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Abstract: The emergence of human-induced Pluripotent Stem Cells (hiPSCs) has dramatically im-
proved our understanding of human developmental processes under normal and diseased conditions.
The hiPSCs have been differentiated into various tissue-specific cells in vitro, and the advancement
in three-dimensional (3D) culture has provided a possibility to generate those cells in an in vivo-
like environment. Tissues with 3D structures can be generated using different approaches such as
self-assembled organoids and tissue-engineering methods, such as bioprinting. We are interested
in studying the self-assembled organoids differentiated from hiPSCs, as they have the potential
to recapitulate the in vivo developmental process and be used to model human development and
congenital defects. Organoids of tissues such as those of the intestine and brain were developed
many years ago, but heart organoids were not reported until recently. In this review, we will compare
the heart organoids with the in vivo hearts to understand the anatomical structures we still lack in
the organoids. Specifically, we will compare the development of main heart structures, focusing on
their marker genes and regulatory signaling pathways.

Keywords: heart development; congenital heart defect; organoid; anatomical structure; cardiac
lineage; marker gene; signaling pathway

1. Introduction

To model the in vivo developmental processes, 3D cell cultures were developed and
categorized into different subtypes such as embryoid body (EB), gastruloid, spheroid, and
organoid. EBs are aggregated differentiating embryonic stem cells (ESCs) or iPSCs. The
cells in EBs are usually at early differentiation stages and do not organize into specific
spatial patterns. In the cardiac stem cell field, EBs are used to generate lineage-specific
cell types such as cardiomyocytes [1]. Gastruloids consist of three germ layers and are
used to model the embryo gastrulation process. In theory, gastruloids can develop into an
entire embryo if an appropriate differentiation environment is provided; in a recent study,
a differentiation condition was designed to enable the cultured mouse embryos to develop
to the hindlimb formation stage [2–4]. The spheroid is an aggregate of differentiated cell
types or cancer cells. These cells do not self-assemble into the anatomical patterns observed
in vivo and can be used to study the interactions among different cell types. Lastly, the
organoid is a complicated cell aggregate in which the differentiated cells mostly belong to
a specific organ and self-assemble into the in vivo-like anatomic patterns. Tissue-specific
organoids, such as the cerebrum, liver, lung, and kidney, can be made with iPSCs or
progenitor cells [5,6]. They usually have similar morphology and cell-type interactions to
the in vivo organs, making organoids advantageous over other 3D models [7]. However, as
the emergence of multi-lineage organoids and certain organoids can only recapitulate part
of the organ-like features, the distinctions between the different types of 3D cell cultures
are becoming less clear.
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Multiple hiPSC-derived heart organoid systems were recently reported and claimed
to have developed in vivo-like heart features. The heart is the first organ to develop in
humans, and its defects affect about 1% of births [8]. Heart development originates from
mesodermal cells, which later develop into cardiac progenitors in the two heart fields. First
heart field (FHF) cells develop into the primitive heart tube, and second heart field (SHF)
progenitors contribute to heart-tube elongation from both poles [9,10]. Meanwhile, the
heart tube undergoes rightward looping, giving rise to the four-chambered heart. The heart
chamber wall consists of three tissue layers: epicardium, myocardium, and endocardium.
The heart also has other structures besides the chambers, including the inflow tract (IFT),
the atrial ventricular canal (AVC), and the outflow tract (OFT) at the early stages, which
contribute to the development of the chambers, valves, septum, and large vessels at later
stages. The normal development of these structures is essential for generating a functional
heart; if this process goes awry, it can cause congenital heart defects (CHDs) [10].

Although mouse models are highly valuable in studying certain CHDs such as hy-
poplastic left heart syndrome [11], many CHDs still do not have helpful animal models
due to the potential genetic and pathological differences between species. Human-induced
Pluripotent Stem Cells (hiPSCs) have a significant advantage in modeling these diseases,
as the iPSCs can be directly reprogrammed from patient somatic cells, therefore preserving
the genetic background of the patients. To model CHDs, the 3D differentiation condition
(e.g., organoids) is essential as it can potentially develop features like those seen in the
in vivo hearts. Besides modeling normal heart developmental processes and CHDs, heart
organoids also have the potential to be used for drug screenings. In this review, we will
compare the developmental processes of in vivo hearts and heart organoids to learn the
potential ways to improve organoid systems further, with a goal to generate organoids
with structures and functions like in vivo hearts.

