
Report

Parallel reverse genetic screening in mutant human
cells using transcriptomics
Bianca V Gapp1,†, Tomasz Konopka1,†, Thomas Penz2, Vineet Dalal1, Tilmann Bürckstümmer3,

Christoph Bock2,4,5 & Sebastian MB Nijman1,2,6,*

Abstract

Reverse genetic screens have driven gene annotation and target
discovery in model organisms. However, many disease-relevant
genotypes and phenotypes cannot be studied in lower organisms. It
is therefore essential to overcome technical hurdles associated
with large-scale reverse genetics in human cells. Here, we establish
a reverse genetic approach based on highly robust and sensitive
multiplexed RNA sequencing of mutant human cells. We conduct
10 parallel screens using a collection of engineered haploid isogenic
cell lines with knockouts covering tyrosine kinases and identify
known and unexpected effects on signaling pathways. Our study
provides proof of concept for a scalable approach to link genotype
to phenotype in human cells, which has broad applications. In
particular, it clears the way for systematic phenotyping of still
poorly characterized human genes and for systematic study of
uncharacterized genomic features associated with human disease.
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Introduction

Forward and reverse genetic approaches have both been crucial for

elucidating fundamental biological processes as well as identifying

therapeutic targets. These approaches identify genes underlying a

particular trait (forward genetics) or uncover phenotypes of particu-

lar mutants such as gene knockouts (reverse genetics). Forward

genetic screening has been employed extensively in human cells

using RNAi, gene trap, and CRISPR/Cas9 approaches (Lehner, 2013;

Mohr et al, 2014; Shalem et al, 2015). In contrast, large-scale

reverse genetic approaches in human cells have been limited to

arrayed RNAi screens and typically only interrogated a single

phenotype such as viability or changes in a particular signal trans-

duction pathway (Brummelkamp et al, 2003; Paulsen et al, 2009;

Zhang et al, 2009; Kranz & Boutros, 2014; Tiwana et al, 2015).

Thus, deep phenotyping of gene mutants has been largely restricted

to model organisms (Giaever et al, 2002; White et al, 2013; Shah

et al, 2015).

One of the hurdles associated with large-scale reverse genetics in

human cells is the technical challenge to generate large sets of indi-

vidual, targeted mutants. Earlier methods such as RNAi provided a

scalable method but suffer from incomplete knockdown and off-

target effects that introduce substantial noise and hinder the inter-

pretation of results (Kaelin, 2012). A second hurdle includes the

comprehensive phenotyping of large sets of samples: Mammalian

cells can contain thousands of features of potential interest and

many of these are cell type specific. The net impact of these diffi-

culties is the limitation of reverse genetic approaches in human cells

to a small number of mutants. This slows down the study of funda-

mental human biology and hinders understanding of diseases. As

many mutations are species specific, they cannot be modeled in

other organisms. There is thus a need for a general, scalable, and

accessible method for reverse genetics in human cells.

In this work, we exploit advances in parallel sequencing and

genome editing (van Dijk et al, 2014; Barrangou et al, 2015) to

revisit reverse genetics in human cells. We first establish a pheno-

typic profiling method based on RNA sequencing that is scalable

and suitable for large-scale screening. We then perform 10 parallel

screens in a collection of 64 mutant cell lines derived from a haploid

parental line (Carette et al, 2010). The collection includes cells

deficient in 55 individual tyrosine kinases.

Results

Transcriptional profiling has been demonstrated in yeast to connect

genotypes to phenotypes and is thus a suitable assay for reverse
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genetics (DeRisi et al, 1997; Hughes et al, 2000). In particular,

specific genetic, chemical, and environmental perturbations have

been shown to yield gene expression signatures that provide insight

into gene function (Holstege et al, 1998; Chua et al, 2006; Lamb

et al, 2006; Hu et al, 2007; van Wageningen et al, 2010; Lenstra

et al, 2011; Kemmeren et al, 2014). We wished to apply a similar

strategy based on perturbations to study human cells. We reasoned

that shallow sequencing of mRNA, previously deployed to measure

single-cell transcriptomes (Wu et al, 2014), would provide the

throughput required for screening applications while maintaining

sufficient resolution to capture expression changes. We thus decided

to measure transcriptional profiles using a library preparation proto-

col that amplifies the 30 ends of transcripts and is designed to facili-

tate multiplexing.

