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Amyloid pathology and axonal injury after
brain trauma

ABSTRACT

Objective: To image b-amyloid (Ab) plaque burden in long-term survivors of traumatic brain injury
(TBI), test whether traumatic axonal injury and Ab are correlated, and compare the spatial distri-
bution of Ab to Alzheimer disease (AD).

Methods: Patients 11 months to 17 years after moderate–severe TBI underwent 11C-Pittsburgh
compound B (11C-PiB)-PET, structural and diffusion MRI, and neuropsychological examination.
Healthy aged controls and patients with AD underwent PET and structural MRI. Binding potential
(BPND) images of 11C-PiB, which index Ab plaque density, were computed using an automatic
reference region extraction procedure. Voxelwise and regional differences in BPND were as-
sessed. In TBI, a measure of white matter integrity, fractional anisotropy, was estimated and
correlated with 11C-PiB BPND.

Results: Twenty-eight participants (9 with TBI, 9 controls, 10 with AD) were assessed. Increased
11C-PiB BPND was found in TBI vs controls in the posterior cingulate cortex and cerebellum.
Binding in the posterior cingulate cortex increased with decreasing fractional anisotropy of asso-
ciated white matter tracts and increasedwith time since injury. Compared to AD, binding after TBI
was lower in neocortical regions but increased in the cerebellum.

Conclusions: Increased Ab burden was observed in TBI. The distribution overlaps with, but is
distinct from, that of AD. This suggests a mechanistic link between TBI and the development of
neuropathologic features of dementia, which may relate to axonal damage produced by the injury.
Neurology® 2016;86:821–828

GLOSSARY
Ab 5 b-amyloid; AD 5 Alzheimer disease; ANOVA 5 analysis of variance; BPND 5 nondisplaceable binding potential;
11C-PiB 5 11C-Pittsburgh compound B; DTI 5 diffusion tensor imaging; FA 5 fractional anisotropy; GM 5 gray matter;
MNI 5 Montreal Neurological Institute; PCC 5 posterior cingulate cortex; ROI 5 region of interest; TAI 5 traumatic axonal
injury; TBI 5 traumatic brain injury; TBSS 5 tract-based spatial statistics; WM 5 white matter.

Traumatic brain injury (TBI) is the leading cause of disability in young adults.1 Survivors may
deteriorate clinically many years after injury,2 and TBI is thought to be a major risk factor for
dementia.3 However, the mechanisms relating acute injury to later neurodegeneration are
unclear, and the prevalence of distinct types of dementia such as Alzheimer disease (AD) and
chronic traumatic encephalopathy is uncertain.3

A mechanistic link between moderate to severe TBI and AD is suggested by the observation
that b-amyloid (Ab) aggregates are found in brains of up to a third of patients who die acutely
after TBI,3 and in a similar proportion who survive for a year or more.4 Traumatic axonal injury
(TAI), a pathology consistently observed after TBI,5 offers a potential mechanism for Ab gen-
esis.6 It is postulated that abundant amyloid precursor protein, which accumulates in damaged
axons, is aberrantly cleaved to form Ab, which subsequently aggregates as Ab plaques.6
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Immunohistochemical evidence also shows
that the enzymes necessary for Ab cleavage
accumulate at sites of TAI.6

Localization of fibrillar Ab pathology
in vivo is possible using PET. The amyloid
tracer 11C-Pittsburgh compound B (11C-PiB)
shows robust retention in brains of patients
with AD7 in a pattern that corresponds with
neuropathologic studies of Ab plaque distribu-
tion, with increases initially in the precuneus/
posterior cingulate cortex (PCC), frontal cor-
tex, and caudate nuclei, then lateral temporal
and parietal cortex.8,9 Recently, a pilot 11C-
PiB-PET study in patients with moderate to
severe TBI less than 1 year after injury found
increased uptake in cortical gray matter (GM)
and striatum.10 These findings suggest that Ab
imaging in the chronic phase after TBI may
inform our understanding of neurodegenera-
tion in long-term survivors of TBI.

Diffusion tensor imaging (DTI) can be
used to estimate in vivo the degree of axonal
injury following TBI.11–14 In this study, we
combined 11C-PiB-PET and DTI to test the
following hypotheses: (1) Ab pathology is pre-
sent in long-term survivors of TBI without
dementia; and (2) Ab pathology after moder-
ate to severe TBI is related to the amount and
distribution of TAI.