2. Heart Fields Formation

During mouse heart development, the two heart fields are specified sequentially and
express marker genes such as Hcn4 (FHF), Isl1, and Tbx1 (SHF) [12,13]. The FHF originates
from the lateral plate mesoderm and mainly contributes to linear heart-tube formation. FHF
formation is induced by signals from the adjacent ectoderm, endoderm, embryonic midline,
and posterior regions. Bone morphogenetic protein (BMP), Fibroblast growth factor (FGF),
Transforming growth factor β (TGFβ), and WNT signaling pathways were reported to be
involved in this process [14,15]. The SHF is derived from the pharyngeal mesoderm and
contributes to heart development from both inflow and outflow poles after the linear heart-
tube stage. Additionally, the SHF is specified by signals from the surrounding pharyngeal
endoderm and neural crest cells. While SHF progenitor cell survival, proliferation, and
deployment were found to be dependent upon WNT, BMP, Hedgehog (HH), and FGF
signaling [15,16], the posterior limit of SHF was reported to be determined by retinoic acid
(RA) [17]. Furthermore, TGF-β, HH, and FGF were reported to be important in zebrafish
SHF progenitor cell proliferation and differentiation [18] (Figure 1A).

The FHF and SHF were also discovered to develop in mouse 3D culture systems.
Andersen et al. verified FHF/SHF-like cells in their mouse iPSC-derived organoids by
showing similarities with embryonic FHF/SHF cells in their gene expression and differenti-
ation potentials. They also found that the Bmp/Smad pathway and the Smad-independent
BMP/WNT pathway specified FHF and SHF progenitors [12], respectively. Recently, Rossi
et al. described mouse embryonic stem cells (mESCs)-derived gastruloids that were found
to have cells expressing the FHF/SHF markers and had a spatial distribution like the
in vivo progenitors [19]. Additionally, Lewis-Israeli et al. generated heart organoids from
hiPSCs presenting characteristics of both heart fields in the same organoid. They identified
NKX2-5, PDGFRA, and EOMES expression in the FHF progenitors and ISL1, MEF2C, and
TBX18 expression in SHF cells (Figure 1B). These progenitors were described to respec-
tively develop into left and right ventricular CMs based on the expression of HAND1 and
HAND2 [20].
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Figure 1. The comparison of molecular markers and regulatory signaling pathways in in vivo heart
and human heart organoid development. (A) The major events during in vivo heart development
and their molecular markers and regulatory signaling pathways. (B) The molecular markers and
signaling pathways that have been reported to be important in regulating human iPSC-derived
cardiac cell or cardiac organoid differentiations. “–” means non-applicable or no related studies have
been reported.

Next, it will be interesting to analyze the detailed structures in the organoid heart
fields, as the FHF and SHF in mouse embryos are specified into small segments through
the differential expression of HOX genes and RA signaling, and each segment respectively
develops into related heart anatomical structures such as atrial and ventricular cham-
bers [21]. Furthermore, these organoid heart fields do not seem to differentiate sequentially
or form the specific spatial patterns seen in the heart fields in embryos, whose SHF locates
dorsal and medial to the FHF to progressively contribute cells to both poles of the linear
heart tube [10]. With further detailed analysis and appropriate manipulations, we expect
the organoid heart fields to develop in a similar temporal and spatial manner as seen in
embryonic heart field development.

3. Heart Lumen Development

Through genetic screening in Drosophila, the heart tube lumen formation was found
to be regulated by a Slit-Integrin signaling pathway, which regulates actin cytoskeleton
alignment to promote cardiac cell polarization in lumen development [22,23]. In mice, live
imaging analysis revealed that the heart lumen developed from a split of two endocardial
endothelial cell (EndoEC) layers at the cardiac crescent stage. It also found that cell rounding
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was unlikely to initiate lumen formation as the cardiac crescent cells are still columnar when
the lumen begins to develop [24]. As part of the heart lumen developmental process, aorta
lumen propagation initiates between stages 1S and 3S (E8.0), developing from adjacent
endothelial cell (EC) contact after EC shape has changed. This process is regulated by
VE-Cadherin and VEGF-A [25]. In humans, the heart lumen develops from the fusion of
two endocardial tubes, each of which has a hollow lumen derived from the cardiogenic
cords [26].