To explore and benchmark shallow sequencing for systematic

screening, we performed perturbation experiments in human HAP1

cells (Carette et al, 2010). Cells were cultured under reduced serum

conditions for 16 h and stimulated with seventy diverse stimuli,

including polypeptides and small molecules (Fig EV1A and

Table EV1). Most conditions were measured in two biological repli-

cates, and 48 samples were combined per Illumina HiSeq lane,

yielding 2–4 million reads per sample. Expression profiles of

replicate samples were strongly correlated, indicating robust and

consistent performance of the assay (Fig 1A). Modeling of sequenc-

ing depth showed that measuring ~1 million reads per sample was

sufficient to identify nearly all the ~12,000 genes expressed in HAP1

cells (Fig 1B). Moreover, we estimated that our depth range should

enable us to call upregulation of expression by a twofold change in

around two-thirds and upregulation with threefold change in more

than 90% of the expressed genes.

Through comparison of stimulated to mock-treated samples, we

determined sample-wise signatures of differentially expressed genes.

We also computed group-wise signatures using concordance across

replicate samples. Using data from a stimulation performed in eight

replicates, we estimated that group-wise signatures were robust for

screening when based on just two replicates (Fig EV1B). Together,

these technical metrics indicate that the approach produces gene

signatures that are informative.

Next, we studied the specific signatures induced by our panel of

stimuli. Around half of the stimuli elicited discernible transcriptional

responses of up to ~200 genes under the chosen experimental condi-

tions. Absence of signatures for several of the stimuli could be due

to timing, dosing, assay sensitivity, or true unresponsiveness. Gene

ontology analysis of signature genes identified pathways previously

A B C
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Figure 1. A platform for large-scale cell profiling by shallow RNA sequencing.

A Spearman correlations between replicates of expression profiles in HAP1 cells measured by shallow RNA-seq. Libraries were prepared using a protocol capturing
3-prime ends of polyadenylated transcripts. Inset shows gene expression values in a representative pair of replicates.

B Data-based modeling of the effect of sequencing depth on gene expression analysis. Dots represent synthetic samples obtained by pooling 24 HAP1 wild-type
sequencing runs and subsampling. Line labeled “Expressed” shows the number of genes that can be detected with expression above a threshold (transcripts per
million reads above 1). Lines labeled with FC show estimates of the number of genes that could be detected as differentially expressed were their expression to
change by the indicated factor. FC, fold change; K, thousand; M, million.

C Clustering of signature gene sets from polypeptide and small molecule stimulations. Inset shows strategy for obtaining gene signatures wherein each stimulated
sample is compared to a control set, and a signature is obtained by consensus of two replicates. The heatmap shows a clustering of stimuli wherein similarities are
assessed by 1 – Jaccard index of the signature sets. The bar chart displays sizes of signature sets. Solid colors indicate a panel of diverse stimuli selected for the 10
reverse genetic screens. WT, wild type.

D Comparison of expression profiles of wild-type cells and HIF1A-KO cells in response to DFOM stimulation. Contours depict genes not differentially expressed; dots
indicate DFOM signature genes; gray dotted line is the diagonal of equal response; and red line is a linear fit using signature genes. FC, fold change; WT, wild type;
KO, knockout.