METHODS Study design and participants. In this

cross-sectional study, 9 patients with a history of a single

moderate–severe TBI based on Mayo criteria15 were assessed with
11C-PiB-PET, structural T1 MRI, DTI, and neuropsychological

examination. Patients were recruited at least 11 months after their

injury (e-Methods on the Neurology® Web site at Neurology.org).

For comparison of 11C-PiB binding, a group of patients with AD

had 11C-PiB-PET and structural MRI (e-Methods). We used 3

healthy control groups: (1) for comparison of 11C-PiB binding, a

group of healthy aged controls had PiB-PET and structural MRI; (2)

for comparison of neuropsychological performance, a second group

of healthy controls, age-matched to the patients with TBI,

underwent neuropsychological assessment; and (3) for comparison

of white matter (WM) integrity, a third group of healthy aged-

matched controls underwent structural MRI and DTI.

Standard protocol approvals, registrations, and patient
consents. The project was approved by Hammersmith and

Queen Charlotte’s and Chelsea Research Ethics Committee. All

participants gave written informed consent.

Procedures. A neuropsychological test battery was performed on

patients with TBI and age-matched controls (e-Methods).

Patients with AD and healthy aged controls underwent the

Mini-Mental State Examination.

An overview of the imaging methods is shown in figure e-1.

All patients and healthy aged controls had 11C-PiB-PET using a

Siemens ECAT EXACT HR1 scanner (Siemens Medical

Systems, Erlangen, Germany). 11C-PiB was manufactured and

supplied by Hammersmith Imanet (London, UK). All partici-

pants had an IV bolus injection of 11C-PiB, mean dose 370

MBq, and dynamic PET emission scans were acquired over

90 minutes.

To generate nondisplaceable binding potential (BPND) images

of 11C-PiB, we used a supervised clustering procedure for automatic

reference region extraction.16 T1 images were automatically seg-

mented into GM and WM. The tissue segmentations were warped

to an average group template image using a diffeomorphic nonlin-

ear image registration procedure (DARTEL).17 The group template

image was then registered to Montreal Neurological Institute

(MNI) space. Each individual’s 11C-PiB BPND image was coregis-

tered to their T1 image, then the individual flow-fields and tem-

plate registration obtained from the DARTEL procedure were used

to warp the BPND images to MNI space. The normalized BPND

images were masked using the thresholded GM template and

smoothed (8 mm full width at half maximum) (e-Methods).
11C-PiB binding potentials were also sampled from anatom-

ically defined regions of interest (ROIs). The MAPER (multi-

atlas propagation with enhanced registration) procedure was used

to generate native-space ROIs.18 To improve sampling accuracy,

ROI masks were intersected with thresholded tissue probability

maps (e-Methods). To confirm that the hippocampal ROI results

were not an effect of mislabeling due to atrophy, sampling was

repeated on hippocampal masks that were manually segmented

using a harmonized protocol.19

In patients with focal injuries, lesions apparent on T1 imag-

ing were manually segmented and excluded from ROI and voxel-

wise analyses. We also investigated 11C-PiB binding within a

lesion, the lesion penumbra, and normal-appearing GM in the

same hemisphere (e-Methods).

Patients with TBI and a group of healthy aged-matched controls

underwent DTI (e-Methods). Voxelwise maps of fractional anisot-

ropy (FA), a measure ofWM tract integrity after TBI, were calculated

using the FSL Diffusion Toolkit.20 The FA maps were skeletonized

using tract-based spatial statistics (TBSS).21 We calculated the mean

FA of the TBSS skeleton and also of selected tracts from the Johns

Hopkins University WM Tractography Atlas.22 We chose tracts

connected to GM regions that had shown increased 11C-PiB binding

in TBI.We also sampled the corticospinal tract as a control, since this

was not connected to these regions.