A recent study reported the induction of heart chamber-like structures in human heart
organoids and found that Wnt-BMP signaling and transcription factor HAND1 were both
critical in this process [27]. Further time-course analysis of organoid formation found that
the lumen appeared after 2.5–3.5 days of differentiation at the cardiac mesoderm stage,
which is earlier than when the mouse heart lumen develops in the cardiac crescent stage.
Additionally, the study found that low WNT and Activin A levels can induce chamber
formation with a partial inner lining of EndoECs. However, lumen formation does not
seem to rely on the EndoECs, as the lumen can still form when the EndoECs developed on
the outer organoid surface after VEGF treatment [27]. Lewis-Israeli et al. and our study
also generated organoids with chamber-like structures, and these chambers also developed
independently from the EndoECs [20,28]. As chamber formation in the current organoids
does not go through the same process as in vivo heart lumen development, there is limited
value in modeling human heart lumen formation under normal and diseased conditions
using organoid cultures. However, heart organoids may still be valuable in studying other
aspects of heart chamber development, such as heart pumping and looping.

4. Compact and Trabecular Myocardium Growth

Heart chamber growth was thought to balloon out from the looped hearts segmentally.
The ventricular and atrial chambers were found to respectively expand from the linear heart
tube on ventral and dorsal sides [29,30] and the expanded chambers to develop into two
types of myocardium, with the compact myocardium on the outer surface and trabecular
myocardium close to the lumen to increase cardiac output and oxygen uptake at early em-
bryonic stages [31,32]. The CMs in compact myocardium highly express Loxl2, Hey2, Mycn,
and Fstl4, while the CMs in trabecular myocardium express Nppa, Itga6, Sema3a, and Slit2 [32].
Compact and trabecular myocardium development was shown to be differentially regulated
by signals from the epicardium and the endocardium [33–35]. Epicardium-derived signals
such as BMP4, FGF, WNT, IGF, and RA were reported to promote CM proliferation in compact
myocardium [35–37], and endocardium signals such as NOTCH, Neuregulin, Ephrin, and
TGF-β were reported to promote trabecular myocardium development [31,38,39]. Further-
more, some signaling molecules expressed in the myocardium, such as BMP10, were also
found to regulate the trabecular myocardium development [40] (Figure 1A).

To generate compact CMs from hiPSCs, WNT and IGF2 were added to the ventric-
ular CM differentiation system on day 10 [41]. The CMs were shown to express typical
compact myocardium marker genes such as HEY2, MYCN, TBX10, and FZD1. In contrast,
the addition of Neuregulin to the differentiation system at day 10 can specify CMs into
trabecular CMs expressing trabecular myocardium genes such as NPPA, NPPB, BMP10,
IRX3, and HAS2 (Figure 1B). Similarly, the co-culture of EndoEC with CMs can promote the
development of trabecular CMs, as EndoECs were known to be able to secrete Neuregulin
in mice and zebrafish [42]. Next, it will be interesting to test if other EndoEC-derived
growth factors such as TGF-β and NOTCH can also induce trabecular CM fate and if
epicardium-derived factors such as RA, BMP, WNT, and FGF can promote compact CM
development. Additionally, and most importantly, a test will be needed to determine if
these factors can be applied locally to generate heart organoids with compact and trabecular
myocardium at correct anatomical locations.
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5. Heart Structure Development

The early stages of mouse heart development consist of the formation of the four cham-
bers (left and right atrial; left and right ventricular) and two non-chamber structures—the
atrial ventricular canal (AVC) and the outflow tract (OFT). While AVC at later develop-
mental stages contributes to the development of the septum and atrioventricular valves,
including the tricuspid and mitral valves, the OFT contributes to the formation of large
vessels (aorta and pulmonary artery) and the semilunar valves, including the aortic and
pulmonary valves [43]. The atrial CMs highly express Nr2f1, Nr2f2, Sln, and Myl7, while the
ventricular CMs express Myl2 and Mpped2. Furthermore, while the left and right ventricular
CMs differentially express Pcsk6, the left and right atrial CMs highly express Pitx2 and
Shox2, respectively. In contrast, the AVC CMs express Rspo3, Tbx3, and Bmp2, and the OFT
CMs express Rspo3 and Cxcl12 [32,44] (Figure 1A).

