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Abstract

Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of
cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report
the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons
in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV), serotype 1, vector with various promoter
combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein
expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy
for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited
the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were
tested, including: an internal ribosome entry site (IRES), a 2A sequence, a dual promoter vector, and co-injection of two
viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG
viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-
CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG
promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be
used to efficiently express two proteins in the same neuron in vivo.
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Introduction

The cerebellum functions as an important regulator of body

movement and coordination, and, as such, disorders of the

cerebellum typically result in ataxia, a clinical symptom charac-

terized by lack of coordination and gait disturbances. As the sole

output of the cerebellar cortex, Purkinje neurons are critical for

cerebellar information processing [1] and, therefore, may provide

an ideal target for therapies designed to restore or improve

cerebellar function. Cerebellar disease can be acquired (e.g.

ethanol, drugs, stroke, or trauma) or inherited [2]. The inherited

cerebellar ataxias, many of which have known genetic bases, may

be particularly amenable to treatments based on gene transfer.

Studies of cerebellar function and pathophysiology would also

benefit from methods to genetically manipulate Purkinje neurons

in adult model organisms. Viral vectors provide a promising gene

delivery system in both basic research and gene therapy.

For some gene transfer applications, it is desirable to express

more than one protein in a given cell. Such situations may include

transfer of multiple genes that cooperate functionally or transfer of

a gene of interest with a fluorescent reporter gene for easy

identification of transduced cells in living systems. A number of

strategies have been used successfully to co-express multiple

transgenes in the same cell using viral vectors, including internal

ribosome entry sites (IRES) elements [3], 2A peptides [4], dual

internal promoters [5], and co-infection with multiple viral vectors

[6]. One of the most commonly used approaches has been

insertion of an IRES element between two transgenes, which

enables production of two polypeptides from a single transcript

[7]. More recently, however, 2A peptides have gained in

popularity due to their small size (,18–22 amino acids) and

ability to produce discrete proteins in essentially equimolar

quantities [8]. Insertion of a 2A sequence between two genes

results in ribosomal ‘skipping’ during translation [9], such that the

ribosome continues downstream without formation of a peptide

bond.

The goal of this study was to develop a viral vector system for

efficient and selective virally transduced gene expression in adult

murine Purkinje neurons in vivo and to optimize for co-expression

of two transgenes. As an example, we used Fibroblast Growth

Factor 14 (FGF14), which is highly expressed in wild type

cerebellar Purkinje neurons [10,11] and in which a mutation

causes Spinocerebellar ataxia, type 27 (SCA27) in humans [12–

15]. We tested four lentiviral and one AAV construct with various

promoter and fluorescent reporter gene combinations and found

optimal expression in adult murine Purkinje neurons in vivo using

AAV serotype 1 (AAV1) constructs containing a modified chicken

b-actin promoter with the CMV-IE enhancer (CAG) [16].
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Co-expression of FGF14 with a fluorescent reporter gene in the

same neuron in adult mice was only achieved by co-injecting two

AAV1 viruses both of which contained CAG promoters to drive

expression.

Materials and Methods

Ethics Statement
This study was performed in accordance with guidelines from

the NIH Guide for the Care and Use of Laboratory Animals, and

all protocols involving animals were approved by the Washington

University Animal Studies Committee. All surgery was performed

under isofluorane gas or ketamine/xylazine anesthesia, and every

effort was made to minimize pain and suffering.

Mice
Adult (2–4 months) wild type C57BL/6, Fgf142/2 [17], and

L7/pcp2-GFP [18] mice were maintained in accordance with

guidelines from the NIH Guide for the Care and Use of

Laboratory Animals, and all protocols involving animals were

approved by the Washington University Animal Studies Commit-

tee. Genotypes were confirmed by PCR analysis.

Plasmid constructs
Lentiviral vectors used in this study were constructed from

third-generation self-inactivating (SIN) lentiviral transfer vectors.

The plasmid constructs for lentiviral vectors MND-GFP,

PGK-GFP, and UBC-Venus have been described previously

[19]. MSCV-GFP (SIN-MU3-EGFP-W), in which eGFP expres-

sion is controlled by a murine stem cell virus (MSCV) LTR [20],

was provided by R. Hawley (George Washington University).

AAV-IRES-GFP (pTR-UF-12.1) has been described previously

[21].

Lentivirus construct for MND-GFP (pCCL-cppt-MNDU3-

GFP) expresses eGFP under control of a modified Moloney

murine leukemia virus (MoMuLV) LTR with myeloproliferative

sarcoma virus enhancer, deleted negative control region, and

substituted Dl587rev primer-binding site [22,23]. PGK-GFP

(pRRLsinPGKGFPppt), contains a human phosphoglycerate

kinase (PGK) promoter followed by eGFP [24]. In UBC-Venus

(FCIV.FM1), Venus (a yellow fluorescent protein) expression is

controlled by a ubiquitin C promoter and internal ribosome entry

site (IRES).

The lentiviral vector MND-tdTomato (pMRT-tdTomato-

shRNAmir) was constructed by linearizing the lentiviral MND

vector (pCCL-cppt-MNDU3) with EcoRI and SalI and inserting a

new polylinker containing NheI and PacI restriction enzyme sites.

