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Auto-encoding NMR chemical shifts from their
native vector space to a residue-level biophysical
index
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Chemical shifts (CS) are determined from NMR experiments and represent the resonance

frequency of the spin of atoms in a magnetic field. They contain a mixture of information,

encompassing the in-solution conformations a protein adopts, as well as the movements it

performs. Due to their intrinsically multi-faceted nature, CS are difficult to interpret and

visualize. Classical approaches for the analysis of CS aim to extract specific protein-related

properties, thus discarding a large amount of information that cannot be directly linked to

structural features of the protein. Here we propose an autoencoder-based method, called

ShiftCrypt, that provides a way to analyze, compare and interpret CS in their native, multi-

dimensional space. We show that ShiftCrypt conserves information about the most common

structural features. In addition, it can be used to identify hidden similarities between diverse

proteins and peptides, and differences between the same protein in two different binding

states.
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Chemical shifts (CS) are the primary data gained from
nuclear magnetic resonance (NMR) experiments. They
reflect the resonance frequency of the spin of atoms in a

magnetic field, and relate the peaks in NMR spectra to specific
atoms within molecule(s) under study. The CS value of an atom is
determined by the actual magnetic field experienced by that atom,
and is influenced by its local environment, both in terms of its
chemical bonding and of other atoms surrounding it in space.
The CS values observed for atoms in a molecule can therefore
give insights into the conformations that the molecule adopts in
solution.

In structural biology, many proteins have been studied by
NMR over the last few decades. Because CS values are of key
importance when studying proteins at atomic resolution1, they
are relatively abundantly available, especially because of the
efforts of the BioMagResBank in storing and curating protein
NMR data2. Many studies have demonstrated the relationship
between the CS values of the atoms in an amino acid residue and
the conformational characteristics of that amino acid in a given
protein: these CS values are related to the angles the backbone of
the protein can adopt in its folded state3, to the backbone flex-
ibility4, to solvent accessibility5, and they can be used to assign
secondary structures6 or secondary structure propensities7.
Moreover, since NMR experiments can be performed on proteins
in solution, the related data are extremely relevant for the study of
intrinsically disordered and non-globular polypeptides8.

Due to the intrinsic multidimensional nature of chemical shift
values, major challenges remain in their practical interpretation.
For example, the CS values of two amino acids of a different type
that experience the same local environment will differ, because
the chemical composition of the amino acids is not the same.
Alternatively, the same chemical shift values could be observed
for atoms in two distinct amino acids of the same type, even if
these amino acids experience a very different local environment.
Currently, CS values are typically used to directly estimate specific
biophysical properties. However, this approach only allows the
interpretation of a single characteristic per time, and will so
neglect important cross-correlated features. This could be avoided
by employing a “hands-off” approach to the CS values, through
direct interpretation of their values, without explicitly associating
them to biophysical characteristics.

Chemical shift information can be interpreted through two-
dimensional (2D) correlations, considering the relation between
the CS values of two atoms at the same time. While this approach
is simple and easy to interpret, data cannot always be represented
in 2D or even 3D space. Higher-dimensional space is how-
ever nearly impossible to understand for humans, as our brain
evolved to interact with 3D environments. On the other side, data
are often naturally multidimensional, and although their visuali-
zation might pose a great challenge, it is relatively easy to analyze
them by using the proper mathematical framework. Neural net-
works, for example, are mathematical entities that can operate on
vector spaces with an arbitrary number of dimensions; they are
therefore capable of analyzing and interpreting higher-
dimensional data in their native space, without requiring the
translation into an artificially constructed space with reduced
dimensionality, which inevitably causes loss of information and
structure in the data. Once the information has been formalized
into a mathematical representation, such as points in a multi-
dimensional space, neural networks can extract information from
the data and perform complex elaborations of such a meaningful
dimensionality reduction with minimal information loss, mapping
the original data to a lower-dimensional space, helping its visua-
lization and understanding.

Here, we propose a method to encode the chemical shift
information of the atoms per amino acid residue into a single

abstract value termed the ShiftCrypt index. This index is com-
puted with a three-layer autoencoder neural network, which is
structured as two mirrored sub-modules. One, the encoder,
encrypts the input CS in a single value (the ShiftCrypt index),
while the second one, the decoder, tries to reconstruct the original
CS from the aforementioned single value. The neural network
optimizer minimizes the differences between the decoded and the
original CS.