E Same as in (D), except for WNT3A stimulus in CTNNB1-KO cells.
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linked with the tested stimuli (Table EV2). Signatures for related

stimuli clustered together (Figs 1C and EV1C). For example,

members of the TGF-beta superfamily (TGFb, ACTA, GDF11, ACTB,

BMP2, GDF7, BMP13) formed one large cluster. Interferon-beta

(IFNb), interferon-lambda (IFNL2), and interferon-gamma (IFNg)

formed a separate cluster. Importantly, although related signatures

(e.g., interferons) contained genes in common, they also contained

gene subsets known to be specific to the respective stimuli

(Fig EV1D). This indicates that the resolution of shallow RNA

sequencing can capture not only broad responses to perturbations,

but can reveal nuances of signaling cascades as well.

Satisfactory performance of shallow transcriptomic profiling

prompted us to carry out the first transcriptome-based reverse

genetic screen in human cells. As many signaling pathways are

inactive under standard culturing conditions, we reasoned that

phenotypes associated with gene knockouts would only become

apparent upon a secondary perturbation (Lamb et al, 2006;

Kemmeren et al, 2014). We thus selected 10 stimuli from the

benchmarking experiment based on signature size and diversity

for parallel screening. These were activin A (ACTA), bone morpho-

genic protein 2 (BMP2), fibroblast growth factor 1 (FGF1), IFNb,

IFNg, wingless-type family member 3A (WNT3A), deferoxamine

(DFOM, hypoxia mimicking agent), rotenone (ROTN, inducer of

reactive oxygen species), resveratrol (RESV, a natural product with

unclear mode of action), and ionomycin (IONM, calcium modulat-

ing agent). To strengthen confidence in these selected gene signa-

tures, we collected additional replicates under the same

conditions, with the exception of ionomycin for which we lowered

dosage due to cytotoxicity. The final signatures were consistent

with our initial findings (Fig EV1E).

Next, we validated that the previously defined signatures can be

exploited to functionally annotate genes using mutant cell lines. We

selected a small (induced by DFOM) and a medium size signature

(induced by WNT3A) and tested whether specific knockouts would

affect these signatures. Using CRISPR/Cas9 genome editing, we

generated HAP1 cells deficient for HIF1A or CTNNB1 (beta-catenin),

critical and specific transcription factors in hypoxia and WNT

signaling. As expected, genes upregulated by DFOM and WNT3A

were strongly reduced in the HIF1A and CTNNB1 mutants, respec-

tively (Fig 1D and E).

Finally, we tested whether we could also uncover genotype–

phenotype connections in a large unbiased setting. We chose to

focus on tyrosine kinases as these represent a recognized class of

drug targets, yet many of the 90 members encoded in the human

genome remain poorly annotated (Fedorov et al, 2010). Based on

essentiality in HAP1 cells (Blomen et al, 2015) and RNA expres-

sion, we selected 56 tyrosine kinases, and for each gene, we

attempted to generate isogenic knockout clones in HAP1 cells

using CRISPR/Cas9 (Fig 2A and Appendix Fig S1). Guide RNAs

were designed to target coding exons at least 100 bp downstream

of the start codon to avoid translational initiation from a down-

stream ATG. Mutant clones were expanded, and gene knockout

was confirmed by Sanger sequencing in more than 95% (55/56)

of the selected genes. The great majority of clones was morpho-

logically indistinguishable from wild-type cells and proliferated at

similar speed.

We adopted a scalable and modular screen design, splitting

data acquisition into batches. Each batch consisted of four

knockout cell lines screened in parallel against the 10 selected

stimuli along with controls (Fig EV1F). This allowed us to main-

tain replicates and mutant-specific samples in one batch, reducing

the need for batch correction for some analyses (see Materials

and Methods). In this manner, we processed 64 HAP1 knockout

cell lines (55 tyrosine, 6 nontyrosine kinases, and 3 positive

controls) and again obtained high concordance in expression pro-

files between replicates (Fig 2B). Clustering based on the defined

signatures showed the expected groupings by stimulus (Fig 2C),

indicating that most mutant cell lines responded to the
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Figure 2. Parallel reverse genetic screening of kinase knockout cells.

A On top, cartoon illustrating the assembly of a collection of HAP1 knockouts
using CRISPR/Cas9 technology. Abbreviations indicate kinase subfamilies. At
bottom, scheme for screening design showing that individual kinase KO
cells are measured along all relevant controls. KO, knockout.