Atrial lineage specification is regulated by RA signaling in multiple species [45–47],
while early dorsal-ventral patterning signals such as FGF and BMP also differentially
promote atrial and ventricular lineage development in zebrafish [48]. As the left and right
ventricular CMs develop from different heart fields, their lineage formation is primarily
regulated by the heart field specification signals previously mentioned when discussing
heart fields’ formation. The AVC and OFT share a structure named the endocardial cushion,
which is induced by the interaction of BMP signaling, including BMP2 and BMP4 in
myocardium and BMPR1A in EndoECs. Mouse endocardial cushion cells express marker
genes such as Twist1, Msx1, and Snail. Endocardial cushion cells need to go through an
endothelial-to-mesenchymal transition (EndoMT) process regulated by multiple signaling
pathways, such as TGFβ, WNT/β-catenin, HIPPO, and NOTCH, to develop into valve
cells [49].

Atrial and Ventricular CMs were found to co-exist in heart organoids but did not
display in vivo-like spatial domains. RA signaling had been used to promote atrial CM
lineage in monolayer and EB-based hiPSC differentiation, and the atrial and ventricular CM
progenitors were distinguished based on the expression of CD235A and RALDH2 [50,51].
We have also generated heart organoids with atrial or ventricular identities by adding
(+) or omitting (−) RA at the cardiac mesoderm stage and found that the RA+ and RA-
heart organoids had distinct membrane action potentials and Ca2+ transient activities. The
chamber identity of these cells was further confirmed with immunofluorescence staining
for chamber-specific marker genes such as MYH7, HEY2 (ventricular), NR2F2, MYH6, and
ID2 (atrial) (Figure 1B). We also performed single-cell mRNA sequencing (scRNA-seq) and
random forest-based zone classification to analyze their cell identities systematically [28].
These analyses consistently support that the CMs in RA- heart organoids preferentially
develop into ventricular CMs, while the CMs in RA+ organoids are more likely to develop
into atrial CMs [28].

Interestingly, our study found that MYL2 is a robust ventricular CM marker gene in
human fetal hearts but is barely expressed in the organoid ventricular CMs differentiated
from the hiPSC line “WTC”. Considering that WTC and its derived transgenic lines have
been broadly used in the cardiac stem cell field, we have investigated MYL2 expression
in WTC-derived CMs from multiple labs based on their scRNA-seq results. We found
that while MYL2 was barely detected in the WTC-derived CMs before differentiation
day 30 in several studies, it was expressed in other hiPSC line-derived CMs with the
same differentiation conditions [52–54]. However, there are some exceptions where MYL2
was found to be expressed in the WTC-derived CMs on day 30 in one study and day
90 in another. Both studies generated the CMs using a monolayer with small molecules
protocol [53,55] (Table 1). The cause of the differences in gene expression across the studies
is still a mystery to us, but it will be important to investigate whether this expression
variation also exists in other genes and other cell lines.
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Table 1. The MYL2 expression in WTC parent and derived hiPSC lines in different studies.

MYL2 Expression Stage Differentiation Protocol

Feng et al. (BioRxiv, https://doi.org/
10.1101/2020.12.24.424346) Barely expressed Day 30 Monolayer with small molecules,

Organoid with small molecules

Paige et al. (PMID: 33074758) Abundant expression Day 30 Monolayer with small molecules

Grancharova et al. (PMID: 34349150) Barely expressed Day 26 Monolayer with a combination of
cytokines and small molecules

Grancharova et al. (PMID: 34349150) Abundant expression Day 90 Monolayer with small molecules

Friedman et al. (PMID: 30290179) Barely expressed Day 30 Monolayer with small molecules

HiPSC-derived valve mesenchymal cells are known to be induced from EndoECs
through EndoMT, and FGF, VEGF, and BMP signaling was found to be important in this
process. After the treatment of FGF8 and VEGF, pre-valvular endocardial ECs with the
expression of CD31 were induced, and through further comparative analysis with scRNA-
seq, those cells were found to be similar to the mouse AVC endocardium at E9.0 (embryonic
day 9). Those cells can undergo EMT after BMP2 treatment and express valvular interstitial
cell genes such as MSX1, SMAD6, SOX9, SLUG, CADHERIN 11, N-CADHERIN, and
PERIOSTIN [56]. Another study found that BMP10 is vital to EndoEC induction. Through
BMP10 and bFGF treatment, an Nkx2-5+ CD31+ EndoEC population was identified and
found to express NFATC1, NPR3, GATA4, and GATA5. After BMP2 and TGF-β treatment,
these EndoECs were able to undergo EndoMT and develop into valvular interstitial-like
cells (VICs) expressing NR4A2, PRRX2, and TIMP3 [42]. Next, it will be interesting to adapt
this process to organoid systems.