We show that the single value encoded per amino acid is highly
correlated with the biophysical structural and dynamic features of
that amino acid, even if the encoding itself did not include any
such information. The ShiftCrypt index is largely residue inde-
pendent, and has the characteristics of a “hidden” biophysical
feature, summarizing the chemical shift data and translating it
into a mono-dimensional attribute. Since it summarizes the CS
information content, it can be used to directly compare the
similarities and differences in the chemical shift information
between diverse proteins and peptides, or in the same protein
observed in different states.

Results
ShiftCrypt as a biophysical feature of in-solution proteins.
With ShiftCrypt, we approach the data from a different point of
view compared with classical approaches. Instead of looking at
the data from the familiar protein conformation perspective, the
ShiftCrypt index focuses on the native CS data, using the multi-
dimensional CS as reference space. In other words, we interpret
the CS values from NMR experiments as referring to a non-
structural, multidimensional space that is connected to latent
biophysical information, instead of translating the CS data in
reference to three-dimensional atom coordinate space. ShiftCrypt
performs a pure mathematical transformation that provides a
single per-residue value that serves as a latent feature of in-
solution proteins. This feature gives information about the overall
amino acid behavior in a single dimension, based on the intrin-
sically multidimensional chemical shift information. The Shift-
Crypt value is not influenced by, or based on, any derived (i.e.,
structural) data, and is a purely experimental index. In the fol-
lowing sections, we show the major properties of this latent
biophysical feature and its relationship with classical structural
properties of proteins. We also show how the use of this index
can allow an easier identification of the structural and functional
difference between proteins or different states of the same
protein.

Secondary structure elements. The connection between chemical
shift information and the secondary structure of an amino acid in
a protein has been long recognized and exploited7. The regular
and constrained conformation of the protein backbone in a sec-
ondary structure element results in the atoms of the amino acids
experiencing similar local environments, which fundamentally
differ between the distinct types of secondary structure. This
property is well preserved in the ShiftCrypt index, as shown in
Supplementary Fig. 1, which shows the relationship of the
ShiftCrypt with a secondary structure, as observed for all amino
acids in 3385 structures. Supplementary Fig. 2 shows that the
behavior of the different amino acid types is similar. To quantify
the similarity, we calculated the integral of the superimposition of
the distribution of the secondary structure elements with respect
to the ShiftCrypt index (Supplementary Table 1). This indicates
how well the ShiftCrypt index distinguishes between secondary
structure types at the individual residue level.

Supplementary Fig. 2 also indicates that different amino acids
have slightly divergent distributions of secondary structure
probabilities with respect to the ShiftCrypt index. For example,
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the coil distribution for threonines is much tighter than for
lysines. This is not due to the different secondary structure
propensity of the residue, but is instead related to the amount of
information needed to encode the coil CS information. In other
words, the larger the portion of the ShiftCrypt index occupied by
a secondary structure, the more heterogeneous the CS are within
that secondary structure type.

Another interesting characteristic of this index is its low
dependence on any particular atom type. Typically, Cα and Cβ CS
are the most indicative atom types9, but as shown in
Supplementary Tables 2, 3, and 4, removing Cα, Cβ, or both Cα

and Cβ from the atoms used to calculate the ShiftCrypt index
does not strongly affect the separation between the secondary
structures based on the ShiftCrypt index.

Torsion angles. Given their relation to secondary structure ele-
ments and the local environment, the CS of backbone atoms of
amino acids are further specifically used to estimate the backbone
Φ and Ψ torsion angles of amino acids in a given protein3. This is
another feature that is well conserved in the ShiftCrypt index.
Figure 1 shows the distribution of the Φ and Ψ angles in relation
to the relative ShiftCrypt index.

Supplementary Figs. 3, 4, 5, and 6 also show that the behavior
of the four classes of amino acid (basic, acid, polar, and non-
polar) is very similar. While the relationship between the
ShiftCrypt index and angles is evident, this effect could simply
derive from the fact that the ShiftCrypt index discriminates only
the secondary structure elements. Figure 2 shows how, per
individual secondary structure type as observed in the related
fold, amino acids associated with high and low values of the
ShiftCrypt index within that secondary structure class still behave

diversely, with a distinction between the alpha-helical and 310
helix regions, the turn/helix and extended coil regions, and the
antiparallel beta-sheet regions.