B Spearman correlations between replicates of stimulated and unstimulated
wild-type and knockout cells in the transcriptomic screen of 16 96-well
plates. Inset shows expression values in a representative set of replicates.

C Supervised Stochastic Neighbour Embedding (tSNE) clustering of all
stimulated and unstimulated HAP1 wild-type and knockout cell lines. Dots
represent averages of replicates. WT, wild type; KO, knockout.
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perturbations similarly to wild-type cells. Interestingly, around

15% of the knockout cells showed signatures with substantial

overlap with the DFOM signature (Appendix Fig S2A), explaining

the imperfect clustering of DFOM samples and some unstimulated

controls. Although this effect was less strong than that induced

with DFOM, it suggests that some clones had an activated

hypoxia response under normoxic conditions. Indeed, Western

blot analysis showed that HIF1A protein levels were elevated

under normoxic conditions in clones displaying the hypoxia-like

signature (Appendix Fig S2B and C). The levels were comparable

to those observed in DFOM-treated cells. However, this increase

was not consistently observed in independently generated knock-

out clones, suggesting that the hypoxic state is a modestly

frequent (~15%) passenger effect.

Further analysis of the screening data indicated that responses of

mutant cells to the stimuli were weakly correlated with RNA

concentration and sequencing depth (Appendix Fig S3). This

suggested that cell growth, albeit largely managed experimentally,

had a measurable effect on the signatures, highlighting the potential

confounding effects of cell cycle and cell density on cellular

responses. We thus created linear models to correct for these effects

and used residuals to score individual cell lines’ responses to each

stimulus (Fig EV2). This revealed several knockout-specific signal-

ing dependencies (Figs 3A–C and EV3). For example, JAK1 knock-

out cells were completely insensitive to IFNg and IFNb while

responding similarly as wild-type cells to the other eight stimuli. In

contrast, JAK2 or TYK2 ablation did not affect the response to inter-

feron under these conditions (Figs 3B and EV4). This finding is

surprising as these three JAK family members have been reported to

contribute to a transcriptional response upon stimulation with type I

or type II interferons (Rane & Reddy, 2000). Our results confirm a

critical role for JAK1 in interferon signaling and suggest a distinct
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Figure 3. Transcriptional profiling of kinase knockouts links genotypes to pathways.

A Responses of JAK1-KO cells to the ten selected stimuli. Violins indicate score distributions of all knockout cell lines. Scores are overlaps of signature gene sets with
expected signature sets, corrected for technical variables using general linear models. Bars represent scores for JAK1-KO mutants. KO, knockout.

B Similar as in Fig 3A, except showing detailed view of responses to FGF1 and IFNb/IFNg stimulation of selected knockout cells. Bars indicate labeled mutants of FGFR
and JAK family members.

C Same as in Fig 3A, except showing FGFR1-KO cell line.
D Comparison of response signatures in wild-type and FGFR-KO mutant cells. Contours summarize genes that are not differentially expressed; dots indicate FGF1

signature genes; gray dotted line is the diagonal of equal response; and red line is a linear fit using signature genes. FC, fold change; WT, wild type; KO, knockout.
E Comparison of stimulus response as measured by RNA-seq and qRT–PCR. Each axis shows the slope of a best-fit line through KO and WT stimulus responses (lines for

RNA-seq are as in Fig 3D, and lines for qRT–PCR data are computed similarly from independent stimulation and qRT measurements). Dotted lines are guides
representing unit slope (equal response in KO and WT cells to stimulus) and zero slope (KO cells fully unresponsive to stimulus). Shaded area represents the space
where both assays indicate that KO cells are less responsive than WT cells. WT, wild type; KO, knockout.
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function of this kinase compared to the other two family members,

at least in HAP1 cells.

As another example, we noted differential responsiveness of

mutants in the FGF receptor (FGFR) family, which bind FGF1.

