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Background: Patient-derived orthotopic xenograft (PDOX) is a popular animal model for
translational cancer research. Immunotherapy is a promising therapy against glioblastoma
(GBM). However, the PDOX model is limited to evaluating immune-related events. Our
study aims to establish GBM humanized PDOX (HPDOX) mice models to study the
mechanism of anti-CTLA4 immunotherapy and immune-related adverse events (IRAEs).

Methods: HPDOX models were established by culturing GBM tissues and intracranially
implanting them in NSG mice. Meanwhile, peripheral blood mononuclear cells (PBMCs)
were separated from peripheral blood and of GBM patients and administrated in
corresponding mice. The population of CD45+, CD3+, CD4+, CD8+, and regulatory T
(Treg) cells was estimated in the peripheral blood or tumor.

Results: T cells derived from GBM patients were detected in HPDOX mice models. The
application of anti-CTLA4 antibodies (ipilimumab and tremelimumab) significantly inhibited
the growth of GBM xenografts in mice. Moreover, residual patient T cells were detected in
the tumor microenvironment and peripheral blood of HPDOX mice and were significantly
elevated by ipilimumab and tremelimumab. Additionally, Treg cells were decreased in
mice with IRAEs. Lastly, the proportion of CD4+/CD8+ T cells dramatically increased after
the administration of ipilimumab. And the degree of IRAEs may be related to CD56+
expression in HPDOX.

Conclusions: Our study established HPDOX mice models for investigating the
mechanism and IRAEs of immunotherapies in GBM, which would offer a promising
platform for evaluating the efficacy and IRAEs of novel therapies and exploring
personalized therapeutic strategies.

Keywords: glioblastoma, humanized patient-derived orthotopic xenograft, immune-related adverse events,
anti-CTLA4 immunotherapy, regulatory T cells
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BACKGROUND

Glioblastoma (GBM) is one of the most malignant primary brain
cancers. The median overall survival of GBM patients is only
14.6 months, despite the satisfactory surgery and concomitant
chemoradiotherapy (1–3). Therefore, there is a clear urgent to
reveal the mechanism of tumorigenesis and development and
develop novel therapeutic agents against GBM. However, recent
clinical trials without appropriate mice models in this area have
resulted in dissatisfactory and inconsistent therapeutic effects. It
cannot reflect the tumor microenvironment, principal histologic,
and genetic characteristics of GBM. In this context, the
development of accurate and reproducible animal models
is essential.

The patient-derived orthotopic xenograft (PDOX) has
attracted more and more attention to facilitate biologic studies,
preclinical drug evaluation, and biomarker identification (4–8).
Nevertheless, clinically relevant PDOX models are not fully
capable of recapitulating patients’ immune systems, which
impedes the evaluation of immunotherapy efficacy. In recent
years, although the co-cultures combined GBM organoids with
immune cells such as human peripheral blood mononuclear cells
(PBMCs) have been of great concern, which could be an ideal
platform for immunotherapy selection (9), since the tumor-
derived spheres are still not in the same conditions such as
hypoxia or immune microenvironment, as to those occur in
intracranial. Besides, the co-culture conditions combined GBM
organoids with immune cells are not the optimum one for each
cell type according to compromise strategy (10, 11). Meanwhile,
immune-related adverse events (IRAEs) arising under
immunotherapy forcing us potentially without precedent to
think of strategies to maintain the immune system. Therefore,
revealing the mechanism of T cells from PBMCs in the action of
IRAEs and anti-tumor immunity is essential to balancing the
immune system in developing a cancer immunotherapy strategy.

Humanized PDOX models (HPDOX) were regarded as the
next-generation PDOX. Although humanized mice were
reported in few tumors such as myeloma and hepatocellular
carcinoma, humanized GBM mice models were seldom studied
in recent literature (12). Those models were essential to study the
potential and limitations for differential immune-enhancing
approaches, as well as contribute to refining the framework of
emerging immunotherapy strategies and related IRAEs against
GBM. Our study was conducted to establish humanized GBM
mice models and investigate the efficacy and IRAEs of anti-
CTLA4 immunotherapy. Our studies aimed to provide a
platform to develop effective strategies to minimize immune
therapeutic IRAEs without impeding anti-tumor immunity in
the future.
MATERIALS AND METHODS

Human GBM Tissue Specimens
Fresh GBM specimens were obtained from patients who received
surgery in the Department of Neurosurgery, Xiangya Hospital
Frontiers in Oncology | www.frontiersin.org 2
from 2016 to 2020. All clinical samples were collected with
informed consent obtained from the patients. All procedures
were conducted following the Declaration of Helsinki (1964).