Statistical analysis. Group differences in neuropsychological

measures were examined using independent sample t tests and
Mann–Whitney U tests in SPSS version 21 (IBM Corp., Armonk,

NY). Voxelwise differences in BPND between groups were assessed

using nonparametric permutation tests in FSL with 10,000 permu-

tations. This approach incorporated a tool that uses voxelwise re-

gressors to exclude individual lesions from the analysis.23 Results

were cluster-corrected using threshold-free cluster enhancement

and a family-wise error rate of ,0.05. For presentation, images

were thresholded at p , 0.001 uncorrected. For ROI analysis,

regional BPND was compared using repeated-measures analysis of

variance (ANOVA), in SPSS. Mean FA values of WM tracts were

compared between patients with TBI and controls using unpaired

2-sample t tests. Regional 11C-PiB was correlated with mean FA

values, age, time since injury, and neuropsychological test scores (e-

Methods). Mean FA values were correlated with age and time since

injury. To correct for multiple comparisons, a false discovery rate

threshold was calculated using q 5 0.05.

RESULTS Nine patients with TBI (mean age 44.16
4.9 years, range 38–54) were recruited 11 months to
17 years after injury (table 1). Ten patients with AD
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(mean age 67.3 6 4.5, range 58–76) and 9 healthy
aged controls (62.3 6 4.3, range 55–66) were also

assessed. In addition, a group of 15 age-matched
controls (37.3 6 11.3, range 19–60) underwent
neuropsychological assessment and a separate

group of 11 age-matched controls (40.9 6 5.4,
range 35–51) underwent MRI and DTI. None of
the patients had a clinical diagnosis of posttraumatic

stress disorder or anxiety disorder. One patient had a
diagnosis of depression following the TBI. Structural
T1 scans were reviewed by a senior neuroradiologist.

Four patients with TBI had no abnormalities.
The remaining 5 had focal lesions, with damage
in the frontal (n 5 3) or temporal (n 5 3) lobes
(figure e-2). One patient had undergone a

parietotemporal lobectomy following TBI.

Neuropsychological impairment after TBI. The patients
with TBI showed impairments in neuropsychological
performance compared to age-matched healthy
controls. Significantly poorer responses were seen
across a range of tasks, including tests of attention,
information processing speed, and cognitive
flexibility (table e-1). In other tests, the patients
were well matched with controls. As expected, the
AD group had a lower Mini-Mental State
Examination score (mean 21.1/30 6 4.1) than
healthy aged controls (all 30/30, t 5 26.54,
df 5 9, p , 0.001).

Amyloid pathology after TBI is detected by 11C-PiB

binding. 11C-PiB BPND images of the TBI group are
shown for individual patients (figure 1). Slices from a
representative patient with AD and a healthy aged

Table 1 Demographics and clinical data of all patients with traumatic brain injury

Age, y Sex Education level Etiology
Lowest
GCS PTA, h Medication

Time since
trauma, mo

Focal
lesion(s)

45 M Postgraduate Unknown 4 24 Gabapentin, modafinil, amitriptyline 76 Yes

55 M Postgraduate Fall 4 Unknown Nil 28 Yes

42 M School to 18 y Pedestrian hit by a car 4 432 Nil 72 No

42 M School to 16 y Motorcycle accident 4 UK Trospium chloride, folic acid 198 Yes

40 M Graduate Motorcycle accident 4 1,008 Nil 125 Yes

42 F Postgraduate Pedestrian hit by a car 3 144 Codeine paracetamol 76 Yes

45 M School to 16 y Assault 4 5,040 Thiamine 11 No

49 M School to 18 y Probable assault 4 2 Nil 11 No

38 M Graduate Motorcycle accident 6 Unknown Citalopram, modafinil, omeprazole 106 No

Abbreviations: GCS 5 Glasgow Coma Scale; PTA 5 posttraumatic amnesia.

Figure 1 11C-PiB binding following TBI

Images of axial T1 MRI are superimposed with 11C-PiB BPND maps for all patients with TBI and a representative healthy aged control and a participant
with AD. For patients with TBI, the interval in months from the time of TBI to PET scanning and the age in years of each participant at scanning is also shown.
AD 5 Alzheimer disease; BPND 5 nondisplaceable binding potential; 11C-PiB 5 11C-Pittsburgh compound B; TBI 5 traumatic brain injury.

