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BACKGROUND Early self-detection of atrial fibrillation (AF) can
help delay and/or prevent significant associated complications,
including embolic stroke and heart failure. We developed a facial
video technology, videoplethysmography (VPG), to detect AF based
on the analysis of facial pulsatile signals.

OBJECTIVE The purpose of this study was to evaluate the accuracy
of a video-based technology to detect AF on a smartphone and to
test the performance of the technology in AF patients across the
whole spectrum of skin complexion and under various recording
conditions.

METHODS The performance of video-based monitoring depends on
a set of factors such as the angle and the distance between the cam-
era and the patient’s face, the strength of illumination, and the pa-
tient’s skin tone. We conducted a clinical study involving 60
subjects with a confirmed diagnosis of AF. A continuous electrocar-
diogram was used as the gold standard for cardiac rhythm annota-
tion. The VPG technology was fine-tuned on a smartphone for the
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first 15 subjects. Validation recordings were then done using
7053 measurements collected from the remaining 45 subjects.

RESULTS The VPG technology detected the presence of AF using
the video camera from a common smartphone with sensitivity and
specificity �90%. The ambient level of illumination needs to be
�100 lux for the technology to deliver consistent performance
across all skin tones.

CONCLUSION We demonstrated that facial video-based detection of
AF provides accurate outpatient cardiac monitoring including high
pulse rate accuracy and medical-grade performance for AF detection.
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Introduction
Videoplethysmography (VPG), also referred to as remote
photoplethysmography (PPG) is a novel contactless video
monitoring technology that enables measurements of pulse
rate (PR)1,2 and detection of atrial fibrillation (AF).3,4 These
methods rely on extracting photoplethysmographic-like sig-
nals from facial videos. Our pioneering work3 was followed
by independent investigations confirming that VPG-based
methods can accurately detect AF.3–6 VPG provides a
touch-free alternative solution to cardiac monitoring by uti-
lizing the web cameras connected to laptops and desktop
computers, as well as cameras embedded into smart devices
such as smartphones and tablets. The arterial blood volume
pulsations and associated changes in the volume of hemoglo-
bin (Hb) modulate the absorption of ambient light,1 and VPG
technologies capture these subtle changes in light absorption
from the facial skin. VPG signal strength depends on the level
of ambient light, the movement of the patient’s face (modi-
fying reflective angle), and how the patient’s skin reflects
light. In the visible range, one of the important chromophores
of the human skin is melanin.

Melanin is primarily concentrated in the epidermis above
the skin layers where microvascularization occurs
(dermis).7 The photoprotective effect of melanin increases
the skin absorption of ambient light, resulting in weaker
facial VPG signals.8,9 This phenomenon has also been
observed in PPG-based technologies, especially for SpO2

measurements.10 PPG technology resolved this issue using
dynamic light intensity or multiwavelength light sources.
VPG technologies require a different solution because
they rely on ambient light sources and relatively simple
RGB cameras. We have developed a VPG technology that
automatically adjusts to the user’s skin complexion in order
to preserve the AF detection performance of measurements
across human skin tones. We present a unique study evalu-
ating the performance of a specific VPG technology
(HealthKam� AFib, VPG Medical Inc., Rochester, NY)
developed to detect the presence of AF across all skin tones
for various illumination levels. The technology was tested
on an Android smartphone device (Samsung Galaxy S10)
used by individuals with a confirmed diagnosis of parox-
ysmal, persistent, or permanent AF.
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KEY FINDINGS

� A smartphone is used as a contactless intermittent car-
diac monitoring device. The HealthKam AFib moni-
toring solution uses the front camera to capture a
plethysmography-like signal from the patient’s face.
Then, the technology measures heart rate and detects
the presence of atrial fibrillation or atrial flutter.

� The proposed technology works in all normal daily levels
of illumination and for all skin complexions.