ShiftCrypt correlates with early-folding events. The Start2Fold
database contains information about which residues in proteins
are the first to start folding, when the proteins folds from a sta-
tistical chain state, as studied by hydrogen/deuterium exchange
(HDX) experiments10. These residues are more central to the final
fold, and are more conserved during evolution, with their beha-
vior more likely to be determined by local interactions with
amino acids close in the protein sequence11. We identified che-
mical shift data for more than 60% of the entries in this database,
and calculated the ShiftCrypt index for a total of 90 early-folding
residues (15 in helix, 15 in coil, and 60 in sheet conformation)
and 488 non-early-folding ones (149 in helix, 211 in coil, and 128
in sheet conformation). Supplementary Fig. 7 shows the dis-
tribution of the ShiftCrypt index value for these two classes,
stratified by secondary structure. We tested the significance of the
two distributions with a Wilcoxon signed-rank test. The differ-
ence is statistically significant only for the early-folding residues
in beta-sheet conformation, with a p-value of 6.08 × 10−7, indi-
cating that the early-folding characteristics of residues that fold
into a beta-strand tend to be transferred to the final fold, unlike
those in alpha-helices and coil.

ShiftCrypt correlates with solvent accessibility. The solvent
accessibility of the residues of a protein can be estimated from
CS5, with values tending toward typical “random coil” ones for
solvent-exposed residues12. This property of the folded structure
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Fig. 1 Relation between the torsion angles and the Shiftcrypt index. Every plot represents an interval of the ShiftCrypt index. The amino acid types are
defined by color: blue for basic, red for acid, green for polar, and cyan for non-polar
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is also reflected by the ShiftCrypt index, as shown in Supple-
mentary Fig. 8, which shows the distribution for buried and
exposed amino acids, stratified by secondary structure. The
p-values obtained with a Wilcoxon signed-rank test for the alpha-
helix, coil, and beta-sheet secondary structures are 1.11 × 10−64,
1.08 × 10−9, and 1.12 × 10−232, respectively. Residues in the core
of the protein, which are typically very rigid, tend to have
ShiftCrypt index values closer to 1 or 0. Residues that are more
exposed, and expected to be more dynamic, have values closer to
0.5. For helices, this difference is the least pronounced, whereas
for coil residues, the sharp distribution around 0.5 reflects pre-
vious studies12.

An illustration of ShiftCrypt in comparing proteins. Two dis-
tinct proteins are often compared on the basis of their three-
dimensional structure, if available, and in essence, their static
structural elements are related to each other. However, especially
when comparing more dynamic proteins, it is important to get

insights about the differences and similarities of their in-solution
properties, since this can provide important information about
differences in their behavior. CS can provide such insights, but
they are not straightforward to use when comparing different
amino acid types to each other, as for example, for a mutated
residue. The only current solution is to use “secondary shifts” for
amino acids, where residue-dependent reference chemical shift
values are subtracted from the observed chemical shift. This only
enables comparison between the same atom type, and introduces
the challenge of which reference chemical shift values are the best
to use. The ShiftCrypt index circumvents this issue and can be
used to easily and directly compare proteins with different amino
acid sequences. Figure 3 shows the structure superimposition and
the ShiftCrypt profile of two very similar proteins: the strawberry
(PDB ID 2LPX) and cherry (PDB ID 1E09) allergens. None of
these proteins are present in the training set of ShiftCrypt. These
two proteins share a sequence identity of 79%, with similar
structures, as indicated by a backbone atom RMSD of 1.756 Å.
Despite this similarity, there are the same notable differences in
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their structures. Figure 3 shows a portion of the superimposition
of the two structures, in relation to the alignment of their Shift-
Crypt index. The shaded red areas highlight sequence differences
between the two proteins. While for most of the residues the
ShiftCrypt index is almost the same, also in sequence positions
where the amino acids are different, there are deviations in the
index for residues where the local sequence is exactly the same. In
order to explore the reasons behind these differences, we analyzed
the structure of the positions in which the differences between the
ShiftCrypt values of the two homologous proteins significantly
diverged from the observed distribution. These positions have
been identified, selecting the residues, yielding ShiftCrypt differ-
ences with a probability <0.05, assuming a Gaussian distribution.
The selected positions are 38, 72, 77, 88, 122, and 149, of which
the side-chain atoms are shown in Fig. 3. Interestingly, these
residues are located in regions that are likely to behave slightly
different in solution: positions 38, 77, and 88 are located in loops,
where the dynamics likely play a crucial role, while positions 122
and 149 are located at the very end of a beta-strand and alpha-
helix, respectively. Finally, position 122 is reported to be a loop
gap in the strand of the cherry allergen structure, suggesting that
the behavior of the region might be different in the two homo-
logous proteins. Note that these positions do not necessarily
correspond to ill-defined parts of the NMR structure ensembles
(Supplementary Fig. 9).

