.) We omitted
cells from sampling which had zero expression according
to the constrained pseudoinverse method; without this
restriction, sampling failed (as the distance it could move
in the random direction was zero.) Chains from multiple
starting points appeared to have converged after 50
million samples, by eye (Additional file 5: Figure S5),
and the potential scale reduction R was typically less than
1.1 (Additional file 6: Figure S6), suggesting convergence
([24], pp. 296-298).

Expectation propagation

We approximated the possible range of expression using
Expectation Propagation (or “EP”), which is an iterative
strategy for approximating a probability distribution [21].
In our case, we approximated the region of possible
expression with a multivariate normal distribution. We
used a parallel updating strategy, repeatedly updating our
estimate of each cell's expression so that x>0, then altering
our estimate to satisfy the constraint that Ax=b [41]. (Our
implementation of this, and the other deconvolution
methods, is available as Additional file 7).

Convergence of EP is known to be problematic, espe-
cially when the approximating distribution is a different
shape from the posterior [21]. On smaller synthetic prob-
lems, the mean and standard deviation of the regions
estimated by the method agreed well with the distributions
estimated by the xsample function [39] (data not shown.)
However, when estimating 1,341 numbers, the algorithm
sometimes failed to converge. We addressed this by incorp-
orating a prior with variance 100 times the total expression.
We also added 107 to each cell's relative expression
(and subtracted this off from the solution afterwards.)
With these modifications, EP often, but not always,
converged (Table 1).

We also experimented with a damped version of EP,
by adding a step size, initially 1. At each step, we scaled
the EP update by this amount. If an update would lead
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to numerical errors, we divided the step size in half, and
continued from the last estimate.

Error simulations

For simulations of error, we measured the EP method's
accuracy on 123 known expression patterns, using thirty
reporters. To simulate errors in the sort matrix, we
randomly chose lineages in individual fractions, and
replaced each entry a in those lineages with 1-a. To
simulate missing cells, we again chose random lineages,
and replaced each entry in those lineages (in all fractions)
with 0. We then computed expression with this perturbed
matrix, and measured accuracy given these perturbed
expression measurements (but the original sort matrix.)
To simulate noise in expression measurement at a level s,
we multiplied each expression measurement by random
draw from a normal distribution with mean 1 and standard
deviation s.

Additional files

Additional file 1: Figure S1. Examples of synthetic expression patterns
used to measure accuracy. a) Patterns based on correlation. b) Patterns
with one lineage on. c) Patterns with two symmetric lineages on.

Additional file 2: Figure S2. EP accuracy for one- and two-lineage
patterns, measured using a) AUC or b) correlation. Thirty sorted fractions
were used. The “off" distribution was drawn from a Gamma(1,1)
distribution, and the “on” distribution was the gamma distribution with
shape and scale shown on the x-axis.

Additional file 3: Figure S3. Prediction bounds for expression of a
gene in groups of cells, computed using expectation propagation. Thirty
simulated reporters were used. a) Measured expression of unc-130. b)
Mean (red) and standard deviation (green) for expression prediction
(yellow indicates a large mean and standard deviation.) ¢) Mean (red) and
standard deviation (green) for the average expression in the lineage
rooted at a given cell.

Additional file 4: Figure S4. Comparison of a) mean and b) standard
deviation of prediction bounds from sampling and EP, for 123 genes,
using thirty simulated reporters.

Additional file 5: Figure S5. Two-standard deviation posterior
predicted intervals for alr-1, based on mean and variance of increasingly
long sampling chains. (Negative values for bounds are truncated at zero).

Additional file 6: Figure S6. Potential scale reduction R ([26],

pp. 296-298) for alr-1, using increasingly long sampling chains.

(Cells whose expression was predicted to be zero by the truncated
pseudoinverse method were not included in the sampling, and are not
shown).

Additional file 7. R source code implementing the deconvolution
methods (as a .zip archive).

Abbreviation
EP: Expectation propagation.
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