� In reference to electrocardiogram-based heart rate, the
video-based measurement of pulse rate has an error
below 1 bpm. The values of sensitivity and specificity
for the detection of atrial fibrillation are above 90%.
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We conducted a clinical study designed to understand the
impact of various technical, human, and demographic factors
on the performance and accuracy of a VPG method to mea-
sure PR and detect AF in patients with a history of AF using
a smartphone.
Methods
VPG-based application
Our objective was to evaluate the accuracy of VPG-based
technology in detecting the presence of AF in a cohort of pa-
tients with different skin tones. The VPG technology utilized
in this study is called “HealthKam AFib,” which has been
described in multiple previous studies.11–15 This
technology was tailored to effectively work in the S10
device using 25% of the study cohort. We reserved the
remaining 75% of the study cohort for validation.

This tested smartphone has a camera with a 10-megapixel
(MP) sensor and frame rate of 30 frames per second (fps). We
evaluated the technology when used indoors with a level of
illumination varying from a dark environment (50 lux) to a
standard office space (500 lux). The VPG method captures
signals of 25-second length. It provides the mean PR values
when the PR rhythm is deemed to be normal (sinus origin)
and notifies the user if an irregular rhythm is detected. The
method is based on the analysis of the power spectrum den-
sity of the VPG signals. In general, the presence of a single
dominant frequency peak defines the rhythm regularity, and
its frequency sets the PR value. Further analysis of the spec-
tral structure determines when the spectral peak is likely to
reliably represent the PR or, conversely, when the spectral
spread is likely to indicate abnormal rhythm associated
with AF. If the spectral structure provides neither determina-
tion, a third determination is made, that is, the signal is of too
low quality. When multiple frequency components are de-
tected, a method is used to infer the presence of either an
irregular rhythm (conclusive) or unsatisfactory environ-
mental recording conditions (inconclusive). This method
combines a series of information automatically extracted
from the facial video recording. It includes, but is not limited
to, the level of illumination, face movements, video recording
stability, and darkness of the user’s skin.16 The possible out-
puts of a recording session are the presence of an “abnormal
rhythm” (suggesting AF); reporting a “heart rate value” (si-
nus rhythm); or presenting a message informing the VPG
signal is “too-low-quality” (TLQ) (Figure 1).
Study design
The design of the experimental study mimicked the condi-
tions under which AF patients would use their smartphones.
Subjects were not restrained during the recordings but were
asked to remain as still as possible. The angle between the
user’s face and camera were set at 20� (almost flat), 60�,
and 90� (frontal). The distance from the user’s face to the
camera varied from 28 to 44 cm covering the distances
observed in smartphone usage for adults with and without
presbyopia.17 Three distinct distances were studied: close
(30 cm), medium (35 cm), and far (40 cm). Two sources of
lights were tested: light-emitting diode (LED) and incandes-
cent lights. Four illumination levels were experimented: dark
(w50 lux), low (w150 lux), medium (w200 lux), and
normal (w500 lux). As a reference, the outdoor illumination
level during the daytime is .1000 lux and is expected to
be w500 lux in a typical office. The levels of illumination
measured within the 4 categories were as follows: dark
(566 6 lux; N5 3047); low (1156 11 lux; N5 3091); me-
dium (1976 15 lux; N5 3964); and normal (5106 26 lux;
N 5 3916). N represents the number of measurements
collected in each illumination group. The lux values corre-
spond to the mean and standard deviations (mean 6 SD) of
illumination within each illumination category.