The polylinker was synthesized as single-stranded DNA oligonu-

cleotides by IDT (Coralville, IA). Oligonucleotides were annealed

together prior to insertion into MND vector. The DNA sequence

of the new polylinker in the MND vector (pMND-NP) was 59-

GAATTGGCTAGCGTTAACGGATCCGCTTAATTAAGT-

ACGCGTCCCGGGGTCGAC-39, which corresponds to the

restriction enzyme sequence of ClaI-NheI-HpaI-BamHI-PacI-

MluI-SmaI-SalI-BclI-KpnI, which maintained the SalI restriction

site but destroyed the EcoRI site. pMND-NP was then linearized

Figure 1. Schematic representation of lentiviral constructs. A–B. Schematic of the lentiviral constructs used in this study. Arrows represent
mammalian transcriptional start sites. In all vectors, the 39-LTR contains a deletion in the U3 region which renders the virus self-inactivating (SIN 39-
UTR) and replication incompetent. A. The MND-tdTomato lentiviral vector contains a microRNA (miR30) and chloramphenicol resistance gene (CMR)
in the 39-UTR of the tdTomato fluorescent reporter gene. B. The internal promoters are MND, modified MoMuLV LTR containing myeloproliferative
sarcoma virus enhancer; MSCV, murine stem cell virus LTR; UBC, Ubiquitin C promoter; and PGK, human phosphoglyercerate kinase promoter. Y:
packaging signal; RRE, REV response element; cPPT, central polypurine tract; EGFP, enhanced green fluorescent protein; IRES, internal ribosome entry
site; WPRE, woodchuck hepatitis virus posttranscriptional regulatory element; LTR, long terminal repeat.
doi:10.1371/journal.pone.0104062.g001
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by digesting with NheI and PacI and a tdTomato-shRNAmir-

CMR (chloramphenicol resistance gene) cassette was inserted after

being cut out with the same enzymes. The insert was prepared

from pGEM-pPRIME-CMV, which was made by moving the

CMV-GFP-shRNAmir-CMR cassette from pPRIME-CMV-GFP

vector into pGEM vector and replacing the GFP fluorophore with

tdTomato. pPRIME-CMV-GFP was a gift from S. Elledge

(Harvard University) and contains an shRNAmir in the 39-UTR

of the GFP fluorescent reporter gene. The shRNAmir is an

shRNA sense-loop-antisense sequence with 19 nt loop embedded

in a mir30 microRNA context [25] (Figure 1A). The final MND-

tdTomato (pMRT-tdTomato-shRNAmir) vector consisted of the

MND promoter followed by tdTomato fluorescent reporter gene,

shRNAmir, and CMR. The 21-mer shRNA sequence is 59-

GCCATTGGAAGTTGCCATGTA-39, and targets murine

Fgf14. The insert was verified by sequencing before packaging

into virus.

AAV-IRES-GFP (pTR-UF-12.1) [21] consists of a CMV early

enhancer with chicken b-actin (CAG) promoter followed by a

simian virus 40 (SV40) intron, internal ribosome entry site (IRES),

eGFP, SV40 polyadenylation (polyA) site and bovine growth

hormone (BGH) polyA site. To generate, AAV-GFP without

IRES, AAV-CAG-hFGF14B-P2A-GFP (see below) was digested

with NsiI and MluI to remove the hFGF14B-P2A-GFP cassette.

GFP was amplified from pQBI-fC2 (Quantum Biotechnology Inc.,

Montreal, Canada) to add a 59-NsiI restriction site and Kozak

consensus sequence upstream of the initiation methionine and a

downstream 39-Mlu and translational stop codon. PCR fragment

was digested with NsiI and MluI and inserted into the digested

AAV vector. The resulting construct contained the CAG promoter

followed by the SV40 intron, GFP, SV40 polyA, and BGH polyA.

The plasmid was verified by sequencing and was transfected into

CHL1610 cells to confirm expression of the GFP reporter gene

before viral particle packaging.

To construct AAV-FGF14B-GFP (fusion), AAV-IRES-GFP was

digested with NotI to remove GFP, and an MluI linker with NotI

sticky ends was inserted in its place (IDT, Coralville, IA). The

AAV plasmid without GFP was then cut with EcoRV (blunt) and

MluI to remove the IRES. The hFGF14B-GFP insert was

prepared by digestion of pQBI-hFGF14B-GFP plasmid [26] with

ApaI followed by blunting with Klenow. Blunted plasmid DNA

was then cut with MluI, and the hFGF14B-GFP fragment was gel

purified. The hFGF14B-GFP insert with a 59-blunt end and 39-

MluI sticky end was then ligated into the AAV plasmid with blunt

and MluI sticky end sites. The final AAV-hFGF14B-GFP

construct consisted of the CAG promoter followed by the SV40

intron, hFGF14B-GFP fusion, SV40 polyA, and BGH polyA.

Before viral packaging, the insert was verified by sequencing, and

fluorescent reporter expression was verified by transfection into

CHL1610 cells.

To create AAV-FGF14B-IRES-tdTomato, AAV-IRES-tdTo-

mato was used. AAV-IRES-tdTomato was created from AAV-

IRES-GFP (pTR-UF-12.1) by replacing the GFP with tdTomato.

AAV-IRES-tdTomato contains the CAG promoter followed by

the SV40 intron, IRES, tdTomato, SV40 polyA, and BGH polyA.

hFGF14B was amplified by PCR from pQBI-hFGF14B-GFP to

add a 59-SpeI restriction site and 39 translational stop codon and

NsiI restriction site. PCR fragment was digested with SpeI and

NsiI and inserted into AAV-IRES-tdTomato also digested with

SpeI and NsiI. The resulting AAV-hFGF14B-IRES-tdTomato

construct contained the CAG promoter followed by the SV40

intron, hFGF14B, IRES, tdTomato, SV40 polyA, and BGH-

polyA. The insert was verified by sequencing, and plasmid DNA

was transfected into CHL1610 cells to confirm expression of the

tdTomato fluorescent reporter prior to viral packaging.