Signaling through these receptors occurs through overlapping down-

stream cascades (Raju et al, 2014), but is also context dependent.

Accordingly, mutations in distinct FGFR family members are associ-

ated with specific cancers (Touat et al, 2015). In HAP1 cells, the

response to FGF1 was diminished through knockout of FGFR1 and

FGFR3, but not FGFR2 or FGFR4 (Fig 3B and C). Studying the signa-

ture genes in more detail, we further noted that loss of FGFR1 had a

uniform effect on FGF1 signaling, as marked by an overall reduction

in the strength of the response (Figs 3D and EV4). In contrast, in

FGFR3 knockout cells, the attenuation was less uniform. These

observations highlight the complexity of FGF1 signaling and illus-

trate how the profiling platform can spark new hypotheses even for

well-studied pathways.

Many other gene–stimulus combinations also resulted in subtle

reductions in signaling strength. To assess whether these small

effects were reproducible, we selected gene–stimulus combina-

tions across all the stimuli and validated them using qRT–PCR

(Fig 3E). Remarkably, changes in stimulus response were quanti-

tatively consistent with the results seen in the screens. These

experiments also confirmed another observation that some mutant

clones show aberrations in more than one signaling pathway

(Fig EV5).

Discussion

In summary, we present an approach for parallel reverse genetics of

mutant human cells based on shallow RNA sequencing. Besides

demonstrating its suitability for studying cellular perturbations, we

generated a proof-of-concept dataset comprising 11 conditions in a

collection of 64 isogenic haploid mutant cell lines. This represents

one of the largest transcriptomic experiments performed in a single

cell line and demonstrates the scalability and suitability of the

approach for exploring signaling mechanisms in human cells in a

systematic manner.

There are some potential limitations of the genetic screening

strategy. The resolution of shallow RNA-seq is not as high as

obtained from deeper sequencing protocols. Changes in lowly

expressed genes may thus be missed, but this loss is offset by the

reduced cost of the assay that allows analysis of a higher number of

samples. Furthermore, cellular changes that do not affect gene tran-

scription, or only very transiently, cannot be quantified using this

method. The generation of full knockout mutants in diploid cells

may be less efficient than reported here, and we do not formally

demonstrate that the shallow RNA-seq performs equally well on

other (diploid) mammalian cell systems. Nonetheless, we anticipate

that the strategy of transcriptional screening of mutant cells is

generic and can be applied to study many other cellular systems

provided relevant reference/control signatures are measured.

Furthermore, the presented strategy can be deployed to address a

multitude of biological questions beyond the study of full knockout

mutants. Envisioned applications include hit validation and targeted

hypothesis testing that are difficult to tackle through forward

genetics.

Materials and Methods

Cell lines

Cells were propagated in Iscove’s modified Dulbecco’s medium

(IMDM+GlutaMAX, Invitrogen GIBCO) supplemented with 10%

heat-inactivated bovine serum (FBS, Invitrogen GIBCO), 100 lg/ml

penicillin, and 100 lg/ml streptomycin (Sigma-Aldrich). All cell

lines were grown at 37°C in a 5% CO2-humidified incubator. HAP1

knockout cell lines were generated at Horizon Genomics

(Table EV3).

A set of nonessential and expressed kinases was obtained by

intersecting published datasets of human kinases (Manning et al,

2002), expressed genes in HAP1 cells (Essletzbichler et al, 2014),

and nonessential genes in HAP1 cells (Blomen et al, 2015). Guide

RNAs (gRNA) were designed to target coding exons of the genes of

interest, preferentially targeting within the first 25% of the coding

sequence and at least 100 bp downstream of the start codon to avoid

translational initiation from a downstream ATG. Specificity of each

gRNA was assessed using the Broad algorithm (http://crispr.

mit.edu/). Cloning was performed by ligating oligonucleotides

containing the gRNA sequence and the chimeric gRNA backbone

into a plasmid harboring the U6 promoter.