Neurology 86 March 1, 2016 823

ª 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.



control are shown. Direct comparison of patients
with TBI and healthy aged controls showed areas of
increased 11C-PiB BPND following TBI (figure 2A).
Peaks of increased 11C-PiB BPND corrected for mul-
tiple comparisons were observed in the precuneus/
PCC and cerebellum. There were no areas of
decreased binding in patients with TBI compared
to controls. We performed a confirmatory ROI anal-
ysis using anatomically defined regions (figure 3).
ANOVA of BPND sampled from 10 ROIs in the
TBI and healthy control groups showed a significant
group-by-region interaction (F3.127, 50.036 5 2.984,
p 5 0.038, Greenhouse-Geisser correction applied).
The partial h2 effect size estimate was 0.157. The
interaction was driven by increased binding in the
putamen of patients with TBI (t 5 2.573, df 5 16,
p 5 0.020) and a decrease in the superior frontal
gyrus (t 5 22.312, df 5 16, p 5 0.034), but
nonsignificant differences elsewhere.

11C-PiB binding is decreased around focal lesions. Visual
inspection of individual TBI BPND images showed no
binding in the vicinity of focal cortical lesions evident
on structural MRI. To confirm this, we sampled
binding in ROIs placed in and around the most
prominent lesion in each brain. As expected, there

was no specific binding in the focal lesion. In addi-
tion, binding in the penumbra was reduced compared
to normal-appearing GM in the same hemisphere
(t 5 211.54, df 5 4, p , 0.001).

11C-PiB binding after TBI is correlated with WM damage

and time since injury. We next examined whether Ab
plaque pathology in the PCC was associated with the
degree of TAI in the patients with TBI. We tested the
hypothesis that regional GM 11C-PiB binding in-
creases with lower FA (indicative of axonal injury)
in the cingulum bundles that were directly connected
to the PCC (figure 4A). Mean FA in all tracts exam-
ined was reduced as expected (figure 4B). PCC BPND

was negatively correlated in both the left cingulum
(R 5 20.733, p 5 0.031) and right cingulum (R 5

20.750, p 5 0.025, figure 4C), a relationship that
survived correction for the age of the patient (R 5

20.758, p 5 0.029; R 5 20.787, p 5 0.020). The
mean FA of the WM skeleton also showed a correla-
tion with PCC binding (R 5 20.733, p 5 0.031),
although this was only of borderline significance
when correcting for age (R 5 20.694, p 5 0.056).
There was no significant correlation found with the
corticospinal tract FA. 11C-PiB binding in the PCC
also increased with time since injury duration (R 5

0.767, p5 0.021), although this was not significant
after correcting for age (R 5 0.625, p 5 0.097). Of
the 4 FA measures, the mean FA of the left cingu-
lum also correlated with time since injury (R 5

20.717, p 5 0.037). There was no independent
relationship between 11C-PiB binding and FA after
correction for time since injury. There was also no
correlation between patient age and 11C-PiB bind-
ing or FA.

11C-PiB binding is not correlated with neuropsychological

impairment in TBI. There were no significant correla-
tions between PCC binding and behavioral perfor-
mance in the patients with TBI.

Distinct distributions of 11C-PiB binding in TBI and AD.

The direct contrast of AD and controls showed
increased 11C-PiB binding in AD association cortex
and cingulate (figure 2B). Conjunction analysis
showed that 11C-PiB binding was increased in a clus-
ter within the precuneus/PCC in both AD and TBI
compared to controls. In general, 11C-PiB binding
was higher in AD than TBI across regions, but the
TBI cases had relatively increased binding in the cer-
ebellum (figure 2C). Interrogating ROI data with
ANOVA confirmed the voxel-level findings.
Increased 11C-PiB binding was seen in cortical
association and cingulate regions in AD whereas
increased cerebellar binding was seen in TBI (e-
Results). There was no correlation between patient
age and regional 11C-PiB binding within any of the
3 participant groups.

Figure 2 Increased 11C-PiB binding in TBI and AD

(A) Blue–light blue areas showed significantly increased 11C-PiB BPND in TBI compared to
healthy aged controls. (B) Red–yellow areas showed significantly increased binding in AD
compared to controls. (C) Blue–light blue areas showed significantly increased 11C-PiB BPND