Peripheral Blood
All procedures were approved by the Ethics Committee of
Xiangya Hospital. Peripheral blood (PB) specimens were
collected from patients who received surgery in the Department
of Neurosurgery, Xiangya Hospital from 2016 to 2020 with
written informed consent obtained. PBMCs were isolated using
Lymphoprep (Stem Cell Technologies) according to the
manufacturer’s instructions.

T Cell Reconstitution and Anti-CTLA4
Antibodies
The reconstitution of CD4+ and CD8+ T cells of PB from mice
was monitored every week. A total of 1 × 106 GBM patients’
PBMCs were implanted into sub-lethally irradiated (0.5 Gy) 4–6-
week-old male NSG mice by tail vein. The anti-CTLA4
antibodies (ipilimumab, ipilimumab with N298A mutation,
and tremelimumab) were generous gifts from Huntsman
Cancer Institute, University of Utah, USA.

Generation of HPDOX Mice Model
Some 4–6-week-old male NSG (NOD.Cg−Prkdcscid Il2rgtm1Wjll/
SzJ) mice were used in this study. All animal experiments were
obtained and performed at the Laboratory Animal Center of the
Central South University and all procedures were approved by
the Ethics Committee of Xiangya Hospital following the Guide
for the Care and Use of Laboratory Animals. PDOX was
established from surgically resected specimens in NSG mice.
Fresh surgical specimens were rinsed with Hank’s solution three
times. Then the tumor tissue was cut into several 1–3 mm3

pieces. The tissue was incubated with accutase for 30 min at 37°C
and dissociated into single cells. Cells were cultured in serum-
free medium (Canada, Stemcell Technologies) in an incubator.
Before transplantation, cells were digested and resuspended in
the medium with a density of 1 × 108/ml. The injection was
located at the skull 1–2 mm lateral and 1 mm anterior to the
bregma. Each time, 5 ml of cell suspension was aspirated using
the Hamilton syringe and slowly injected into the brain at a dept
of 2–3 mm with a rate of 1 ml/min. After the completion of the
injection, maintain the needle for 3 min before withdrawing to
reduce the backflow of the injected cells spillover. After 14 days
of PDOX established, the mice with criterion can be
incorporated for further study: (a) The weight loss is no more
than 10%; (b) Motor function is normal, without hypokinesis;
(c) Hair’s clean and shiny, without ruffings; (d) The bowel and
bladder functions are normal.; and (e) No signs of infection or
any other illness. To estimate the tumor volume, the simple
random sampling method was employed to select three mice
from each group for sacrifice. The tumor volume was calculated
according to the HE slides with the greatest cross-sectional area.
Tumor volume was determined using the following equation:
length (L) × width2 (W) × 0.5. Tumor volume of the three mice
was within our expectation, whereas some mice were excluded
because the mice failed to meet the standard as described
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previously. There is no significant difference in tumor volume at
this time point (Figure S1, P >0.05). Afterward, the HPDOX
mice model was established by injecting PBMCs from GBM
patients at 4 h after irradiation (13). The antibodies were given
twice a week after PBMCs transplantation. The mice in our study
were monitored for up to 3 months for weight, health, or
immune status. HPDOX suffered systemic IRAEs were assessed
by the criterion of mice graft-versus-host disease (GVHD)
clinical scoring system including weight loss, posture, activity,
fur texture, and skin integrity (14). The mouse’s total score was
estimated twice a week. Mice were sacrificed according to the
following criteria: weight loss of 20–25%; tumor weight reached
10% of mice weight; appetite loss of more than 24 h; depression
and hypothermia. The observation endpoint was defined as 104
days (14 days for model establishment and 3 months
for observation).