The profiles for these two proteins are therefore not different in
regions with a similar structure, even if the amino acid itself is
different. On the other hand, the presence of a region with a
conserved sequence but with different structural properties makes
the index diverge. We highlight that this example is meant to show
that ShiftCrypt is conserved in structurally and dynamically
similar proteins, and that it can highlight regions that likely
behave differently in solution. If the purpose is only to find
conserved secondary structure element approaches based on
secondary structure propensities, methods such as d2D7, are likely
more suitable, although they lack the finer per-residue detail (i.e.,
sharp changes between residues) that is present in the ShiftCrypt
profiles. As a comparison point, we report the prediction of d2D
and SSP13 for the same proteins in Supplementary Figs. 10 and 11.

Comparing very diverse proteins. To further pursue this con-
cept, we investigated what happens to the ShiftCrypt index when
the sequence identity between proteins drops below 50%. In this
case, while the overall structure is likely conserved, variability will
be expected in the biophysical characteristics, such as dynamics,
to enable ligand specificity and other organism-specific tasks. As
shown in previous work4, CS are sensitive to such behavioral
changes. Figure 4 shows the comparison between the Sacchar-
omyces cervisiae (PDB 3F3Q) and Arabidopsis thaliana (PDB
1XFL) oxidized thioredoxin 1. As in the previous section, none of
these proteins are present in the training set of ShiftCrypt. The
sequence identity is 46%, and the structure is well conserved, but
structure is only one of the properties that a protein needs to
perform its tasks. Figure 4 shows the secondary chemical shift
differences for the Cα, Cβ, and Hα atoms, where a per-amino acid-
type reference value is subtracted from the actual value to try and
account for absolute differences in chemical shift value, and the
raw chemical shift values for the N and H atoms. Compared with
these values, which show differences throughout that are difficult
to interpret, the ShiftCrypt values are easily visualized and show
high conservation between these proteins, with a similar overall
profile, including fine structure. Some regions, such as the N-
terminal residues, are very similar despite having different CS
values, whereas other regions, notably 4–8, 15–18, 30–32, 43–44,
48–50, and 78–79, show distinct differences. The side chains of

these residues are shown in the structure in Fig. 4. The differences
are mainly at the end of structured alpha-helix and beta-sheet
segments, indicating that the source of these differences may be
caused by different dynamics or conformational populations at
these sites. In particular, the difference around position 30 cor-
responds to a loop and the start of a beta-sheet (on one side) and
of an alpha-helix (on the other). The beta-sheet is shorter in the
yeast protein, suggesting that the two protein regions may have
different in-solution behavior. The differences in the very first
part of the protein (position 4–8), correspond to residues adjacent
to the active site, suggesting organism-specific causes. Again, the
regions indicated by the ShiftCrypt index do not necessarily
correspond to ill-defined regions in the NMR structure ensemble
(Supplementary Fig. 12).

We also tested the conservation of the Random coil index
(RCI), a chemical shift-based estimation of backbone dynamics
(Supplementary Fig. 13). The RCI values in general differ between
the two proteins, with changes comparable with what is observed
for the scaled chemical shift values. Supplementary Figs. 14 and
15 report the secondary structure propensities calculated with the
d2D7 and SSP13 index, respectively.

ShiftCrypt index in dimerization. Since proteins are dynamic
entities, they can behave differently, depending on the function
they need to perform. In protein complexes, for example, the
individual components are expected to behave differently with
respect to their monomeric state. This difference affects
the chemical shift information, changing the ShiftCrypt index.
Figure 5 shows the comparison between the ShiftCrypt profile of
the free and bound state of the RimM protein (PDB 3A1P) and its
relation to the dimer structure.