Overall, each subject collected a maximum of 144 mea-
surements at rest, including 2 replicates * 2 types of light *
3 distances * 4 illuminations * and 3 angles. Our protocol
included additional measurements obtained after short bouts
of physical exercise that stopped once baseline heart rate
(HR) increased 30% over pre-exercise resting HR. A total
of 24 video measurements were captured postexercise (2 rep-
licates * 2 types of light * 1 distance * 2 illuminations * 3 an-
gles). During these measurements, the subjects were asked to
sit comfortably, facing toward the front of the devices
without any physical constraints.
Study population
The study participants had a diagnosis of paroxysmal, persis-
tent, or permanent AF. We enrolled adult patients aged �40
years. Patients who were unable to complete the Fitzpatrick
skin type (FST) questionnaire, suffered from tremors and/or
Parkinson disease, had blindness, needed to cover their
face due to safety or religious reasons, or had known allergies
to skin adhesives (electrocardiographic [ECG] electrodes)
were excluded. The participants were required to be able to
use an under-desk mini-cycle elliptical machine. The study
was approved by an independent Institutional Review Board



Figure 1 Examples of the screens from the HealthKam AFib application after an active videoplethysmographic (VPG) recording is performed (selfie-like pro-
cedure). Message about bradycardia or tachycardia depends on patient settings of limits for maximum heart rate (max HR) and minimum heart rate (min HR)
values. From left to right: Heart rate value is presented, message indicating that an abnormal rhythm was detected, elevated and slow heart rate values are re-
ported, and finally notification that the recording conditions are not satisfactory and the VPG signal is too low quality (so-called inconclusive result).

Couderc et al Facial Video-Based Detection of AF 307
for Clinical Research. The subjects were enrolled after re-
sponding to an enrollment packet that included study infor-
mation, a consent form, and a questionnaire about their
cardiac history.
HR, PR, and cardiac rhythms
We used a single-lead ECG (M5 ECG patch, Global Instru-
mentations LLC,Manlius, NY) as a reference for HR and car-
diac rhythms. We extracted 25-second ECG strips from the
continuous recordings at the time of each VPG signal. The
ECGs were annotated by a technician and reviewed by a
cardiologist (BH). We formed 3 rhythm categories: category
1 for AF or atrial flutter with an ECG that may also contain
other arrhythmias such as premature atrial contractions and
ventricular premature contractions; category 2 for sinus
rhythm and 100% normal sinus rhythm; and category 3
defined as sinus rhythm with at least a single occurrence of
nonsinus beats. In addition to the ECG patch, we used a
finger-based SpO2 sensor (MightySat Rx, Masimo, Irvine,
CA) and recorded the PR from the sensor screen at the end
of each recording.
Fitzpatrick classification for skin complexion
We asked each subject to respond to the FST questionnaire
for a self-reported skin complexion rating.18 During enroll-
ment, it became apparent that the Fitzpatrick survey was
not a reliable means of classifying skin complexion, espe-
cially in the groups of subjects with dark skin. The scientific
literature revealed that use of the FST survey as a tool to mea-
sure skin pigmentation has been strongly questioned for its
lack of accuracy. For example, the Scientific and Technology
branch of the U.S. Department of Homeland Security
released a report concluding that “FST is known to be a
generally unreliable estimator of skin pigmentation.”19 These
observations led us to define a score based on a visual inspec-
tion of the subject’s skin. The visual FST score was recorded
by an individual who was trained to classify the subject in
3 “visual FST” levels: I–II (vFST-1); III–IV (vFST-2); and
V–VI (vFST-3). These visual FST categories were defined
such that category vFST-1 was for white subjects; category
vFST-2 was for subjects with tan and olive complexions;
and category vFST-3 was for the darkest complexions.
Statistical analysis
The validation studies include repeated assessments on each
subject as to whether their HR rhythmwas classified as AF vs
non-AF rhythms (rhythm category 1 vs category 2 1 3).
These binary assessments will be paired, respectively, for
the VPG-based method of measuring HR (Yvpg 5 1 if
VPG technology classifies the rhythm as AF; 0 otherwise)
and the gold standard ECG-based method of measuring HR
(Xecg 5 1 if ECG AF; 0 otherwise). In general terms, the
(average) sensitivity and specificity of the VPG-based
approach to determining whether a heart rhythm is abnormal
can be represented as follows: Sensitivity 5 P(Yvpg 5 1 |
Xecg 5 1), and Specificity 5 P(Yvpg 5 0 | Xecg 5 0).These
formulas assume that ECG is an error-free gold standard
test as to whether a subject’s HR is abnormal. In addition,
these formulas may be regarded as capturing the average
sensitivity and specificity across a wide range of plausible
measurement conditions and across various subjects. In the
presence of repeated measures of Yvpg and Xecg on every sub-
ject, the average sensitivity and specificity can be estimated
by fitting an appropriate regression model. In particular, us-
ing a logistic regression model representation [Logit(p) 5
ln(p/(1-p))], we have Logit P(Yvpg 5 1 | Xecg) 5 b0 1
b1Xecg, and one can then obtain estimates of both sensitivity
and specificity, as well as confidence intervals (CIs) (or hy-
pothesis tests), by estimating b0 and b1 using a technique
known as generalized estimating equations.20 If b0 is the