Flow Cytometry
PB containing the anticoagulant sodium heparin was centrifuged at
1,500 rpm for 5 min at room temperature. Red blood cells were
lysed by Red Blood Cell Lysis Buffer (Sigma), and the white blood
cells were pelleted at 300g for 3 min. Flow cytometric analysis was
performed using the LSR FORTESSA device (BD Biosciences, San
Jose, CA, USA). The samples were incubated with the following
antibodies to identify T and regulatory T (Treg) cells: anti-human
CD3 FITC (BD Biosciences), anti-human CD4 Pacific Blue (BD
Biosciences), anti-human CD8 APC (BD Biosciences), anti-human
CD45 PE (BD Biosciences), IFNg-APC (BioLegend), CD45RA- PE
(BD Biosciences), CD45RO-APC-cy7 (BD Biosciences), anti-
human FOXP3 PE (BD Biosciences), CFSE FITC (BD
Biosciences), CD25 PE (BD Biosciences), CD127 PE-cy7 (BD
Biosciences), CD56 PE (BD Biosciences), and HLA-DR PE-cy7
(BD Biosciences). The following controls were used: unstained cells
and single-stained cells; and dead cells, which in conjunction with
AutoComp software were used to set accurate compensation and
Frontiers in Oncology | www.frontiersin.org 3
data analysis. Cells were counted per sample, and the data were
analyzed with FlowJo V10.

Statistical Analyses
Statistical analyses were conducted using GraphPad Prism v8.0.
One-way ANOVA or unpaired two-tailed Student’s t-test was
used to estimate the difference between two or more groups.
Kaplan–Meier analysis was used to evaluate the survival
difference between two groups. Two-sided p <0.05 was
considered as statistical significance.
RESULTS

Establishment of GBM HPDOX Mice
Models
Establishment of GBM PDOX from patient’s tissues. The
establishment of the PDOX model was conducted by injecting
patients’ tumor-derived GBM cells into female immune-deficient
nude mice. Candidate mice for PDOX models could be NSG,
NOD-SCID, and nude. Herein we investigated in vitro culture of
26 PDOX generated and/or passaged in NSG mice. The
workflow was shown in Figure 1, and details were described
above. The demographic information of patients from whom
PDOX was generated was summarized in Table 1. The age of
patients ranged from 22 to 76 years old with a mean of 58 ± 12.05
years old, and 11 patients were women and 15 were men. The
tumor volume varied from 4.88 to 115.33 cm3, with a mean of 48 ±
26.60 cm3. GBM cells from each specimen were injected into five
mice, in which 12 specimens successfully inherited in mice. The
overall engraftment rate of GBM PDOX in NSG mice was 46.15%
(60/130). The total time of PDOX establishment ranged from 44 to
126 days, with a mean of 62 ± 17.5 days. Humanized GBM PDOX
by transplanting the same patient’s PBMCs. Firstly, we established
FIGURE 1 | Workflow of establishing GBM HPDOX mice models. Top, the workflow of establishing the GBM PDOX model. Tumor specimens obtained from surgery
were dissociated to be single tumor cells. Then tumor cells were cultured with proper conditions to enhance the formation of GBM neurospheres (Top step 1). After
the obtainment of neurospheres could be tested (Top, steps 1 & 2). GBM neurospheres could be used to establish the PDOX model to study tumor biology or test
novel medicine and instruments (Top, step 3). Bottom, the workflow of establishing patients’ PBMCs-derived humanized mouse models. The peripheral blood of
GBM patients was collected and centrifugated (Bottom, step 1). The PBMCs were isolated and stored (Bottom, steps 2 & 3). After the establishment of the PDOX
mice model for two weeks, the same patient’s PBMCs were injected into NSG mice for further study (step 4).
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GBM PDOX mice. Two weeks later, the HPDOX models were
established by engrafting the same patient’s PBMCs
(Figure 1, bottom).

Patients’ T Cells Reconstituted Well in
GBM HPDOX Mice
Timepoint of the construction of HPDOX mice model. PBMCs
were collected from GBM patients and the HPDOX model was
constructed in PDOX mice bearing tumors derived from the
same patients (Figure 2A). Flow cytometry of CD4+ and CD8+
T cells in HPDOX to explore the differentiated T cells within
transplanted PBMCs (Figure 2B). The population of CD4+
(Figure 2C) and CD8+ (Figure 2D) T cells in GBM HPDOX
mice. Our results showed both CD4+ and CD8+ T cells
reconstituted well in GBM HPDOX mice.