in TBI compared to AD. Red–yellow areas showed significantly increased binding in AD com-
pared to TBI. Images are shown thresholded at p , 0.001 uncorrected. AD 5 Alzheimer
disease; BPND 5 nondisplaceable binding potential; 11C-PiB 5 11C-Pittsburgh compound B;
TBI 5 traumatic brain injury.
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DISCUSSION TBI can predispose patients to various
types of dementia, but there is no consensus about
how post-TBI dementia syndromes should be
classified or diagnosed. Patients often clinically
deteriorate years after TBI,2 but it is difficult
to determine whether this is related to the prior
head injury. Improved methods of characterizing
neurodegenerative processes triggered by TBI are
needed. We investigated amyloid pathology using
11C-PiB-PET. For the first time, we show in vivo
that increases in 11C-PiB binding are present in long-
term survivors of TBI in a distribution overlapping
with AD but also involving the cerebellum.24 A
mechanistic link between axonal injury and amyloid
pathology is suggested by the relationship between
cortical 11C-PiB binding and WM damage in
connected tracts.

In AD, Ab deposition usually begins in inferior
frontal and cingulate association cortex, extending
into other association cortical regions. Early deposi-
tion is seen in the PCC,25 and we observed increased
11C-PiB uptake in both patients with TBI and those
with AD. While the ventromedial frontal cortex is
affected early in AD, the hippocampus and cerebel-
lum are not usually involved until much later in the
disease.24 In keeping with this pattern, we observed
strong 11C-PiB binding in the prefrontal cortex in our
patients with AD, but relatively low levels in the hip-
pocampus and cerebellum. However, a different

pattern was observed in our patients with TBI, who
had increased cerebellar 11C-PiB binding relative to
both AD and controls. The distinct distribution of
11C-PiB binding in the 2 contexts suggests that amy-
loid pathology is triggered by a different mechanism
after TBI, which is likely to relate to biomechanical
forces underlying the distinctive pattern of Ab plaque
pathology seen in cases of chronic traumatic enceph-
alopathy.26 TBI might also accelerate an aging pro-
cess27 and our results may reflect this change in aging
trajectory, particularly considering that the increased
11C-PiB binding after TBI was observed in compari-
son to a much older aged control group. However, in
keeping with studies of AD,8 11C-PiB binding did not
correlate with cognitive impairment.

Axonal damage produced at the time of injury
may act as an initial trigger for Ab production and
accumulation of amyloid pathology.6 In keeping with
this possibility, we observed an association between
the extent of WM damage and 11C-PiB binding in
the PCC following TBI. The biomechanical effects of
torsional and shear stress on WM tracts produce TAI,
and this is thought to be an important factor driving
overproduction of Ab, leading to its aggregation in
the acute phase.3 Axons and their surrounding
myelin are damaged, and the pathologic effects of
injury remain visible for many years, particularly in
long-distance WM tracts.28 Animal models and
human autopsy studies provide evidence that Ab

Figure 3 11C-PiB BPND region of interest analysis

Mean group 11C-PiB BPND 6 SEM is shown for patients with TBI (green), patients with AD (red), and healthy aged controls
(yellow). ACC5 anterior cingulate cortex; AD5Alzheimer disease; BPND5 nondisplaceable binding potential; 11C-PiB5 11C-
Pittsburgh compound B; Caud 5 caudate; Cereb 5 cerebellum; Hipp 5 hippocampus; IFG 5 inferior frontal gyrus; OL 5

occipital lobe; PCC 5 posterior cingulate cortex; Put 5 putamen; SFG 5 superior frontal gyrus; Skel 5 skeleton; TBI 5
traumatic brain injury; Thal 5 thalamus.
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is produced at the site of axonal injury shortly
after TBI.6

The relationship between 11C-PiB binding and
WM damage was seen in the cingulum bundles,
which connect to the PCC. The relationship was
not observed in the corticospinal tract, which is not
directly connected to the PCC, suggesting a more
specific link between the 2 observations. Misfolded
proteins, including Ab, have the capacity to move
from neuron to neuron via prion-like transsynaptic
spread,29,30 and computational simulations show that
a simple diffusion mechanism can produce the com-
plex patterns of brain atrophy observed in AD if large-
scale WM structure is factored into the model.31 The
implication for TBI is that the WM may be both a
source of Ab and a conduit for Ab diffusion. The
correlation between measures of TAI and Ab pathol-
ogy in the PCC may reflect its role as a highly con-
nected cortical hub,32 which integrates damage that
spreads from damaged WM tracts. The time elapsed
since a patient’s injury also correlated with 11C-PiB
binding, suggesting there is a progressive neurodegen-
erative process. Our results suggest that 11C-PiB bind-
ing, WM structure, age, and time since injury are
interrelated, and longitudinal studies with larger
numbers will be needed to clarify the causal relation-
ships. Such studies should also examine 11C-PiB
binding in the context of host genotype, particularly
APOE,33 which was not addressed here.