To generate P2A constructs, oligonucleotides containing the

P2A sequence with 59-NotI and 39-NheI sticky ends were

synthesized (IDT, Coralville, IA). A Gly-Ser-Gly linker amino

acid sequence was also added at the 59 end. The following GSG-

P2A oligonucleotide sequence was used: 59-GGAAGCGGAGC-

TACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGT-

GGAGGAGAACCCTGGACCT-39 [27], which corresponds to

the peptide sequence: GSG-ATNFSLLKQAGDVEENPGNP, with

N representing the point of cleavage. AAV-hFGF14B-GFP was cut

with NotI and NheI to open the vector between the hFGF14B and

GFP sequences, and the annealed P2A oligonucleotide was

inserted. AAV-hFGF14B-P2A-GFP plasmid contained the CAG

promoter followed by the SV40 intron, hFGF14B, P2A, GFP,

SV40 polyA, and BGH polyA. The P2A insert was verified by

sequencing. Before viral particle generation, GFP fluorescence was

confirmed by transfection of plasmid DNA into CHL1610 cells,

and GFP cleavage was validated by Western blotting.

Table 1. Purkinje neuron transduction by lentiviruses and AAV.

Virus
Animals
injected

Purkinje
neuron
transductiona

Other cell
types transducedb

Lv-PGK-GFP 2 + WM

Lv-UBC-Venus 2 - GCL

Lv-MSCV-GFP 2 - BG

Lv-MND-GFP 2 - BG, WM

Lv-MND-tdTomato 6 - BG, WM

AAV1-CAG-GFP 13 ++ ML

AAV1-CAG-FGF14B-GFP 6 ++ ML

AAV1-CAG-FGF14B-IRES-tdTomato 16 ++ ML

AAV1-CAG-FGF14B-P2A-GFP 2 ++ ML

AAV1-CAG-FGF14A-PGK-GFP 4 ++ CAG-FGF14 in ML,
PGK-GFP in BG

a-,#1 Purkinje neurons transduced per 20x field; +, #5 Purkinje neurons transduced per 20x field; ++, .5 Purkinje neurons transduced per 20x field.
bCells transduced based on cell morphology and cerebellar region. GCL, granule cell layer; BG, Bergmann glia; WM, white matter; ML, molecular layer.
doi:10.1371/journal.pone.0104062.t001
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To generate dual promoter AAV plasmids, the IRES-GFP

cassette was first removed from the AAV-IRES-GFP (pTR-UF-

12.1) plasmid by cutting with NotI to remove the GFP and

blunting the ends with Klenow. AAV-IRES linearized plasmid was

then cut with EcoRV to remove the IRES and create a blunt site

following the CAG promoter. Blunt ends were then ligated

together to generate an AAV-CAG-empty plasmid consisting of

the CAG promoter followed by the SV40 intron, SV40 polyA, and

BGH-polyA. The AAV-CAG-empty vector was then digested with

SalI to linearize the plasmid between the SV40 polyA and BGH-

polyA sequences. Digested SalI sticky ends were dephosphorylated

with calf intestinal phosphatase (CIP) followed by column

purification (QIAquick PCR purification kit, Qiagen). The

PGK-GFP insert was prepared from pRRLsinPGKGFPppt by

digesting with XhoI and SalI and was directly ligated into The

AAV-CAG-empty vector digested with SalI to create AAV-CAG-

empty-PGK-GFP. Correct orientation of PGK-GFP insert was

verified by restriction digest. AAV-CAG-empty-PGK-GFP was

then cut with NsiI and ClaI to open the vector between the SV40

intron and SV40 polyA. mFGF14A insert was prepared by PCR

from pQBI-mFGF14A-GFP [26] to add a 59-NsiI restriction site

and Kozak consensus sequence upstream of the initiation

methionine and 39-ClaI restriction site and a translational stop

codon. The mFGF14A PCR product was inserted into pCR2.1-

TOPO-TA vector (Invitrogen), and then digested with NsiI and

ClaI. The mFGF14A fragment was then inserted into AAV-CAG-

empty-PGK-GFP vector to make the AAV-CAG-mFGF14A-

PGK-GFP dual promoter vector. The final plasmid construct thus

contained the CAG promoter followed by the SV40 intron,

mFGF14A and SV40 polyA and the PGK promoter followed by

GFP and BGH polyA. Inserts were verified by sequencing, and

GFP expression was verified by transfection into CHL1610 cells.

Lentiviral vector production
Lentiviral viral vectors were generated by the Hope Center

Viral Vectors Core as described previously [28]. Briefly, the

packaging cell line, HEK293T was maintained in Dulbecco’s

modified Eagles medium (DMEM), supplemented with 10% fetal

bovine serum (FBS), 100 units/ml penicillin, 100 mg/ml strepto-

mycin in a 37uC incubator with 5% CO2. HEK293T cells were

plated at 30–40% confluence 24 h before transfection (70–80%

confluence when transfected). Ten mg of lentiviral vector with the

appropriate insert, 5.8 mg of pMD-Lg, 3.1 mg of pCMV-G, and

2.5 mg of RSV-REV were co-transfected into 293T cells using the

calcium phosphate precipitation procedure. Six hours after

transfection, the medium was replaced with the complete medium

containing 6 mM sodium butyrate. Culture supernatant was

collected 42 h after transfection. The supernatant was passed

through a 0.45 mm filter, concentrated by ultracentrifugation

through a 20% sucrose cushion, and stored at 280uC until use.

Vector titers were determined by transduction of HT1080 cells

and assayed for reporter expression using flow cytometry. The

lentiviral titers used in this study are as follows: PGK-

GFP = 16108 TU/ml; UBC-Venus = 5.46107 TU/ml; MND-

GFP = 4.76109 TU/ml; MSCV-GFP = 1.56108 TU/ml; MND-

tdTomato-sh4 (referred to as MND-tdTomato) = 1.86109 TU/ml.