Evaluation of Antitumor Effects of Anti-
CTLA4 Antibodies in HPDOX Mice Model
GBM07 and GBM22 were selected as the representation since they
had a high expression of CTLA4 (Table S1 and Figure 3A). After
the construction of the HPDOXmodel, mice were treated with anti-
CTLA4 antibody ipilimumab and tremelimumab twice weekly as
the workflow described before. Results showed that tumor volume
was significantly reduced after the application of ipilimumab and
tremelimumab (P <0.05) (Figures 3B, C). After the intervention,
residual human T cells (CD45+, CD3+) could be detected and their
levels were significantly elevated in the tumor microenvironment
and PB in HPDOX mice (P <0.05) (Figures 3D–G). Then we
explored the population of the subgroups of the T cells. The
Frontiers in Oncology | www.frontiersin.org 4
activated T cells were presented with a higher expression of IFN-
g+ and CD25+. The population of the activated T cells was
increased significantly after the treatment of anti-CTLA4
antibodies (P <0.01, Figures S2A–C). The exhausted T cells
presented the lower expression of IFN-g+ (Figure S2B). The
exhausted T could differentiate into the activated T cells in certain
conditions. The effector T cells are usually CD45RA positive, which
was increased dramatically after treatment (P <0.001, Figures S2A,
D). The memory T cells are CD45RO positive, which showed no
significant difference between the groups (Figures S2A, E). The P
value of the survival data of the HPDOX 07, and HPDOX 22 was
0.0082 and 0.0003 respectively, which indicated the significant
difference between the treatment groups (Figures 3H, I).
However, for the tremelimumab, the P value was 0.1118 and
0.0102 respectively, which indicated the significant difference
between the treatment groups only in HPDOX 22 instead of
HPDOX 07. These results indicated that CTLA4 played an
inhibitory role in immune surveillance and HPDOX models
could be appropriate approaches for revealing antitumor
mechanisms and effects of anti-CTLA4 immunotherapy.

FOXP3+ and Ratio of CD4+/CD8+ T Cells
Were Associated With IRAEs
To prolong the period for evaluation of the efficacy and IRAEs of
immunotherapy, the detail of PBMCs transplantation is essential for
the success of HPDOX (Table 2). The period can be prolonged to
47.90 ± 17.91 days engrafted with the decreased number (1 × 106 vs
>1 × 107 normally) of autologous patients’ PBMCs (Figure S3 and
Table 1). Further, we detected the effect of ipilimumab at different
TABLE 1 | The demographic and clinical information for patients of PDOX models.

Case ID Age Sex Race Pathology Grades Tumor Smoke Pretreatment Passage In vivo
Volume (cm3) status Days

1 62 Male Han GBM IV 11.76 Current NO – –

2 70 Male Tujia GBM IV 27.95 Former NO – –

3 61 Female Han GBM IV 31.4 Current NO F1 53
4 73 Male Han GBM IV 115.33 Former NO F1 88
5 46 Female Han GBM IV 15.17 Current NO F1 67
6 52 Male Han GBM IV 100.68 Current NO F1 48
7 39 Female Zhuang GBM IV 4.88 Never NO F1 44
8 22 Male Han GBM IV 42.47 Never Surgery/RT/CT F1 56
9 64 Male Han GBM IV 78.44 Current NO F1 68
10 67 Male Han GBM IV 59.59 Current NO – –

11 63 Female Han GBM IV 29.97 Former NO F1 67
12 58 Male Han GBM IV 47.38 Current NO F1 46
13 55 Female Han GBM IV 47.36 Former NO F1 126
14 57 Female Han GBM IV 56.76 Never NO F1 57
15 56 Male Han GBM IV 62.2 Former NO F1 59
16 76 Female Han GBM IV 105.13 Never NO F1 48
17 54 Male Han GBM IV 29.47 Former NO F1 76
18 67 Female Han GBM IV 33.43 Former NO F1 68
19 72 Male Han GBM IV 41.79 Former NO – –