6. The Anatomical Pattern of Cardiac Cells

In mammalians, the heart chambers consist of three tissue layers: epicardium, en-
docardium, and myocardium. The epicardium develops from proepicardium, and its
developmental process was found to be regulated by FGF, MEK1/2, and myocardium-
derived BMP signaling [57]. Epicardial cells in the epicardium were characterized with
Tbx18, Tcf21, Wt1, and Aldh1a2 expression and the cells were able to undergo EMT to
develop into smooth muscle cells (SMCs) and cardiac fibroblasts (CFs). This process was
reported to be regulated by many signaling pathways such as TGF-β, PDGF, RA, and
Yap/Taz [58], and the CFs were shown to express multiple marker genes, such as Col1a1,
Postn, and Pdgfra [44]. The EndoEC expresses marker genes Pecam1, Nfatc1, and Npr3,
and was found to develop from the Flk1+ multipotent cardiovascular progenitors in the
FHF [59] and vascular endothelial progenitors in the SHF [60]. These cells have the plas-
ticity to develop into many cell types such as cushion mesenchymal cells, vascular ECs,
and vascular mural cells [61], and cell development is regulated by cardiac progenitor cell
determination signals such as Wnt and Bmp at an early stage and is influenced by the
myocardium-derived signals at later stages. The coronary vascular ECs express Pecam1
and Fabp4 [62] and its cells at the dorsal and ventral sides were respectively derived from
sinus venosus and endocardium. Additionally, sinus venous-derived Vas EC development
was proved to be promoted by VEGFC [63], and a recent study found that the position of
VasECs was guided by chemokine signals, such as Slit2, from the epicardium-derived cells
(EPDCs) [58] (Figure 1A).

The mammalian heart conduction system consists of the Sinoatrial (SA) node, the
Atrioventricular (AV) node, the His bundle, and Purkinje fibers. ScRNA-seq analysis of
developing mouse conduction cells revealed that SA node cells express Shox2, Rgs6, and
Smoc2; AV node and His bundle cells express Kcne1, Tbx5, and Rgs6; and the Purkinje fiber
cells express Gja5, Scn5a, Etv1, and Nkx2-5 [64]. Lineage tracing studies demonstrated
that conduction cells were mainly derived from cardiomyocytes [65]. Furthermore, the
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development of conduction cells is regulated by the signaling pathways essential for the
AVC and trabecular myocardium development, such as BMP and NRG [65].

The organoids reported by Hofbauer et al. contained CMs, ECs, and Fb-like cells [27].
Interestingly, they found that low WNT and Activin A led to a high proportion of CMs with
VEGF-A expression, which can further direct the specific patterning of ECs at the inner part
of the cavity structure to resemble the specific patterning of in vivo EndoECs. These ECs
expressed the EndoEC markers NFATC1 and NPR3, and their transcriptomic profiles were
comparable with human umbilical vein endothelial cells (HUVECs) and human cardiac
microvascular endothelial cells (HCMECs). Consistently, Lewis-Israeli et al. also identified
CMs, ECs, and Fbs in their organoids [20]. We also developed heart organoids with the three
major cardiac cell types [28]. Interestingly, we found that the ECs were mostly EndoECs. As
the percentage of EndoECs was small, they did not cover the entire organoid lumen surface.
A recent study reported that EndoECs could be induced by BMP10 in an EB system [42]. It
will be interesting to test if this factor can also improve the EndoEC differentiation efficiency
in heart organoids. Vascular ECs were also observed in heart organoids but did not form
vascular-like structures. This was probably caused by the low EC differentiation efficiency
and the lack of an adequate environment, such as hypoxia and blood flow, to maintain their
identities. In order to develop vascularized organoids, multiple methods were proposed,
including (1) co-culture with ECs, (2) co-differentiation with mesodermal progenitor cells,
(3) mechanical stimulation, and 4) in vivo transplantation into a vascular enriched locus
such as the kidney capsule [66–68].