The five blue-highlighted residues represent the ones that show
the greatest difference in the ShiftCrypt value. As expected, these
residues define the interaction patch between the two proteins. In
order to provide a more quantitative evaluation of the usefulness
of ShiftCrypt in this regard, we performed a larger analysis based
on 280 residues taken from four protein complexes, for which the
CS for the free and bound state are available (bmrb IDs 16065
and 16066, 5228 and 15397, 10140 and 10139, and 6806 and
6804). We calculated, for the free and bound pairs, the three
secondary structure propensities calculated with d2D7, SSP13,
ShiftCrypt, and a function of the N and H CS, specifically
designed for the detection of interaction patches, as described in
ref. 14. The ShiftCrypt version we used for this purpose only takes
N, H, and CO chemical shift values as input. We then calculated
the per-residue difference of the various indices for the free and
bound form. Intuitively, if the index can identify the residues in
the interaction patches, the differences will be higher for the
amino acids in the patch with respect to the others. We
performed a Wilcoxon rank-sum test for all the seven indices
in order to test which ones were associated with higher
differences in the interaction patches. The only significant results
were ShiftCrypt and the N–H-based method (p-value × 10−7 for
both). This indicates that, while there is no change in the
secondary structure propensities, the CS themselves contain
information about dimerization, because of changes in their
environment and thus in their biophysical behavior. However, the
Pearson’s correlation coefficient between the differences high-
lighted by these two methods is only 0.58, and decreases to 0.38 if
we only consider the residues in the interaction patches.
Supplementary Fig. 16 shows the scatter plot of the values
provided by the two methods. This suggests that the two
approaches provide two complementary sources of information.
To verify this, we built a naive consensus of the two indices,
simply summing the scaled N–H values and the ShiftCrypt index.
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The resulting p-value of this mixed score is reduced to ×10−10.
This shows that the two methods are complementary and that a
more complex machine-learning consensus method may provide
even better ways to estimate the patches of interaction. None of
the proteins used in this analysis are present in the training set of
ShiftCrypt.

ShiftCrypt index and random coil peptides. Given the ability of
ShiftCrypt to detect the biophysical similarities between amino
acids of different types, we also investigated how it assesses
the chemical shift values for typical random coil peptides
(Fig. 6)15, 16. Such peptides are used to describe the default state
of amino acids, and their CS are used as the reference to calculate
secondary shifts, which are intended to be residue independent.
There are, however, indications from molecular dynamics that
different amino acid types can have very different default con-
formational states in such peptides, when referenced in absolute
Ramachandran plot terms17. The ShiftCrypt index confirms
this, with large differences present between the different
amino acid types. The residue following the central X amino acid
(A, G, and P) only seems to have a major biophysical influence in

very specific cases (e.g., P after V), while the QQXQQ peptide
series tends to have higher ShiftCrypt values. The ShiftCrypt
value is negatively correlated with the right-handed alpha-helix
population (from ref. 17) and positively with the beta-strand
population. This is in line with the protein torsion angle level
data, but shows that the ShiftCrypt index captures conforma-
tional population information. Overall, these results indicate that
the default conformational states of amino acids have a significant
biophysical bias, as do by extension the secondary shifts and
methods that use them, such as most of the secondary structure
propensity predictors.

Discussion
ShiftCrypt allows users to visualize the chemical shift data for an
amino acid residue by encoding them into a single value. The
ShiftCrypt index, through its direct interpretation of the raw
chemical shift data, bypasses the often inaccurate mapping of CS
on classical structural features. It is therefore, in our view, a more
straightforward way to analyze and compare residue-based CS
information, especially because it eliminates the absolute differ-
ences in CS values between different amino acid types while
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avoiding the use of “secondary shifts”, which seem to contain
conformational biases17. It so enables an easier and more accurate
comparative analysis between different residues or proteins.

The correlation of the ShiftCrypt index to both structural and
non-structural biophysical properties that are essential for native
protein behavior, without being explicitly linked to any of them,
indicates that it can be considered to be an encoded biophysical
feature that describes the in-solution behavior of amino acids in
solution. It so provides an advantage for data analysis, with
researchers not having to combine or visualize higher-
dimensional data. ShiftCrypt can be used to find chemical shift-
based similarities and differences in the biophysical behavior of
different proteins, or between different states of the same protein,
without having to employ heuristic interpretations of the che-
mical shift data. This is also useful where structure models have
already been calculated, as especially dynamical in-solution
information is inevitably lost during the structure calculation
process. Furthermore, the ShiftCrypt method is flexible and can

be adapted to particular problems while accounting for the che-
mical shift data that are typically available in a given situation.
ShiftCrypt may be used, for example, to find fragment similarities
for CS homology-based structure calculation of NMR structures,
or for the amino acid type-independent identification of peptide
fragments in databases.