20 73 Female Han GBM IV 40.71 Current NO F1 67
21 64 Male Tujia GBM IV 47.47 Former NO – 53
22 68 Female Han GBM IV 18.54 Former NO F1 57
23 61 Male Han GBM IV 35.87 Former NO F1 51
24 57 Female Miao GBM IV 40.22 Current NO F1 49
25 43 Male Han GBM IV 61.94 Former NO – –

26 40 Male Han GBM IV 49.39 Current NO F1 52
June 2021 | Volu
me 11 | Article
GBM, glioblastoma; RT, radiotherapy; CT, chemotherapy.
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doses in HPDOX mice models. The construction of HPDOX was
detailed as before andGBM26 was taken as an example. Tenmice in
each group were administrated with a high dose (10 mg/g) and
normal dose (3 mg/g) of ipilimumab respectively. IRAEs were
detected in 7/10 in the high dose group, only 1/10 in the normal
dose group within the next two months (Table 3). After the
intervention, we found that CD4+ and CD8+T cells reconstituted
well in GBMHPDOX26mice (Figures 4A top and B), and the ratio
of CD4+/CD8+ T cells was dramatically increased in mice with
IRAEs (P <0.05) (Figure 4C). For the mice without IRAEs, the
CD4/CD8 ratio after therapy was 2.34 ± 2.12, which is the normal
range of human. But for the mice with IRAEs, the ratio shifts to 8.06
± 2.69. The CD4/CD8 ratio increased because the percentage of
CD4 T cells increased, while the percentage of CD4 T cells
decreased in PB. Moreover, the FOXP3+ Treg cells were
decreased in mice with IRAEs (P <0.05) (Figures 4A bottom and
D). These results indicated that the promotion of CD4+ T cells and
the suppression of CD8+ and FOXP3+ Treg cells were associated
with the occurrence of IRAEs. The construction of the HPDOX
mice model could provide a platform for assessing adverse events
of immunotherapies.

The Degree of IRAEs in HPDOX May Be
Related to CD56+ Cells
After the treatment of ipilimumab, the HPDOX with mild or
severe IRAEs were accessed by flow cytometry to detect the
Frontiers in Oncology | www.frontiersin.org 5
possible mechanism of IRAEs. The whole blood was collected at
the 7th and 35th days after the autologous PBMCs
transplantation. As is shown in Figure 5, HPDOX suffered
systemic IRAEs were assessed by the criterion of mouse
GVHD clinical scoring system including weight loss, posture,
activity, fur texture, and skin integrity (14). The CD4, CD8,
CD25, CD127, CD56, and HLA-DR were detected to evaluate the
expression of CD4, CD8 in T cells, the CD25+ CD127- Treg cells,
CD56, and HLA-DR (Figures 5A, B). Those results showed,
after the treatment of ipilimumab, there was no significant
difference in the CD56 expression in the mild IRAEs group
(Figure 5C), although increased in the severe IRAEs group. It
indicates that the degree of IRAEs in HPDOX may be related to
CD56+ cells. Similarly, the CD25+CD127- Treg cells were
significantly decreased, while the HLA-DR expression was
increased in both mild and severe IRAEs groups (Figures 5D, E).
DISCUSSION

During the past decades, various animal models have been
developed to study brain tumor (15). Although established
cell lines such as U87 and U251 have inherited most of the
genetic and genomic features of GBM, they bear nothing in
common with the actual patients’ GBM such as invasion
histologic hallmarks (6). the development of severely
A

B

DC

FIGURE 2 | The reconstitution of T cells derived from GBM patients in HPDOX mice model. (A) Timepoint of the construction of HPDOX mice model. (B) Flow
cytometry analysis of CD4+ and CD8+ T cells in NSG mice with transplanted PBMCs. (C, D) The population of CD4+ (C) and CD8+ (D) T cells in NSG mice with
transplanted PBMCs. Each experiment was repeated at least three times, and three repeats were included each time.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Humanized Mice Model
immunocompromised mice has laid a solid foundation of PDOX,
which has attracted more and more attention to facilitating
biologic studies, preclinical drug evaluation, and biomarker
identification (4–8). There are two main methods we have tried
to obtain single cells for establishing the PDOX mice model:
firstly, GBM tumor tissue right after they obtain from surgery is
dissociated into single cells by treatment with Accutase™ solution
Frontiers in Oncology | www.frontiersin.org 6
to digest the extracellular material; secondly, the primary GBM
cultures of tissue-derived cells which may acquire purer GBM cells
but the resemblance disappeared with passages increasingly (6).
The primary GBM culture conditions are also be used for the
culture of GBM stem cells, which can enhance the success of
produce those phenotypes from patients’ tissue in PDOX via
few cells with enlarging tumor-initiating potential (4).
A B