AAV vector production
AAV viral vectors were generated by the Hope Center Viral

Vectors Core as described previously [29]. Briefly, HEK293 cells,

maintained as above were plated at 30–40% confluence in

CellSTACS (Corning, Lowell, MA) 24 h before transfection (70–

80% confluence when transfection). 1.8 mg helper plasmid (e.g.

pXYZ1 for AAV1) and 0.6 mg rAAV transfer plasmid containing

the gene of interest were co-transfected using the calcium

phosphate precipitation procedure. Cells were incubated at 37uC
for 3 days before harvesting. Cells were lysed by three freeze/thaw

cycles. The cell lysate was treated with 50 U/ml of Benzonaze

followed by iodixanol gradient centrifugation. The iodixanol

gradient fraction was further purified by column chromatography

using HiTrap Q columns (GE Healthcare) for AAV1. The eluate

was concentrated with Vivaspin 20 100K concentrator (Sartorius

Stedim, Bohemia, NY). Viral titer was determined by dot blot

assay. In the dot blot assay, AAV viral prep was treated with

DNaseI to remove DNA that was not in the viral particle. After

inactivating the DNaseI, vector genome was released from viral

particles by digestion with proteinase K. DNA was extracted,

denatured, and transferred to nylon membranes. A serially diluted

AAV plasmid with known copy number was also transferred to

membrane. A 32P-labeled oligonucleotide probe containing the

sequence in the AAV vector was hybridized to membranes and

signal was detected by exposure to X-ray film. Titer was calculated

by comparison with standard curve of AAV plasmid with known

copy number. Titers of AAV viruses used in this study were as

follows: AAV1-CAG-GFP 7.161012 vg/ml (viral genomes per ml);

AAV1-CAG-FGF14B-GFP = 1.761013 vg/ml; AAV1-CAG-

FGF14B-IRES-tdtomato = 561012 vg/ml; AAV1-CAG-FGF14B-

P2A-GFP = 561012 vg/ml; and AAV1-dual promoter-CAG-

mFGF14A-PGK-GFP = 161013 vg/ml.

Cell culture, transfection, and western blots
Chinese hamster lung (CHL) 1610 cells [30] were maintained in

RPMI media supplemented with 10% fetal bovine serum (Gibco)

and 100 U/ml penicillin, 100 mg/ml streptomycin, and incubated

at 37uC with 5% CO2. Cells were transfected at 80–90%

confluency using Lipofectamine 2000 (Invitrogen) according to

Figure 2. Patterns of cellular transduction by Lenti-MND-tdTomato. A. Montage of low magnification confocal images of sagittal sections of
wild type mouse cerebellum injected with MND-tdTomato (red) and immunostained for calbindin (green), a marker for Purkinje neurons. A region of
tdTomato expressing cells in the Purkinje and/or molecular layer is visible near the injection site, but the vast majority of tdTomato-expressing cells
are in the white matter (wm). Arrowhead indicates approximate location of injection, where some damage to brain parenchyma can be seen. A’. A
higher magnification image from an adjacent slide illustrating the lack of co-localization of tdTomato-expressing processes and calbindin positive
Purkinje neuron dendrites. B–E. To examine transduction patterns in more detail, MND-tdTomato was injected into L7/pcp2-GFP mouse cerebellum,
and sagittal sections were examined at higher magnification. L7/pcp2-GFP mice express GFP under control of the Purkinje cell specific promoter L7/
pcp2. B, GFP expression is visible in Purkinje neuron somata, dendrites, and axons (ax), which project into the white matter tract (left panel and green,
right panel). tdTomato-expressing somata are located in the white matter tracts and extend short processes (center panel and red, right panel). C.
Purkinje neuron axons (left panel and green, right panel) and processes expressing tdTomato (center panel and red, right panel) do not overlap. D-E.
High magnification images of the Purkinje layer of L7/pcp2-GFP cerebellum injected with MND-tdTomato. D. GFP-expressing Purkinje neuron somata
with characteristic highly branched dendrites (left and green, right panel). Cells expressing tdTomato are located in the Purkinje layer but somata are
smaller and processes are straight and unbranched (center). tdTomato (red) expression pattern does not colocalize with GFP (green) expressing
Purkinje neuron somata or dendrites (right panel). The shape and location of tdTomato expressing cells is consistent with Bergmann glia. E.
Coexpression of GFP (left) and tdTomato (center) in three Purkinje neuron somata (arrowheads, and yellow, right panel). Scale bars: 100 mm (A, B),
50 mm (A’), 25 mm (D, E).
doi:10.1371/journal.pone.0104062.g002
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the manufacturer’s instructions. 5 mg of plasmid DNA was

transfected into cells plated in 60 mm2 dishes. 24 h after

transfection, fluorescence was visualized and photographed in

living cells using a Leica DMIL LED inverted microscope.

Following visualization, cells were washed once with 2 ml ice cold

PBS and lysed in ice cold lysis buffer (20 mM Tris-HCl, 150 mM

NaCl, and 1% NP-40). Protease inhibitor mixture (Protease

Inhibitor Cocktail Set III; Millipore, Bedford, MA) was added

immediately before cell lysis. Cell extracts were collected,

incubated with slow rotation for 15 min at 4uC, and centrifuged

for 10 min at 3000 rpm and 4uC to remove the insoluble fraction.

Protein content was measured using a BCA assay kit (Pierce-

Thermo, Rockford, IL). For Western blots, 50 mM Bond-Breaker

TCEP (Thermo Fisher Scientific, Rockford, IL) was added to cell

lysates and 30 mg of each lysates were loaded into each lane.