Significantly few epicardial cells were observed in the heart organoids without specific
proepicardial induction. To incorporate epicardium into their organoids, Hofbauer et al.
generated spheroids with epicardial cells and further fused them with heart organoids.
They found that the epicardial cells migrated into the heart organoids and underwent EMT
to differentiate into EPDCs [27]. Additionally, Lewis-Israeli et al. induced proepicardial lin-
eage in organoids by introducing CHIR (a WNT activator) at a relatively late differentiation
stage (day 7). They found that a short period of CHIR treatment was sufficient to induce a
layer of epicardium on the organoid outer surface, and the ratio of CMs to epicardial cells
was like in vivo (60–65% cardiomyocytes:10–20% epicardial cells) [20].

Conduction cells have not been identified in heart organoids, but these cell types have
been reported to be differentiated in EB and monolayer systems. SA nodal-like cells were
isolated in hiPSC-derived atrial cardiomyocyte populations based on the lack of NKX2-5
expression, and their differentiation was found to be enhanced with BMP4 and TGF-β
antagonist treatment. Additionally, RA was revealed to enhance the pacemaker phenotype
of the SA-like cells [69]. To generate cardiac Purkinje fiber cells, a small molecule screening
experiment was carried out, and sodium nitroprusside (SN) was identified to be able to
convert CM into Purkinje cells by activating cyclic AMP signaling [70] (Figure 1B). Next, it
will be interesting to test if conduction cells can be induced in heart organoids by treating
them with related growth factors or small molecules at specific stages.

7. Tissue Maturation

The mammalian heart undergoes maturation from fetal to adult stages to become
a fully functional organ. Cardiomyocyte maturation is associated with changes in gene
expression, morphology, and functional readouts. The matured CMs are characterized
by the expression of distinct myofibril gene isoforms and metabolism pathway genes,
the formation of organized sarcomere structures, T-tubules, polyploidization, and the
development of improved sarcomere contraction and action potentials [71]. Along the
developmental progression, multiple events were thought to promote CM maturation. At
fetal stage, non-CMs, such as fibroblasts, appearing at E13.5-E14.5 in mice were reported to
secrete paracrine factors to regulate CM proliferation and maturation [72–74]; hormones
such as glucocorticoids are synthesized and transported to the heart starting around
E14.5 to promote heart maturation [75]. The heart switches from hypoxia to a normoxia
environment at the neonatal stage, with oxygen as a known maturation factor. At the same
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time, the heart also changes its energy source from glucose to lipid [76]. Additionally, the
development of other tissues and physiological functions (contraction, blood flow) can also
contribute to heart maturation [77,78].

The matured heart organoid is essential to modeling many features in heart func-
tion, and several methods have been developed to improve this aspect. The treatment of
hiPSC-derived 3D heart microtissue with three hormones (Thyroid, Dexamethasone, and
IGF-1) was found to improve tissue maturation, which was proved by the development
of enhanced electrophysiological properties, and adult CM-like sarcomere structure and
gene expression profile [79]. Funakoshi et al. further improved the method by using a
combination of PPARa agonist, palmitate, dexamethasone, thyroid, and low glucose to
treat heart EBs. Their method was found to be able to mature the ventricular compact and
atrial CMs, as these treated cells developed aligned sarcomere structures, enhanced contrac-
tion ability, a high mitochondria mass, and fatty acid-based metabolism [41] (Figure 1B).
Meanwhile, the co-culture of CM, EC, and FB in 3D tissue was found to enhance the CM
maturation [80]. Additionally, multi-lineage organoids, such as those with gut and heart
lineages, had more matured CMs than those with heart lineages only [19,81,82]. The in vivo
heart environment was also reported to be important in promoting CM maturation: when
hiPSC-derived CMs were transplanted into neonatal and adult rat hearts, they were found
to gain partially matured myofibrils [83].