D E F G

IH

C

FIGURE 3 | Evaluating the antitumor effect of anti-CTLA4 monoclonal antibodies in HPDOX. (A) IHC analyzes anti-CTLA4 in HPDOX 07, HPDOX 22; Scale bar: 20 mm
(sides)/1,000 mm (middle). (B, C) Tumor volume of GBM xenograft in mice treated with Vehicle, huIgG, ipilimumab, and tremelimumab. (D–G) The population of T cells in GBM
tissues (D, F) and peripheral blood (E, G) in mice treated with Vehicle, huIgG, ipilimumab, and tremelimumab. (H, I) The survival data of the HPDOX 07, and HPDOX 22 was
presented after the treatment respectively. There were six mice in each group. Data were represented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001.
TABLE 2 | Establishing autologous GBM HPDOX.

Materials Characteristics and delivery routes in the immunodeficient mouse Analyses performed for HPDOX

Immunity PBMCs by intraperitoneal Human cells or cytokines by intravenous Mature and function
T cells and Treg
Graft-versus-host disease

GBM Patient derived orthotopic xenograft (PDOX) Preclinical study of drugs and cells by intravenous Weight loss
Tumor growth
Mutation
Access therapeutic drugs

TME PDOX +Autologous PBMCs by
intraperitoneal

Preclinical study of drugs, cells, ICIs, and Vaccination by intravenous Weight/hair loss
Tumor growth
Mutation
Access therapeutic drugs
Immune response
IRAEs
June 2
TME, tumor microenvironments; ICIs, immune checkpoint inhibitors; IRAEs, immune-related adverse events.
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Therefore,PDOX can reproduce biological features of GBM, such
as brain invasion, microvascular proliferation, and anti-tumor
therapy. Moreover, PDOX can simulate an appropriate
microenvironment for cancer research compared with
heterotopic extracranial implantation (16, 17). However, a
limitation of PDOX should be addressed that it cannot be used
in the researches on the immune of the microenvironment
because of the requirement for immune-deficient nude mice as
hosts (18).

Therefore, the HPDOXmice model was developed, which was a
promising approach to facilitate the understanding of human
immunity and the evaluation of the efficacy and IRAEs of
immunotherapy in vivo. Stem-like cells derived HPDOX was
reported with a low occurrence of IRAEs such as GVHD but
represent few features of cancer in patients (19). HPDOX derived
from patients’ PBMCs is the easiest way, which has limited
application in following antigenic immune responses, but still is
applied to access human immunosuppressive reagents (19).
Although the novel mouse strains have been developed to inhibit
the IRAEs such as GVHD by MHC complex-deficient mouse (20,
21), the immune cell differentiation and response could also be
impeded. In this study, we established HPDOX mice models and
evaluated the potential mechanism of anti-CTLA4 immunotherapy
Frontiers in Oncology | www.frontiersin.org 7
in GBM. Patients’ PBMCs could be engrafted into PDOX to
reconstitute T cells for humanizing. Usually, the GVHD occurs
2–4 weeks after PBMC transfer. To prolong the period for
evaluation of the efficacy and IRAEs of immunotherapy, the detail
of PBMCs transplantation is essential for the success of HPDOX.
The period can be prolonged after engrafted with the decreased
number of autologous patients’ PBMCs. Specifically, IRAEs were
assessed by weight loss, posture, activity, fur texture, and skin
integrity. Although PBMCs derived humanized mice have been
thoughted to be an appropriate platform to evaluate the efficacy of
targeted therapy or immunotherapy, no previous literature has
described its application in assessing the efficacy and IRAEs of
immunotherapies in the GBM HPDOX mice model. The
reconstitution of PBMCs to T cells is faster than stem-like cells,
and it has higher veracity as a model (22). Similarly, our study
revealed that the application of PBMCs could efficiently construct
the HPDOX mice model to investigate the antitumor activities and
IRAEs of anti-CTLA4 antibodies.