Resolved proteins were transferred to PVDF-P membranes

Figure 3. Expression of reporter genes in cerebellar cells transduced with lentiviral vectors under various promoters. Representative
confocal images of sagittal cerebellar sections from mice 7–14 days following intracerebellar injection of lentiviral vectors with indicated promoters.
Dotted lines demarcate the border between cerebellar cortex layers. In low magnification images (B, D, F, G, and J), the line is drawn between
Purkinje and granule layers. In high magnification images (A, C, E, H, and I), two lines are drawn to separate the Purkinje layer from the molecular layer
and granule layer. A. Widespread GFP expression in a cerebellar lobe injected with MND-GFP. B. Single confocal section of MND-GFP transduced
cerebellum at higher magnification showing absence of GFP expression in Purkinje neuron somata (asterisks). C. Low magnification of cerebellum
injected with MSCV-GFP. D. High magnification of cerebellum injected with MSCV-GFP demonstrating GFP expression in small cell bodies in the
Purkinje layer with radial processes extending to the pial surface, characteristic of Bergmann glia. E. Venus expression in a cerebellar lobe injected
with UBC-Venus. F, G. High magnification of UBC-Venus infected cerebellum shows venus expression in multiple small cells in the granule layer (F)
and a single Purkinje neuron (G). H, I. GFP expression in cerebellar lobes of two animals injected with PGK-GFP. Several GFP-expressing Purkinje
neurons are visible in H, whereas most GFP-expressing cells in I are in the white matter, with a single GFP-positive Purkinje neuron. J. High
magnification view of GFP-positive Purkinje neurons from H. Abbreviations: m = molecular layer; p = Purkinje layer; g = granule layer; wm = white
matter. Scale bars, 25 mm (B, D, F, G, J), 100 mm (A, C, E, H, I).
doi:10.1371/journal.pone.0104062.g003
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(Millipore, Bedford, MA) for 1.5 h at 4uC and blocked with 3%

non-fat dry milk (vol/vol) in PBST. Blots were probed with

primary antibody diluted in 0.5% non-fat dry milk (vol/vol) in

PBST for 2 h at room temperature. After washing extensively with

PBST, blots were incubated with secondary antibody diluted in

0.5% non-fat dry milk (vol/vol) in PBST for 1 h at room

temperature. The primary antibodies used for western blotting

were mouse monoclonal anti-GFP (1:1000, NeuroMab, N86/8)

and rabbit polyclonal anti-FGF14 (1:1000). Secondary antibodies

used were goat anti-mouse-HRP or goat anti-rabbit-HRP (both

1:5000, Santa Cruz Biotechnology, Dallas, TX).

Stereotactic injections
Mice were anesthetized with isoflurane gas (2%) or ketamine/

xylazine cocktail (30 mg/ml ketamine and 4 mg/ml xylazine, at a

dose of 1 ml/kg, i.p.) and fixed in a stereotactic frame (David

Kopf, Tujunga, California or Stoelting, Wood Dale, Illinois). For

lentiviral injections, a midline incision was made on the scalp, and

a 2 mm burr hole was made using a dental drill, and a 5 ml Hamilton

syringe was lowered 0.25–0.5 mm below the dural membrane at the

previously determined coordinates. A nanoinjector pump (Stoelting)

was used for infusion of 3–6 ml virus at a rate of 0.1–0.2 ml/

min, after which the needle was left in place for 5–10 min to

ensure complete diffusion of the virus. At the end of the

injection, the incision was closed with a 4–0 nylon suture and

triple antibiotic ointment was applied topically. For some

lentiviral and all AAV injections, the cranium at the desired

coordinates was thinned, and a craniotomy was performed by

using a scalpel to gently lift a small flap of bone away from the

surface of the brain. Virus was loaded into pulled glass pipettes

(outer tip diameter of 18–25 mm) and injected using a

Picospritzer (Parker Hannifin, Mayfield Heights, Ohio). Approx-

imately 1–2 ml of virus was injected over a 5–10 min period.

Following virus injection, incision was closed using surgical

staples. Mice were placed into a warming chamber until

consciousness was fully regained. The sterotaxic coordinates to

target the Purkinje neuron layer of lobule VI were: midline, 1–

2 mm anterior to interparietal-occipital suture (or about 5–

6 mm caudal to bregma) and 0.35 mm below the pial surface.

For each virus, two or more animals were injected per

experiment, and representative images were chosen. The exact

n for each virus condition is given in Table 1. We did not see a

correlation between the viral titer and the ability of the viral

prep to label any cell near the injection site.

Figure 4. MND-tdTomato expression following injection with pulled glass pipette. Confocal images of sagittal cerebellar slices from wild
type mice injected with MND-tdTomato lentivirus. Injections were performed using pulled glass pipettes and a picospritzer (see methods) to
determine if injection technique affected cellular transduction pattern. Dotted lines in A and B represent the border between the Purkinje layer and
granule layer. In C, dotted lines are drawn to separate the Purkinje layer from the molecular layer and granule layer. A. Widespread tdTomato
expression in cells in the granule layer and processes in the molecular layer. B. A few small tdTomato expressing cells are visible in the Purkinje layer,
but the majority of the tdTomato expressing cell bodies are located in the white matter (wm). C. High magnification view of tdTomato expressing
cells with somata in the Purkinje layer show that their processes are relatively straight and unbranched, characteristic of Bergmann glia. m, molecular
layer; p, Purkinje layer; g, granule layer. Scale bars: 100 mm (A, B); 25 mm (C).
doi:10.1371/journal.pone.0104062.g004
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Immunostaining
7–14 days following lentivirus injection or 4–8 weeks following

AAV virus injection, mice were deeply anesthetized with a

ketamine/xylazine cocktail (30 mg/ml ketamine and 4 mg/ml

xylazine, at a dose of 1 ml/kg, i.p.) and transcardially perfused

with 0.9% NaCl and followed by ice-cold fixative, consisting of 1%

formaldehyde freshly prepared from paraformaldehyde powder

[31] in 0.1 M phosphate buffer, pH 7.4. Brains were removed and

post-fixed for one hour in the same fixative at 4uC, followed by

overnight cryoprotection in 30% sucrose in 0.1 M phosphate

buffer at 4uC. Brains were embedded in OCT, and sagittal

cryostat sections of cerebellum (16 mm) were mounted onto slides

and stored at 280uC until processing.