8. Application of the Heart Organoids

Although heart organoids still lack many features observed in in vivo hearts, they
have been successfully applied in modeling several heart development and injury-related
processes. We used organoids to model a congenital heart defect named Ebstein’s anomaly
(EA) [28], which is characterized by an atrialized right ventricular chamber. To model the
defect, we first generated isogenic hiPSC lines carrying an EA-associated point mutation on
NKX2-5. We then specified the cell lines into atrial and ventricular organoids by adding or
omitting RA in the differentiation process, respectively. We found the diseased organoids
from the conditions without RA treatment to have higher beating rates (the atrialized
ventricular phenotype) than the control organoids in the same differentiation condition.
This was similar to what was observed in EA patients. Further on, we utilized voltage
recording and scRNA-seq to analyze these organoids and found the diseased cells from the
ventricular differentiation condition to consistently have atrial CM-like features, a pheno-
copy of the defects in patients. In another study, Lewis-Israeli et al. used heart organoids to
model pregestational diabetes-induced CHDs by treating them with glucose and insulin.
They found that the glucose/insulin-treated organoids displayed irregular action potential
shapes, impaired glycolysis and oxygen consumption, and disturbed distribution of mito-
chondria and lipid droplets, suggesting successful modeling of cardiomyopathy caused
by oxidative stress and metabolic disorders [20]. Hofbauer et al. used heart organoids to
study the heart injury process by treating their heart organoids with cryoinjury. Their study
observed the recruitment of COL1A1+ fibroblast and accumulation of fibronectin at the
injury site, mimicking an early aspect of regenerative and fibrotic responses [27].

9. Conclusions

Here, we have compared the developmental process in embryonic hearts and heart
organoids by focusing on their anatomical structures, marker genes, and regulatory sig-
naling pathways. As several important pieces are still missing in the current human heart
organoids, to precisely model in vivo heart developmental processes, these pieces need to
be added or induced in situ. In particular, we emphasized the importance of the temporal
and spatial coordination of developmental events such as heart field specification, heart
lumen development, and cardiac lineage differentiation. However, considering that most
heart organoid systems were only reported recently, it is possible to significantly improve
them in the coming years. Although the current organoids have their limitations, they have



J. Cardiovasc. Dev. Dis. 2022, 9, 125 9 of 13

been successfully used to model several heart development and injury processes such as
atrial/ventricular lineage specification defects and fibrosis after heart injury.

Compared to the in vivo hearts with four chambers and multiple non-chamber struc-
tures, the current heart organoids have only one chamber with mainly atrial or ventric-
ular lineages. In the future, it will be crucial to generate organoids with lineages from
specific chambers, such as the atrial and ventricular left and right sides. Additionally, four-
chambered organoids need to be induced or assembled using chamber-specific organoids,
as this feature will be necessary for modeling many heart developmental and physiological
processes such as heart looping and heart blood circulation.

To model the early heart developmental events using organoids, we also need to
consider the effects of biomechanical forces on cardiac morphogenesis carefully. Biome-
chanical forces have been found to play an important role in multiple heart developmental
processes such as heart looping, myocardium trabeculation, chamber septation, and valve
formation [84,85]. Applying appropriate forces to the cultured organoids will be crucial to
inducing each staged morphogenesis.

Cardiac cell lineages can be induced in situ in organoids or added later after differ-
entiation, as demonstrated in the gastrointestinal organoids incorporated with cells from
three different germ layers [86]. To generate heart organoids like the in vivo hearts, the
identity of induced cells, including their cell type, organ specificity, and maturation need
to be carefully characterized. These cells can be analyzed with scRNA-seq and further
compared to scRNA-seq data of primary cells at fetal and adult stages. Multiple human
cell atlases with cells from all major organs at different stages have been reported and can
serve as the standard dataset for comparative analysis [87,88].

The spatial pattern of each cell lineage is essential to generating functional heart
organoids. However, a standard map with the precise anatomical location of each cell
type is still missing. Emerging spatial transcriptomics and tissue clearing methods can
potentially provide a solution for this [89,90]. Once a detailed heart map is generated, the
differentiated cells can, in theory, be accurately printed out using a bioprinter [91]. For
instance, using a FRESH 3D bioprinting method, Bliley et al. [92] printed a linear heart tube
and Mirdamadi et al. printed a full-size model of the human heart with hiPSC-derived
CMs [93]. Besides bioprinting, the human ventricle-like cardiac chambers have also been
generated by embedding CMs with a nanofibrous scaffold or collagen-based extracellular
matrix hydrogel [94,95]. Although these chambers were shown to have chamber-level
contractile function and physiological features, they do not contain all the main cardiac
lineages such as fibroblasts and endothelial cells. Alternatively, the different lineages can
also be induced in situ by controlling the concentration of growth factors in a temporally
and spatially pattern. Future work from multidisciplines including developmental biology,
stem cell biology, molecular biology, biomaterials, and bioengineering will be essential to
generate functional four-chambered hearts in a dish.
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