Our findings are broadly consistent with a previous
11C-PiB study in patients with TBI scanned less than
1 year after injury (median 11 days). Hong et al.10

showed increased cortical and striatal 11C-PiB binding
early after TBI. Of note, the validity of in vivo neuro-
imaging was supported by [3H]PiB autoradiography
and Ab immunohistochemistry. In contrast to our
study, this earlier work used the cerebellum as a refer-
ence region for quantification of 11C-PiB binding,
assuming that there was minimal Ab plaque density
in the cerebellum and that the ratio of cortical to cer-
ebellar binding provided a measure of cortical Ab bur-
den.34 Hong et al. provide evidence to support this
assumption early after TBI. However, our results dem-
onstrate that this is not the case in the chronic phase
after TBI. Our initial analyses in TBI using the cere-
bellum as a reference region suggested decreased corti-
cal 11C-PiB binding. Therefore, we used a procedure
for automatic reference region extraction that has been
validated in familial AD and does not require a single
anatomically defined reference region.16

Our study has a number of potential limitations.
First, given the small sample size, our findings should
be regarded as preliminary. Second, the 11C-PiB
healthy controls were age-matched to the AD group,
and so were older than the TBI group. Although 2
separate age-matched control groups would have been

Figure 4 Relationship between white matter damage and regional 11C-PiB BPND

in patients with TBI

(A) Selectedwhitematter tracts from the JohnsHopkinsUniversity tractography atlas and region
of interest from the MAPER (multi-atlas propagation with enhanced registration) segmentation
are shown on an MNI152 standard image. The tracts in red are the left and right cingulum–

cingulate bundle combined with left and right cingulum–hippocampus tract. The regional segmen-
tation of the PCC is shown (blue), which receives connections from these tracts. The corticospinal
tract (green) is not connected to the PCC. FA, a measure of white matter integrity, was sampled
from the tracts in patients with TBI using diffusion tensor imaging and related to regional 11C-PiB
BPND sampled in the PCC. (B) Themean FA of all tracts testedwas reduced in TBI (blue) compared
to controls (gray) (**p,0.01, ***p,0.001). (C) 11C-PiBBPND in the PCC increasedwith decreas-
ing FA in the right cingulum. BPND 5 nondisplaceable binding potential; 11C-PiB5 11C-Pittsburgh
compound B; cing 5 cingulum; CSp 5 corticospinal tract; FA 5 fractional anisotropy; PCC 5

posterior cingulate cortex; TBI 5 traumatic brain injury.
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preferable, Ab pathology increases with age35 and so a
comparison with older healthy controls is likely to
have reduced our sensitivity to detect a relative
increase in the younger TBI group. Therefore, the
presence of abnormalities in a relatively young TBI
group is even more striking. Third, it is possible that
GM tissue differences such as atrophy, associated
with AD or aging, could have biased our group con-
trast results. A number of analysis steps were used
to minimize this possibility: an advanced algorithm
for optimized registration of brain images into stan-
dard space (DARTEL)36; 11C-PiB binding was only
assessed in regions where the GM probability was
high; and ROI analyses, based on both automated
segmentations, were used to provide confirmatory
results. To control for the possible effects of focal
injury after TBI, we also excluded lesioned areas from
the analysis. It is possible that the extent of focal
lesions was underestimated as we used T1 imaging
to segment the lesions. However, since 11C-PiB bind-
ing was reduced in visible lesions, this possibility
would have biased the analysis against detecting in-
creases in 11C-PiB.

We provide 11C-PiB-PET evidence for the pres-
ence of amyloid pathology many years after injury in
patients with TBI without dementia. The distribu-
tion of 11C-PiB binding partially overlapped with that
seen in typical AD but also affected the cerebellum,
unlike in AD. This suggests a different mechanism for
amyloid plaque genesis. Our findings support the
hypothesis that amyloid plaque pathology is related
to the presence of axonal damage produced subse-
quent to the TBI.
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