Methods
Dataset. The dataset to train the method is composed of 3385 NMR structures
annotated with chemical shift values and re-referenced by the structure-based
VASCO method18. In order to remove misreferenced atoms, we filtered out of the
dataset all the residues that contained atoms with extreme values (< of percentile 1
or > of percentile 99). For the annotation of the secondary structure of each amino
acid, we evaluated all structure models in each NMR ensemble with STRIDE19, and
considered as helix, sheet, or coil only those residues that were consistently
assigned to that type of secondary structure throughout the ensemble. These
structures have only been used to relate ShiftCrypt to the structural characteristics
of proteins and have not been used in the training procedure. For the dimer
validation, we downloaded the CS of the four complexes from the BMRB database2.
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We discarded the residues with missing values in the N, H, or Cα atoms and we
obtained a dataset of 280 residues.

Data extraction encoding scheme definition. For each amino acid type, we
selected a set of atoms that are taken into consideration during the ShiftCrypt
definition. This selection is based exclusively on the relative data abundance in our
training dataset. The atoms taken into consideration for each amino acid type are
listed in Supplementary Table 5. In addition to the model that uses the full list CS
that are usually obtained in complete NMR experiments, we provide two supple-
mentary models: the first one uses only the most commonly analyzed atoms: in this
model, we use only the N, C, Cα, Cβ, H, and Hα atoms, and it is suitable to deal
with proteins with missing data. The second one uses only the CS of N and H
atoms of the amino group and the Cα. This model has been used to perform the
analysis of the dimers and it overcomes the large amount of missing data. We
provide the code of ShiftCrypt training scripts and training data that can be used to
easily build a custom encoding scheme.

Data scaling. In order to correctly train the neural network, CS are required to
undergo an amino acid type-specific scaling. This is done by simply scaling the data
in a residue-specific way between 0 and 1 using the MinMaxScaler from the scikit-
learn python library20. The scaled data are obtained as Xscaled= (X−min(X))/
(max(X)−min(X)), where X is the original data and Xscaled the scaled one.
Moreover, this procedure helps in reducing the differences between chemical shift
values obtained from different amino acid types.

Autoencoder transformation. In order to extract the maximum amount of
information from the chemical shift data, we built a feed-forward autoencoder for
each amino acid type, using the python library PyTorch (https://pytorch.org). The
model is divided into two parts (see Supplementary Fig. 17), which are identical and
mirrored: the encoder and the decoder. The encoder takes as input the list of scaled
CS of a residue and passes it through two hidden layers of 100 neurons, each with
rectified linear unit (ReLU) activations. The last layer is made of a single neuron
with sigmoid activation. The decoder performs the reverse operation by taking the
output of the last encoder neuron, and by passing through the two hidden layers, it
aims to replicate the input CS. The compressed chemical shift information is the
value of the sigmoid neuron. It is important to note that, since the sigmoid acti-
vation function is bijective, the decoding network will always map the compressed
information to an unambiguous set of simplified chemical shift values. The list of
per-atom Pearson’s correlation coefficients between the actual CS and the simplified
CS is available in Supplementary Data 1. In order to make the ShiftCrypt easier to
understand, in the training procedure, we make sure to invert the direction of the
index for the residue types that show a high beta-sheet propensity at low ShiftCrypt
values and a high helix propensity at high ones. This can be safely done, since the
direction in which the neural network learns the chemical shift information is

arbitrary (see the “Method_Explanation.pdf” file of the ShiftCrypt repository for a
practical illustration of the learning procedure of the neural network).

Stability of the model. Neural networks are nonlinear models, and due to their
complexity, small changes in their parameters may lead to strong changes in the
way in which information is extracted from data. This is usually noticeable in deep
and ultra-deep neural networks. Since ShiftCrypt is made of just three layers of
neurons, this effect is expected to be very small. However, in order to explore the
stability of the model, we tested if the relationship between secondary structure
propensity and ShiftCrypt index was maintained when varying the number of
hidden neurons of the network. We tested 15 different models, with a number of
hidden neurons per layer, that varied between 10 and 150. Supplementary Figs. 18
and 19 show that the median ShiftCrypt value of each secondary structure
population varies very little with the number of hidden neurons of the neural
network, even if we consider every single amino acid separately.

Data availability
All the data used in this paper are available at https://bitbucket.org/bio2byte/shiftcrypt.

Code availability
A Python implementation of the algorithm is available at https://bitbucket.org/bio2byte/
shiftcrypt. It can also be installed via the shiftcrypt PyPI package.
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