Immune checkpoint inhibitors (ICIs) enhance the anti-tumor
immune response by blocking Treg-mediated immunosuppression.
Why the T cells in the tumor microenvironment are few and non-
sensitive still unrevealed. Recently, HPDOX has become a brand-
new tool to assess cancer immunotherapy, which sets a robust
foundation for cancer immune-related researches (23). In our
study, we aim to demonstrate that HPDOX mice are appropriate
to investigate the efficacy and IRAEs of anti-CTLA4 antibody
therapies against GBM. Thus, this model can be used as a
platform to evaluate whether patients benefit from certain
targeted immunotherapy or not, which may provide a solid basis
for clinical decisions. As one of the most common ICIs, anti-
CTLA4 antibodies such as ipilimumab and tremelimumab have
A B

DC

FIGURE 4 | FOXP3+ and CD4+/CD8+ T cells were associated with IRAEs during anti-CTLA4 immunotherapy. (A) The population of CD4+, CD8+, and FOXP3+ T cells
after the intervention of ipilimumab. (B, C) The population of T cells (B) and Treg cells (C) in peripheral blood of mice with IRAEs or not. (D) The ratio of CD4+/CD8+
T cells in peripheral blood of the HPDOX mice with IRAEs and not. There were twelve mice in each group. Data were represented as mean ± SD. ***P < 0.001.
TABLE 3 | Evaluating the IRAEs under the treatment of ipilimumab.

IRAEs Mild Serve Total P-value

Low dose 10 2 12 0.0306
High dose 2 10 12
Total 12 12 24
IRAEs, immune-related adverse events.
June 2021 | Volume 11 | Article 692403
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enhanced the anti-tumor immune response in both preclinical and
clinical research and achieved unprecedented success. The
achievement of ICIs mainly on account of two essential factors:
1) attenuate highly immunosuppressive tumor microenvironment
by lowering frequencies of Treg cells; and 2) T effective cells are
activated in tumor microenvironments (TME) by certain
mechanisms, which play a critical role in anti-tumor in cellular
immunity (24). Base on those points, anti-CTLA-4 antibodies
might weaken their immunosuppressive effects via inhibiting the
activated Treg cells.

Anti-CTLA4 antibodies block the CTLA4 molecules enhancing
the anti-tumor immune response via inhibiting Treg-mediated
immunosuppression in HPDOX. We observed the CTLA4 was
blockaded by anti-CTLA4 antibodies and rescued the T cell
exhaustion phenotype in the GBM HPDOX mouse model.
Persistent exposure to high levels of antigen such as cancer or
chronic infections may drive functional exhaustion of T cells (25).
Recently, more and more researches focused on reversing T cell
depletion abrogates the control of the proliferation of cancer. The
critical role of CTLA4 inT cell exhaustion has been reported (26, 27).
These findings warrant the clinical trial of CTLA4-targeted
immunotherapy for GBM patients (NCT04606316). However,
some patients do not benefit from anti-CTLA4 immunotherapy,
Frontiers in Oncology | www.frontiersin.org 8
whichmight because only a few T cells arrived in TME, which is not
enough to reverse the immunosuppressive effects (28). In our study,
ipilimumab, an anti-CTLA4 antibody that binds to CTLA4
specifically, showed the anti-GBM efficacy in inhibiting tumor
growth via at least partly preserving T cells in the HPDOX model.