Table 1 Demographics of the validation cohort

Women Men All

N 13 32 45
Age (y) 716 7:6 66610:0 6769:7
Height (m) 1:760:1 1:860:1 1:760:1
Weight (kg) 79620 99617 93620
BMI (kg/m2) 2966 3266 3166:0
BP (mm Hg) 120618 130614 130615
Obese 4 (15) 9 (28) 13 (29)
Hypotensive 1 (8) 2 (6) 3 (7)
Hypertensive 2 (15) 9 (28) 11 (24)
vFST 1 5 (39) 13 (41) 18 (40)
vFST 2 6 (46) 13 (41) 19 (42)
vFST 3 2 (15) 6 (19) 8 (18)

Values are given as mean 6 SD or n (%) unless otherwise indicated.
BMI 5 body mass index; BP5 blood pressure; vFST 5 visual Fitzpatrick

skin type.
*P,.05 for t test between gender in the upper rows and for c2 test in the

lower rows.

Table 2 Number of recordings across skin tones and number of
conclusive and inconclusive measurements within each group

vFST-1 vFST-2 vFST-3 N

N 2830 2968 1255 7053
Conclusive 2631 (93) 2732 (92) 770 (61) 6133 (87)
Inconclusive 199 (7) 236 (8) 485 (39) 920 (13)

Values are given as N or n (%).
vFST 5 visual Fitzpatrick skin type.
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estimated value of b0 obtained from the training data, then the
estimated specificity is 1 – Expit(b0), where Expit(b) 5 1/
(11exp(–b)) is the inverse of the Logit transformation. Simi-
larly, the estimated sensitivity is Expit(b0 1 b1).