All of the following steps were at room temperature. For

examining fluorescent reporter gene expression without immuno-

staining, slides containing cerebellar sections were rinsed twice in

0.01 M phosphate buffered saline (PBS), pH 7.4 (Sigma, St. Louis,

MO) and coverslips were mounted with Vectashield mounting

medium (Vector Laboratories). For immunostaining, slides were

washed twice with PBS and permeabilized for 20 min in PBS with

0.1% Triton X-100 (vol/vol). Sections were incubated with

blocking solution (PBS plus 10% goat serum) for 1 h, followed

by staining overnight with primary antibodies diluted in PBS with

0.1% Triton X-100 and 0.1% bovine serum albumin. After

washing with PBS, sections were incubated with appropriate goat

secondary antibodies conjugated to Alexa 488 or 594 or 657

(1:400, Invitrogen) diluted in PBS for 1 h. Sections were again

washed with PBS and coverslips were mounted using Vectashield

Hardset mounting medium (Vector Laboratories) and allowed to

dry overnight at 4uC. The following primary antibodies were used:

mouse monoclonal anti-FGF14 (1:1000, NeuroMab, clone N56/

21), mouse monoclonal anti-AnkyrinG (1:1000, NeuroMab, clone

Figure 5. AAV1 transduction of Purkinje neurons and localization of viral delivered FGF14B-GFP. A. Schematic representation of AAV
transfer plasmid constructs for AAV-CAG-GFP and AAV-CAG-FGF14B-GFP. CAG, chicken b-actin promoter with CMV enhancer; in, SV40 intron; pA,
polyadylation site; ITR, inverted terminal repeat. B. Confocal image from a sagittal cerebellar section injected with AAV1-CAG-GFP showing
predominant GFP expression in Purkinje neuron somata and dendrites. Some GFP expressing cell bodies are visible in the granule layer. C, D.
Immunostaining for FGF14 in an Fgf142/2 mouse with intracerebellar injection AAV1-CAG-FGF14B-GFP. C. Low magnification montage of FGF14-
specific immunostaining in an Fgf142/2 mouse injected with AAV-CAG-FGF14B-GFP. FGF14 expression is evident in an entire lobe. D. Immunostaining
for FGF14 in an Fgf142/2 mouse injected with AAV-CAG-FGF14B-GFP shows no FGF14 expression in areas distal to the injection (top) whereas areas
near the injection show rescue of FGF14 expression in Purkinje neuron soma and AIS (middle). For comparison, normal FGF14 expression in a wild
type cerebellum is shown at the bottom. Asterisks mark the location of the Purkinje neuron soma and arrows mark the approximate start and end of
the AIS. Arrowheads mark the AIS of FGF14-expressing stellate and basket cells in the molecular layer. Scale bars: 200 mm (C); 25 mm (B, left panels in
D); 5 mm (right panels in D).
doi:10.1371/journal.pone.0104062.g005
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Figure 6. AAV1 delivery of FGF14B-IRES-tdTomato and FGF14B-P2A-GFP results in efficient FGF14 expression but failure of
reporter gene fluorescence. A. Schematic representation of CAG-FGF14B-IRES-tdTomato AAV transfer construct. CAG, chicken b-actin promoter
with CMV enhancer; in, SV40 intron; IRES, internal ribosome entry site; pA, polyadenylation site; ITR, inverted terminal repeat. B. CAG-FGF14B-IRES-
tdTomato transfected into CHL1610 cells produces a diffuse cytoplasmic tdTomato expression pattern. C. Confocal image from an Fgf142/2 mouse

Viral Transduction of Murine Cerebellar Purkinje Neurons

PLOS ONE | www.plosone.org 9 August 2014 | Volume 9 | Issue 8 | e104062



N106/36), and mouse monoclonal anti-GFP (1:1000, NeuroMab,

clone N86/38). The FGF14 antibody has been validated using

Fgf142/2 mice [10,11]. The AnkyrinG antibody is a validated

NeuroMab antibody and in our experience it gives very specific

staining of the AIS. The GFP antibody is a validated NeuroMab

antibody and does not give background staining with wild type

mouse tissue. The Images were captured using a confocal laser

scanning microscope (Olympus Fluoview-500) using a 20x or 60x

oil-immersion objective. Sequential acquisition of multiple chan-

nels was used, and z-stacks were collected at 0.5 mm steps. Image

stacks were converted into maximum intensity z-projections using

ImageJ software (NIH).

Results

Patterns of cellular transduction by lentiviral vector with
MND promoter

To explore methods to efficiently transduce Purkinje neurons

in vivo, third generation self-inactivating (SIN) vectors with

various combinations of promoters and fluorescent reporters genes

were constructed as diagrammed in Figure 1A–B. Initial exper-

iments to target Purkinje neurons in vivo used a lentiviral

construct expressing tdTomato under control of the MND

promoter (modified Moloney murine leukemia virus (MoMuLV)

LTR with myeloproliferative sarcoma virus enhancer) (Figure 1A).

This construct also contains an shRNA in the 39-UTR of the

tdTomato gene, but only viral transduction was evaluated in these

experiments. MND-tdTomato viral particles were injected directly

into wild type mouse cerebellum, and sections were immuno-

stained with an anti-calbindin antibody to label Purkinje neurons.

Consistent with previous reports [32], calbindin immunoreactivity

was evident in Purkinje neuron somata (Figure 2A). Examination

of sagittal cerebellar sections at low magnification revealed a

moderate amount of damage to the brain parenchyma near the

injection site (Figure 2A, arrowhead). Bright tdTomato expression

was localized mainly to cerebellar white matter and spread far

from the injection site into adjacent lobes (Figure 2A, Table 1).