To generate HAP1 mutants for screening, cells were transfected

with expression plasmids encoding Streptococcus pyogenes Cas9

(pX165 from the Zhang lab), a gRNA, and a blasticidin resistance

gene using TurboFectin (Origene). Untransfected cells were elimi-

nated by treating HAP1 cells with 20 lg/ml blasticidin for 24 h.

Cells were allowed to recover from antibiotic selection for 5–7 days,

and clonal cell lines were isolated by limiting dilution. DNA was

isolated from cells using the Direct PCR-Cell Kit (PeqLab). The

region around the gRNA target site was amplified by PCR, and PCR

products were analyzed by Sanger sequencing. Clones bearing

frameshift mutations were selected and stored for use. Cells lines

are available through Horizon Genomics.

Independently generated FGFR3 and PDGFRA knockout cell lines

were obtained by ligating oligonucleotides encoding for the gRNA

sequence (FGFR3: CAGCAGGAGCAGTTGGTCTT; PDGFRA: GCG

TTCCTGGTCTTAGGCTG) with a lentiCRISPR v2 vector (Addgene

#52961). Following lentiviral transduction, infected cells were

selected with 0.5 lg/ml puromycin for 3 days. Clonal cell lines were

isolated by limiting dilution and gDNA isolated using DNeasy Blood

& Tissue kit (Qiagen) according to the manufacturer’s instructions.

Regions flanking the gRNA target site were amplified by PCR and

analyzed by Sanger sequencing. Clones harboring frameshift muta-

tions were expanded for follow-up experiments.

Reagents and stimulation of cells

Recombinant polypeptides and small molecules were purchased

from different vendors (Table EV1). Polypeptides were diluted in

water, 0.1% BSA, 0.1% acetic acid, 10 mM sodium citrate (pH 3),

5 mM sodium phosphate (pH 8 or 7.2), or 10 mM acetic acid. Stocks

were prepared in PBS containing 0.1% BSA. Small molecules were

diluted in water, DMSO, or 20 mM MES buffer (pH 5.5).

Stimulation experiments were carried out in a 12-well format

using 2 × 105 cells per well. Thirty-six hours after seeding, cells

were washed twice with PBS, and IMDM supplemented with 0.5%
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FBS, 100 lg/ml penicillin and 100 lg/ml streptomycin was added.

After 16 h reduced serum conditions, cells were stimulated with

polypeptides or small molecules for 6 h. Samples were washed

twice with 1 ml PBS (pre-chilled to 4°C) and immediately stored at

�80°C.

RNA sequencing

Total RNA was isolated using RNeasy Mini kit (Qiagen) accord-

ing to the manufacturer’s instructions. 500 ng total RNA was

used for library preparation using the QuantSeq 30 mRNA-Seq

Library Prep Kit (Lexogen) according to the manufacturer’s proto-

col with the exception of using 13 instead of 12 PCR cycles for

library amplification. Library concentrations were measured using

Qubit dsDNA HS assay on a Qubit 2.0 Fluorometric Quantitation

System (Life Technologies). Size distribution of pooled final

libraries (48 samples) was assessed using Experion DNA 1K anal-

ysis kit on an Experion automated electrophoresis system (Bio-

Rad). Libraries were diluted, and the T-fill reaction was

performed on a cBot as described previously (Wilkening et al,

2013) with the exception that the T-fill solution was provided in

a primer tube strip. For cluster generation, the cBot protocol SR

Amp Lin Block TubeStripHyp v8.0.xml was used. Sequencing

was performed on an Illumina HiSeq 2000 machine using 50-bp

single-read v3 chemistry.

Quantitative real-time PCR

Total RNA was isolated using RNeasy Mini kit (Qiagen), and

DNase digest was performed using a TURBO DNase kit (Ambion)

according to the manufacturer’s protocols. About 500 ng to 1 lg
total RNA was reverse-transcribed using random hexamer primers

and RevertAid Reverse Transcriptase kit (Fermentas). cDNA

synthesis was carried out according to the manufacturer’s instruc-

tions (synthesis cycle: 10 min at 25°C, 60 min at 42°C, and 10 min

at 70°C). About 25–50 ng of cDNA and 500 nM forward and

reverse primer were used for PCR amplification with KAPA ABI

Prism SYBR Fast (Kapa Biosystems) according to the manufac-

turer’s instructions (synthesis cycle: 3 min at 95°C and (3 s at

95°C, 30 s at 60°C) × 40). Primers used for qRT–PCR are listed in

Table EV4.