For the training data, we obtain b0 5 –1.823 and b1 5
3.877 under a working independence correlation structure.
This leads to an estimated specificity of 1 – Expit(–1.823)
5 0.88 and sensitivity of expit(–1.823 1 3.877) 5 0.89.
There is a simple formula for the asymptotic variance of
the estimated regression parameters assuming that all obser-
vations within a subject are equi-correlated and all subjects
have the same number of observations.21 This formula can
be used to construct a 100(1 – a)% 2 -sided CI for b0. The
limits of this CI can then be transformed to the probability
scale to generate a corresponding 100(1 – a)% 2 -sided CI
for specificity. Suppose n represents the number of subjects
and we assume there are (at least)m5 100 replicate observa-
tions with Xecg 5 0 for each subject, with an associated con-
servative specification of within-subject correlation of 0.3.
Then, we compute the expected (ie, average) performance
of such an interval assuming that a 5 0.045 (ie, 95.5% 2-
sided CI) for the given number of subjects and that the actual
specificity is 0.9 (or 90%). Use of the choice a 5 0.045,
rather than the more common choice of a5 0.05, constitutes
a Bonferroni adjustment and intends to reserve 0.5% for justi-
fying the validation set size for evaluating the accuracy of the
reported HR. Our computation suggested that as few as 45
subjects would be needed in the validation set to ensure
that the 95.5% CI is no wider than 10%, such that there is
an 82% chance that the lower limit of this .CI exceeds 0.8
(ie, lower 95.5% confidence limit exceeds specificity of
0.8, or 80%, with probability 0.81).
Results
Demographics
Study enrollment started in January 2021 and was completed
in March 2022. We enrolled a total of 60 subjects (age 67 6
10 years; 44 men; body mass index [BMI] 316 6 kg/m2;
blood pressure 130 6 15 mm Hg). Demographics for the
validation cohort (N 5 45; 32 men) and the number of sub-
jects in the 3 categories of skin complexion (vFST-1 to
vFST-3) are given in Table 1. Twenty-eight subjects were
receiving beta-blockade therapy (metoprolol, atenolol, carve-
dilol), and 10 subjects were being treated with a rhythm con-
trol drug. Our subjects self-reported the presence of diseases
or syndromes associated with a low level of Hb, including
anemia (N 5 5), chronic kidney disease (N 5 3), irritable
bowel syndrome (N 5 1), lead poisoning (N 5 0), leukemia
(N 5 0), hypothyroid (N 5 5), iron deficiency (N 5 8),
ferritin deficiency (N 5 1), and chronic cirrhosis (N 5 0).

Blood pressure, BMI, age, and gender distribution were in
the expected ranges for a population with AF.22 The group of
men was younger (P 5 .06) and significantly heavier
(P,.01) than the enrolled women, but BMIs were similar be-
tween genders (P5 .16). We studied the VPG technology in
8 AF patients with vFST-3 (N 5 8 subjects), the largest
cohort of dark skin subjects ever reported for video-based
detection of AF.
VPG-based detection performance across rhythm
categories
We collected 7060 VPG recordings in the validation set.
Seven VPG signals had an ECG signal that was too noisy
for HR extraction and/or rhythm annotation. Among the re-
maining 7053 recordings (6.7%), the number of recordings
per vFST group were 2830, 2968, and 1255 for vFST-1
(N 5 18 subjects), vFST-2 (N 5 19 subjects), and vFST-3
(N5 5 subjects), respectively. The percentage of conclusive
measurements was 93%, 92%, and 61% for the same groups,
respectively (Table 2).

All VPG recordings had a corresponding 25-second ECG
labeled with a rhythm interpretation: 1 (AF), 2 (sinus), or 3
(other rhythms). The number of VPG recordings in each
ECG-based rhythm category across all HealthKam AF
labeled “abnormal rhythm,” sinus rhythm (ie, providing a
“pulse rate”), and “too-low-quality” (TLQ) results are given
in Table 2. The percentage of TLQ recordings was 7.4%
throughout the entire validation recording dataset. This
included all the levels of illumination, light sources, camera
angles, and distances from the face.

Among the conclusive recordings, sensitivity of the
method to detect AF was 95.6% (2235/2339), and specificity
was 92.4% (3090/3343). Positive predictive value was 89.8%



Table 3 Number of VPG recordings per VPG labels across the 3 ECG
rhythm categories

Rhythm category/VPG
labels 1 (AF) 2 (sinus) 3 (other) n*

Abnormal rhythm 2235 253 55 2543
Pulse rate 104 3090 396 3590
Inconclusive 435 414 71 920
N* 2774 3757 522 7,053

AF 5 atrial fibrillation; ECG 5 electrocardiogram; VPG 5 videoplethys-
mography.
*N is the number of recordings across rhythm categories, and n is the number
of recordings across VPG labels.
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(2235/2488), and negative predictive value was 96.7%
(3090/3194). We combined rhythm categories 2 and 3
because we observed that the set of ECGs labeled as
abnormal rhythm had 93% 6 7% sinus beats. Hence, most
of these 25-second recordings contained a single nonsinus
beat.