The Purkinje and/or molecular layers exhibited tdTomato

expression only in a small region. A higher magnification image

of this region in an adjacent slide (Figure 2A’) illustrates a lack of

co-localization of tdTomato-expressing and calbindin-expressing

processes.

To investigate the cell types transduced with MND-tdTomato

in more detail, lentiviral particles were injected into L7/pcp2-GFP

mice, which express GFP under control of the Purkinje cell specific

promoter, L7/pcp2 [18]. Purkinje neuron cell bodies, dendrites

and axons are clearly labeled with GFP in L7/pcp2 mice

(Figure 2B–E). In cerebellar white matter tracts, GFP expression

was visible in Purkinje neuron axons, whereas tdTomato

expression was evident in discrete punctae and short processes

radiating towards the Purkinje layer (Figure 2B). Interestingly,

tdTomato expression in these short processes did not co-localize

with GFP expression in Purkinje neuron axons (Figure 2C).

Together, this suggested that MND-tdTomato transduced cells in

the white matter were myelinating glia and not Purkinje neuron

axons (Table 1). Closer examination of the Purkinje layer revealed

that most of the transduced cells in that region were Bergmann

glia, with small cell bodies in the Purkinje layer and radial

processes extending into the molecular layer (Figure 2D, Table 1).

In rare instances, transduced Purkinje neurons were observed

(Figure 2E, arrowheads).

Comparison of lentiviral vectors with various promoters
To compare promoter activity in adult Purkinje neurons

in vivo, we tested lentiviral constructs expressing EGFP or Venus

fluorescent reporter genes under control of various promoters

(Figure 1B). In addition to the MND promoter described in

Figure 2, the following promoters were tested: MSCV (LTR from

murine stem cell virus); Ubiquitin C (UBC); and PGK (human

phosphoglycerate kinase promoter). Lentiviruses were injected

directly into wild type mouse cerebellum, and specificity of cellular

transduction was determined by cellular morphology and laminar

distribution.

Consistent with previous findings using MND-tdTomato

(Figure 2), intracerebellar injection of MND-GFP resulted in high

levels of GFP expression in cells throughout all layers of the

injected with CAG-FGF14B-IRES-tdTomato and immunostained for FGF14. Viral delivered FGF14 is properly localized at the Purkinje neuron AIS but
tdTomato expression is not visible. D. Schematic representation of CAG-FGF14B-P2A-GFP AAV transfer construct. The arrow represents approximate
location where ribosomal skipping should occur to generate two independent polypeptides. E. GFP expression in CHL1610 cells transfected with
CAG-FGF14B-GFP (top) or CAG-FGF14B-P2A-GFP (bottom). FGF14B-GFP fusion protein is expressed in punctate foci surrounding the nucleus whereas
FGF14B-P2A-GFP is expressed as a diffuse cytoplasmic protein, suggesting cleavage of GFP from FGF14B. F. Western blot analysis of P2A cleavage
efficiency in CHL cells. CHL1610 cells were transfected with either CAG-FGF14B-GFP or CAG-FGF14B-P2A-GFP and processed for western blot 24 h
after transfection. Immunoblotting for both FGF14 and GFP revealed a ,50kDa band in CAG-FGF14B-GFP transfected cells, which is consistent with
the expected size of the fusion protein. Immunoblotting for FGF14 and GFP in CAG-FGF14B-P2A-GFP transfected cells revealed ,25kDa bands for
FGF14 and GFP and no detectable ,50kDa band, indicating efficient cleavage of the P2A peptide. G. Confocal image of Fgf142/2 cerebellum injected
with CAG-FGF14B-P2A-GFP and immunostained for FGF14 (red) and AnkyrinG (AnkG, blue). No GFP fluorescence is visible but viral delivered FGF14 is
properly expressed at the AIS of Purkinje neurons where it colocalizes with AnkyrinG. H. Confocal image of Fgf142/2 cerebellum injected with CAG-
FGF14B-P2A-GFP and immunostained for FGF14 (red) and GFP (blue). Immunostaining reveals that GFP is expressed and colocalizes with FGF14 in the
Purkinje neuron AIS, suggesting that P2A cleavage did not occur in vivo. Scale bars: 20 mm (B, E); 10 mm (C, G, H).
doi:10.1371/journal.pone.0104062.g006

Table 2. AIS expression of virally transduced FGF14 protein in Fgf142/2 Purkinje neurons.

Virus AnkyrinG AISc FGF14 AISc % Transduced

AAV1-FGF14B-IRES-tdTomatoa 14 13.7 97.9

AAV1-CAG-FGF14A-PGK-GFPb 8.1 7.9 97.5

aAverage of three 60x fields near injection site.
bAverage of nine 60x fields near injection site.
cImmunostaining (number of AIS stained/60x field).
doi:10.1371/journal.pone.0104062.t002
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cerebellar cortex, with particularly bright expression in cerebellar

white matter (Figure 3A, Table 1). Closer inspection of the

Purkinje layer revealed teardrop shaped GFP-negative spaces

(Figure 3B, asterisks), indicating an absence of GFP expression in

Purkinje neurons. Radial processes from MND-GFP-transduced

Bergmann glia were evident in the molecular layer (Figure 3B,

Table 1). The MSCV-GFP vector produced GFP expression

almost exclusively in Bergmann glia (Figure 2C and D, Table 1).

Venus expression driven by the UBC promoter was observed in

many small cells in the granule layer (Figure 3E and F, Table 1)

and in an occasional Purkinje neuron (Figure 3E and G). In one

animal injected with the PGK-GFP lentiviral vector several

Purkinje neurons were transduced (Figure 3H and J). However,

the cellular transduction pattern of PGK-GFP in a second animal

resembled the transduction pattern of the MND constructs, with

the vast majority of transduced cells located in the white matter

(Figure 3I, Table 1).