Western blotting

Whole-cell lysates were prepared using 4× sample buffer (320 mM

Tris–HCl pH 6.8, 40% glycerol, 16 lg/ml bromophenol blue, 8%

SDS) containing 10% 2-mercaptoethanol (Fisher Scientific), incu-

bated for 10 min at 95°C and subjected to SDS–PAGE (NuPAGE

4–12% Bis-Tris Gel, Invitrogen). Proteins were separated for 1.5 h

at 130 V and transferred to a polyvinylidene difluoride (PVDF,

Amersham Hybond-P, GE Healthcare) membrane for 2 h at

400 mA. Membranes were blocked with 0.2% Tropix I-Block

(Applied Biosystems) for 1 h and incubated with primary antibody

diluted in 0.2% Tropix I-Block overnight at 4°C. Primary antibod-

ies and dilutions used were as follows: mouse anti-HIF1A

(1:2,000) from BD Biosciences (610959) and rabbit anti-actin

(1:1,000) from Sigma-Aldrich (A2066). Blots were washed

with PBS containing 0.1% Tween-20 and incubated with

HRP-conjugated secondary antibodies (anti-mouse or anti-rabbit

IgG from Bio-Rad diluted 1:10,000 in 0.2% Tropix I-Block) for 1 h

at room temperature. HRP was detected using Western Lightning

Plus-ECL (PerkinElmer).

RNA-seq data processing and alignment

Unaligned reads in fastq format were trimmed of adapter sequence

AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC using Cutadapt

(v.1.2.1) and then partitioned using TriageTools (Fimereli et al,

2013) (v0.2.2) to select long (–length 35), high-quality (–quality 9),

and sequence-complex (–lzw 0.33) reads. Selected reads were

aligned using GSNAP (Wu & Nacu, 2010; v2014-02-28) onto a

custom genome index (gmap_build -k 14 -q 2) based on hg19

supplemented with ERCC92 transcript sequences. Expression esti-

mates on Gencode V19 genes were collected from the alignments

using Exp3p. This procedure implements read counting on gene

bodies and normalizes by total sequencing depth; because the RNA

sequencing protocol is designed to capture one read per transcript

through the polyadenylated tail, expression normalization does not

include the length of the gene body.

Expression analysis

Analysis was performed in a series of modules built around a

custom toolkit, ExpCube. The analysis was split into two parts.

The first part consisted of analysis of four 96-well plates repre-

senting the stimulus discovery phase of the project. The second

part was an extension to the entire dataset (twenty 96-well

plates). Analysis modules and their dependencies are illustrated

in Appendix Fig S4.

We began by gathering expression data from all samples into one

object. This object included central estimates as well as intervals for

each gene in each sample. Common steps in expression analysis are

normalization and batch correction. However, by examining profiles

of unstimulated wild-type HAP1 cells and controls, we observed that

various implementations of these steps highlighted parts of the

signal and hid others, making it difficult to select a unified scheme

for the entire screen. Furthermore, the experimental design was

such that most intended comparisons were between samples within

a single batch, mitigating the need for explicit batch correction. For

these reasons, we chose not to adjust the central expression values.

Instead, we used within-plate and across-plate variation for unstim-

ulated wild-type samples (of which there are four or more replicates

per plate) to adjust uncertainty intervals. For each gene, we

computed quantiles among replicates in each plate and quantiles

among group averages across plates. We then compared this empiri-

cal variability to the base Poisson intervals and obtained a rescaling

factor for each gene’s Poisson interval. For 98% of genes, the

across-plate variability was larger than the within-plate variability

(median ratio equal to 1.8), indicating the importance of replicates

of wild-type controls in each of the library preparation plates. We

applied this interval rescaling operation to all samples in the screen.