The accuracy of PR measurements was evaluated in the
set of 3590 recordings from 40 subjects from the training
set. Five subjects were constantly in AF and did not have
PRs reported during their recordings. The mean error of
PR, in reference to HR, was –0.1 bpm, with upper and lower
bounds of –4 bpm and 14 bpm, respectively. We found 2
measurements with an error .60 bpm. These 2 recordings
were associated with pulse deficit. The PPG-based readings
for these 2 recordings were similar to the ones from the
VPG measurements. We observed 8 measurements (0.2%)
with an error .10 bpm. There were 38 measurements
(1.0%) with an error .5 bpm. Most of these PR measure-
ments were collected during undetected AF rhythm (false
negative). A confusion matrix for PR reporting is given in
Table 3.
Performance across skin complexions and other
environmental factors
A summary of the performance and accuracy of the method
across the study demographic characteristics including
gender, obesity, and blood pressure status (hypertensive,
normotensive, and hypotensive subjects) is given in
Table 4. We look at the mean measurement error (in bpm)
and its Bland-Altman 95% limits of agreement (LoA), that
is, upper and lower boundaries of the errors adjusted for repli-
cated measurements.23 In the lower section of Table 4, we
provided the method performance for AF detection in these
subgroups. We note that the mean errors in these subgroups
were never larger than 1.5 bpm, and the largest LoA bound-
ary was 3.5 bpm. Specificity and sensitivity of the method re-
mained at the 90% level across most groups. Min and max
sensitivities were 91% and 98%, and 88% and 93%, respec-
tively, for specificity.

We did not observe differences in AF detection perfor-
mance and accuracy when comparing the 2 different types
of light source—LED vs incandescent light. However, the
percentage of inconclusive VPG recordings was lower in
measurements collected with LED than with incandescent
lights: 13.1% vs 31.6% (P,.0001) at 50 lux. This difference
progressively decreased with increasing level of illumination.
At 500 lux, these percentages were not statistically different:
7.6% vs 9.6% (P5 .2) for LED and incandescent light sour-
ces, respectively.

The accuracy and performance results across vFST cate-
gories, level of illumination, distances, and angles are given
in Table 5. Accuracy was consistent across all subgroups,
with a mean error inferior to 1 bpm. The larger LoA was
found in the vFST-1 group (–0.1 to –5.5 bpm) driven by
the outliers due to pulse deficit. Other subgroups had LoA
with limits inferior to –2.2 bpm. The highest detection perfor-
mance was found in the vFST-1 group (sensitivity 99%;
specificity 94%), and the lowest performance was associated
with the vFST-3 group (sensitivity 97%; specificity 81%).
We performed an additional analysis of performance in the
subgroup vFST-3 considering data collected for levels of illu-
mination.50 lux only, that is, we eliminated the lowest illu-
mination condition from the analysis (N 5 8 subjects; n 5
618 recordings). The resulting sensitivity and specificity
were 96% of 90%, respectively, with positive predictive
value of 89 and negative predictive value of 96%.
Discussion
In the past, facial video-based monitoring technologies have
been primarily used for monitoring pulse and respiratory
rates,24 but the technology is rapidly evolving due, in part,
to the increased availability of good-quality video cameras
(.5 MP) in consumer products. In this study, we present
an application of video monitoring that goes beyond the mea-
surements of vital signs with the ability to detect AF, which is
one of the most prevalent clinical cardiac arrhythmias with
significant associated morbidity.

Our work reveals this technology can detect the presence
of AF utilizing video cameras from a common smartphone
with sensitivity and specificity �90% when the right
recording conditions are present. These conditions include
an ambient illumination of at least 100 lux, a distance from
the camera between 28 and 44 cm, and an angle between
20� (almost flat) and 90� (facing). The tested range of dis-
tances and angles between the patients’ faces and the camera
corresponds to how individuals would be expected to use
their smartphone. This technology may need further tuning
if a different type of camera is used.