IRAEs showed a negative relationship with Treg numbers or
percentages in the HPDOX model. This model may provide an
emerging and promising tool to reveal the mechanism of clinical
efficacy as well as IRAEs of immune-related therapies. IRAEs
occurred in more than 90% of patients during the treatment with
anti-CTLA4 antibody (29). Systemic administration of ICIs is
usually not only influence by T cells in TME but also all T cells
across the body. ICIs administrated by vein could induce IRAEs via
unbalancing the T effect and Treg cells in normal tissues such as guts
and skin. Those possible reasons reported for IRAEs during ICIs. On
one side, Treg, expression of CTLA4, was inhibited byADCC, which
mediated by FcR expressing cells such as natural killer cells or
macrophages in TME. On the other, T effective cells were activated
and sustained via blocking the CTLA4 pathway. IRAEs could be
induced by losing the functions or numbers of Treg, which are
critical for maintaining tolerance (30). Based on those points, the
dual roles of Treg are presented. On one hand, Treg cells can impede
anti-tumor immunity to enhance immune evasion of tumor cells;
A

B

D

E

C

FIGURE 5 | The degree of IRAEs may be related to CD56+ expression in HPDOX. (A, B) The population of CD4+, CD8+, the CD25+CD127− Treg cells, CD56, and
HLA-DR in both mild and severe IRAEs groups after the intervention of ipilimumab. (C) There was no significant difference in the CD56 expression in the mild IRAEs
group, although increased in the severe IRAEs group. (D, E) The CD25+CD127− Treg cells were significantly decreased, while the HLA-DR expression was
increased in both mild and severe IRAEs groups. There were six mice in each group. Data were represented as mean ± SD. **P < 0.01, ***P < 0.001.
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On the other, Treg cells sustain an immune tolerance state and
prevent from IRAEs. It reported that a negative relationship between
Treg and IRAEs has been demonstrated in preclinical models, but
not in GBM. Our study showed the patients’ PBMCs can co-exist in
GBM HPDOX mice, which may be a useful platform for
investigating the mechanism and role of the immune-related
factors in IRAEs. In theory, it is a promising area to reform anti-
CTLA4 antibodies and enhance its efficacy of cancer
immunotherapy. To weaken ADCC and CDC effects, the N298A
(Human IgG control) mutation was designed to prevent immune
cells from IRAEs. However, our study showed N298Amutation did
not affect the IRAEs of anti-CTLA4 antibodies, whichmight because
patients’ natural killer cells or complement were not well restored in
the HPDOXmice model (Figure S4 and Table S2). And the degree
of IRAEs may be related to CD56+ expression in HPDOX.

The challenge of immunotherapy is to prevent IRAEs while
preserving anti-tumor efficacy. In theory, the immunosuppressors
or corticosteroids probably maintain immune tolerance in normal
organs and tissues, which could also impede the antitumor efficacy.
But they are not weakening the antitumor efficacy of ICIs.
Interestingly, some clinical trials showed a positive relationship
between the IRAEs and antitumor responses (31, 32). It’s a
promising direction to study this mechanism in the future (33,
34). In the future, our study will also aim to make the current anti-
CTLA4 immunotherapy more effective via inhibiting Treg cells and
weaken their immunosuppressive effects. In the meanwhile,
activating T effective cells by ICIs or vaccine in TME.

However, some important limitations should be considered.
In the first place, in the tissues and plasma of mice, there are only
low levels of human factors and cytokines resulted in a decreased
number of myeloid cells and Treg cells. With the presence of
GM-CSF, IL-6, IL-3, and M-CSF, the differentiation of T, B, and
NK cells were more actively (35, 36). Secondary, although the
novel mouse strains have been developed to inhibit the GVHD
bymouse MHC complex, the immune cell types and responses in
HPDOX still need to be further studied (12, 37). Thirdly,
accessing the change in the transcriptome and epigenome of
the patient tumor tissues is passaged in the HPDOX models (19,
38). Lastly, personalized medicine strategies will be needed to
allow higher tumor infiltration and anti-tumor responses.
CONCLUSIONS

In conclusion, our study established HPDOX mice models for
investigating the mechanism and IRAEs of immunotherapies in
GBM, which would offer a promising platform for evaluating the
efficacy and IRAEs of novel therapies and exploring personalized
therapeutic strategies.
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Supplementary Figure 4 | Evaluating the antitumor effect of ipilimumab without
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The population of T cells in GBM tissues and (D, F) peripheral blood in mice treated
with Vehicle, huIgG, ipilimumab, and ipilimumab with N298A. There were six mice in
each group. Data were represented as mean ± SD. ns, no significant difference.
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