Thus, we incorporated empirical data on reproducibility of compara-

ble samples from across the screen into the expression profiles of all

other samples.

We scored differential expression (DE) based on effect sizes (fold

changes) and uncertainty levels (z-scores, defined as differences in
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central expression values divided by a joint estimate of interval

size). Outlier samples due to failed sequencing were excluded from

the analysis. Considering groups A and B, we scored each sample in

group A against each sample in group B, one gene at a time. We set

a score of + 1 for a z-score > 1.75 and a fold change > 1.75, a score

of 0 for a z-score < 1.25 and a fold change < 1.25, and a linear gradi-

ent of scores for intermediate cases (negative values for downregu-

lation). Through the z-score component, this approach penalized

inconsistent/unreliable genes whose intervals were substantially

modified in the previous step. We then obtained a group-level DE

score using the mean of the sample-level scores. By construction,

these scores lie in [�1, 1] and carry the same interpretation inde-

pendently of the number of samples per group, albeit with some

variability with very few replicates (Fig EV1B). We declared a gene

to be in a signature if the score was > 0.7.

For the power analysis, we began by pooling raw data from 24

replicates of unstimulated wild-type cells from the stimulus

discovery phase. We then subset the pool into bins of varying

size and applied our alignment and expression-calling pipeline on

each bin. From these expression profiles, we computed the

number of genes with expression above 1 transcript per million

reads. We also created hypothetical profiles with genes over- or

under-expressed by various fold changes and applied our criteria

to call differential expression. The number of genes called in this

analysis reflects the sensitivity of the method to identify expres-

sion changes under uncertainty due to low-coverage and biologi-

cal variability. This calculation is presented in the ExpCube

package vignette.

For stimulus selection in the discovery phase, we worked with

stimuli whose group signature contained at least two replicates and

at least two signature genes. Clustering of stimuli was performed

using a Jaccard index distance between signature gene sets. Gene

set enrichment analysis was performed by comparing signature

genes with a background set of expressed genes in HAP1 cells using

the topGO package (Alexa et al, 2006).

In the screening phase, we compared overlaps for each stimu-

lus and each mutant cell line with the expected responses in

wild-type cells. We collapsed expression profiles onto the ten

selected signatures and then performed tSNE (van der Maaten &

Hinton, 2008) clustering based on Euclidean distances

between groups using the dimensionally reduced data. For more

detailed analysis, we correlated overlaps with technical features

and noted unintentional relations with RNA concentration

and depth (Appendix Fig S3). To correct for these effects, we set

up general linear models (GLM) of the form O = aR + bD, where

O denotes overlap, R is average RNA concentration (ng per ul),

D is average sequencing depth (millions of reads), and a and b

are coefficients. We then defined a stimulus response score as

the residuals between observed and modeled overlap. Extreme

values of this score identify outlying cell lines, that is, mutants

showing abnormal response given cell density and sequencing

performance.

For comparison between RNA-seq and qRT–PCR data, we

computed slopes of best-fit lines between KO and WT responses

plotted on logarithmic scales. Linear fits on log axes suggest a model

where KO response is a power of the WT response, but we do not

mean to emphasize this interpretation. Rather, we regard the linear

fit as a convenient summary of the overall patterns with few fitted

parameters. In the case of RNA-seq data, the best-fit line was

computed using signature genes with one outlier removed. In the

case of qRT–PCR, the line was fit using four signature genes and

GAPDH.

Data availability

All raw sequencing data have been deposited in the European

Nucleotide Archive under accession ERP012914. Exp3p software is

available at https://github.com/tkonopka/Exp3p (v0.1). ExpCube

software is available at https://github.com/tkonopka/ExpCube.

Additional code, data files, and processed expression values are

available at https://zenodo.org/record/51842.

Expanded View for this article is available online.
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