Melanin plays its photoprotective role and reduces the
amount of light reflected from the face of subjects with the
darkest skin pigmentation. In our study, we report a larger
number of TLQ recordings in the group of subjects with
vFST-3 compared to other vFST categories, especially at
low illumination. However, the technology delivered a
similar accuracy and performance across all skin types
when the ambient illumination was .50 lux. We observed
similar AF detection performance and PR accuracy between
LED and incandescent lights, but a lower number of rejected
VPG recordings was reported for the LED light source,



Table 4 Summary of performances for VPG-based detection of AF and accuracy in pulse rate measurements across population demographic
characteristics

Gender BMI BP

Subsets Men Women Obese Not obese Hypertensive Normotensive Hypotensive

Pulse rate accuracy
N (subjects) 27 12 18 18 17 14 4
N (datapoints) 2300 1219 1326 1964 1746 930 594
Mean error (bpm) –1.1 –1.0 –1.4 –0.9 –0.6 1.0 –0.1
Upper bound (bpm) 0.2 1.5 0.7 0.7 0.6 0.8 0.0
Lower bound (bpm) –2.5 –3.4 –3.5 –2.4 –1.8 0.0 –0.3

AF detection performance
N (subjects) 32 13 19 22 21 15 0
N (datapoints) 4272 1861 2705 2967 2818 2108 —
Sensitivity (%) 96 95 91 97 98 94 —
Specificity (%) 89 92 90 93 92 88 -
PPV (%) 97 84 72 94 85 90 -
NPV (%) 86 98 97 97 99 92 -

NPV 5 negative predictive value; PPV 5 positive predictive value; other abbreviations as in Tables 1 and 3.
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especially at low illumination. LEDs generally emit more in-
tensity in the green wavelength (w550 nm) than incandes-
cent lights, which is the wavelength primarily absorbed by
oxygenated Hb.

VPG technology enables a new paradigm for cardiac
monitoring that does not provide continuous monitoring but
addresses important limitations of existing monitoring solu-
tions. The clinical benefit of continuous monitoring for the
purpose of detecting AF has recently been questioned by 2
important studies. The LOOP study (Atrial Fibrillation De-
tected by Continuous ECG Monitoring Using Implantable
Loop Recorder to Prevent Stroke in High-risk Individuals)
compared continuous monitoring utilizing implantable car-
diac monitors vs usual care.25 Systemic anticoagulation was
recommended for any detection of AF in both groups. There
was no significant difference in the reduction of the risk of
stroke or systemic embolism between the 2 monitoring strate-
gies.25 The STROKESTOP (Systematic ECG Screening for
Table 5 Summary of performances for VPG-based detection of AF and a
skin tones.

vFST Illumination (lux)

1 2 3 �50 �100 �2

Pulse rate accuracy
N (subjects) 16 18 5 39 37 36
N (datapoints) 1555 1691 342 3588 2927 217
Mean error (bpm) –2.7 –0.2 0.3 –1.1 –0.5 –0.
Upper bound (bpm) –0.1 0.1 1.2 0.0 0.4 0.4
Lower bound (bpm) –5.5 –0.4 –0.5 –2.2 –1.5 –1.

AF detection performance
N (subjects) 18 19 8 45 45 45
N (datapoints) 2631 2732 770 6133 4918 360
Sensitivity (%) 99 92 97 96 95 94
Specificity (%) 94 93 81 92 93 94
PPV (%) 90 88 82 88 89 90
NPV (%) 99 95 97 97 97 97

Abbreviations as in Tables 2, 3, and 4.
Atrial Fibrillation Among 75 Year Old Subjects in the Region
of Stockholm and Holland, Sweden) trial utilized a handheld
single-lead ECG recorder for 30 seconds twice daily for 30
days to screen for AF in a large cohort of elderly individuals
in 2 communities in Sweden and compared them to controls
who were not screened.26 There was a 4% reduction in the
screened subjects for the combined primary endpoint of
stroke, systemic embolism, hospitalization for severe
bleeding, and death.26 These studies suggest that continuous
monitoring often detects a higher percentage of short-
duration episodes of AF that likely are associatedwith a lower
risk of stroke and other comorbid conditions and do not neces-
sarily require further treatment. Intermittent monitoring, as
occurs with VPG technology, may be superior at detecting
longer-duration episodes of AF for which clinical interven-
tion can have a meaningful impact. In addition, the proposed
technology may be an attractive alternative for patients who
are not compliant with wearable technologies. The
ccuracy in pulse rate measurements across recording conditions and

Distance Angle (�)

00 .200 Close Medium Far 20 60 90

35 32 35 35 35 36 38
7 1121 1072 1505 1011 1149 1203 1236
3 –0.5 –0.2 –0.9 –0.2 –0.7 –0.6 –0.6

0.2 0.0 0.2 0.7 0.2 0.1 0.5
0 –1.2 –0.5 –2.1 –1.1 –1.7 –1.3 –1.6

45 45 45 43 45 45 45
0 1809 1836 2547 1750 1945 2076 2112

93 98 94 96 96 96 95
94 93 92 92 92 91 92
91 90 87 88 88 87 89
96 99 96 97 97 97 97
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inconvenience, skin irritation, and extra effort of using, wear-
ing, and maintaining a monitoring device do not exist for the
VPGmethod, so it avoids the problem of device attrition. De-
vice attrition is not a negligible challenge, especially in indi-
viduals with chronic diseases. Shaw et al27 reported that 24%
of healthy individuals abandoned wearable devices after a
month, whereas 84% of patients living with chronic diseases
stopped using their devices during the same time period.
Smartphones are owned by themajority of people in countries
with advanced economies (81% in the United States).28 The
VPG technology can be leveraged to easily deploy cardiac
monitoring services to subjects by simply downloading an
application to their personal device. Furthermore, the VPG
monitoring technology requires the patient to remain still;
therefore, it primarily collects information at rest, avoiding
the challenge of data overload posed by continuous moni-
toring technologies capturing HR across all daily activities.
Study limitations
Integrating a video-based monitoring technology into a pa-
tient’s everyday life may raise concerns about privacy and
cybersecurity. It is worth noting that the technology tested
in this study was developed with Health Insurance Portability
and Accountability Act (HIPAA) and privacy requirements
in mind. The technology was designed so that it does not re-
cord or store any video/image of the patient’s face. More
importantly, the camera is used as a sensor, extracting VPG
signal from each frame without the need for an intermediary
step involving the storage of any images.

VPG technology measures the changes in volume and
concentration of Hb underneath the skin. Because we did
not have access to direct measurement of Hb concentration,
we surveyed the cohort for the presence of diseases and con-
ditions such as anemia, chronic kidney disease, irritable
bowel syndrome, lead exposure, iron and ferritin deficiency,
leukemia, hypothyroid, and cirrhosis. We found that 2 sub-
jects had at least 3 of these factors. One subject (68-year-
old black woman) had persistent AF, and the second subject
(68 year-old white man) remained in sinus rhythm during the
study. The results from these 2 individuals were similar to
those of the study population as a whole. Future studies
should include Hb measurements to clarify whether
abnormal Hb is associated with a loss of monitoring
performance.
Conclusion
We investigated a video-based method that captures a pulsa-
tile signal from the face of patients with a diagnosis of AF.
The method provides a level of accuracy and performance
that is equivalent to existing medical-grade, pulse-based
technologies. We believe that video-based monitoring will
be an attractive solution for telemedicine platforms because
it enables vital signs and cardiac rhythm monitoring without
the need to ship dedicated devices to patients. Its deployment
is made easy by it being a pure software solution.
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