Intracerebellar injection technique does not affect
cellular transduction pattern by MND-tdTomato
lentivirus

The optimal dorsal-ventral injection depth for targeting

Purkinje neurons in vivo is quite shallow, due to the relatively

superficial location of Purkinje neuron somata. Intracerebellar

injections up to this point were performed by injecting virus

through a small burr hole in the cranium using a Hamilton syringe

and nanoinjector pump. To test whether injection technique

affected lentiviral cellular transduction patterns, a modified

injection technique was used in which a craniotomy was

performed to expose a small region of the dura, and MND-

tdTomato lentiviral particles were injected using a picospritzer

fitted with small diameter pulled glass pipettes (outer diameter of

18–25 mm, see methods). MND-tdTomato injected using this

technique transduced many cells throughout the cerebellar cortex

(Figure 4A). Similar to previous MND lentivirus injections using

the Hamilton syringe (Figures 2 and 3), transduced cells were

either white matter glial cells (Figure 4B) or Bergmann glia

(Figure 4C). No transduced Purkinje neurons were observed,

suggesting that injection technique does not affect viral transduc-

tion pattern.

AAV serotype 1 effectively transduces Purkinje neurons
and viral delivered FGF14 is properly localized

Because of very low Purkinje neuron transduction efficiency

using a variety of lentiviral vectors, an alternative viral vector was

sought. Previous reports suggested that adeno-associated viruses

(AAV) are capable of transducing Purkinje neurons in vivo [33–

35]. To assess Purkinje neuron transduction efficiency with AAV

vectors, an AAV, serotype 1 (AAV1) with a CAG (chicken b-actin

with CMV enhancer) promoter driving expression of EGFP

(CAG-GFP, Figure 5A) was injected directly into the cerebellum

of wild type mice. Three to four weeks following injection, sagittal

cerebellar sections were examined, and abundant Purkinje neuron

transduction was clearly evident with the CAG-GFP virus

(Figure 5B, Table 1).

Figure 7. AAV1 delivery of a dual promoter construct reveals that the CAG promoter produces better Purkinje neuron expression
than the PGK promoter. A. Schematic representation of the dual promoter AAV transfer construct which contains the CAG promoter followed by
FGF14A and the PGK promoter followed by GFP. CAG, chicken b-actin promoter containing the CMV enhancer; in, SV40 intron; PGK, human
phosphoglycerate kinase promoter; pA, polyadenylation site; ITR, inverted terminal repeat. B. Confocal images of sagittal sections from an Fgf142/2

mouse injected with the AAV-CAG-dual promoter virus and immunostained for FGF14 (red) and AnkyrinG (blue). Viral delivered FGF14 is properly
localized at the Purkinje neuron AIS where it colocalizes with AnkyrinG. A lower level of FGF14 expression is visible on the soma membrane. Viral
delivered GFP is expressed in small cells in the Purkinje layer that extend radial processes into the molecular layer (a pattern that is consistent with
Bergmann glia) but is clearly absent from Purkinje neurons. Scale bars: 25 mm (B, top); 5 mm (B, bottom).
doi:10.1371/journal.pone.0104062.g007
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To determine whether viral delivered transgenes were properly

targeted to subcellular domains, an AAV1 vector expressing a

Fibroblast Growth Factor 14 (FGF14) with carboxyl terminal GFP

fusion protein was generated (CAG-FGF14B-GFP, Figure 5A).

FGF14 is enriched at the axon initial segment (AIS) of wild-type

neurons [11,26,36], and addition of a GFP reporter gene to the

carboxyl terminus does not interfere with its function or

localization in vitro [26]. In murine cerebellum, FGF14 immu-

noreactivity has been reported in the Purkinje and granule layers

[10], with enrichment at the AIS of Purkinje neurons [11]. To

determine the expression pattern of viral delivered FGF14,

FGF14B-GFP-expressing virus was stereotactically injected into

the cerebellum of Fgf142/2 mice [17], and sagittal cerebellar

sections were immunostained with a monoclonal anti-FGF14

antibody (see methods). Consistent with previous reports in

Fgf142/2 cerebellum [10], no FGF14 immunostaining was visible

in Fgf142/2 cerebellum distal to the injection site (Figure 5C and

Figure 5D, top). In contrast, FGF14 immunoreactivity in Fgf142/

2 mice injected with FGF14B-GFP-expressing virus was evident in

an entire cerebellar lobe proximal to the injection site when

examined at low magnification (Figure 5C). Closer inspection of

the Purkinje and molecular layers proximal to the injection site

revealed FGF14 expression in the both the AIS and somata of

Purkinje neurons and the AIS of neurons in the molecular layer

(Figure 5D, middle, Table 1). For comparison, anti-FGF14

immunolabeling of a wild type, non-transduced cerebellar section

is included (Figure 5D, bottom), in which FGF14 expression is

evident in the granule layer, Purkinje neuron AIS, and AIS of

neurons in the molecular layer (Figure 5D, bottom left). In

addition, wild type FGF14 was also localized to the Purkinje

neuron soma membrane (Figure 5D, bottom right). No endoge-

nous fluorescence of viral-delivered FGF14B-GFP was detectable

(data not shown).

Lack of reporter gene fluorescence in Purkinje neurons
transduced with IRES and P2A containing viruses

Many studies would benefit from co-expression of multiple

heterologous proteins in neurons. For example, electrophysiolog-

ical studies of viral-transduced neurons require expression of a

fluorescent reporter gene for identification of transduced cells.

Figure 8. Co-injection of two AAV1-CAG viruses results in optimal Purkinje neuron expression of two different genes. A. Schematic
representation of the two AAV transfer constructs used for co-injection. AAV1-CAG-GFP and AAV1-CAG-FGF14B-IRES-tdTomato viruses were mixed
together at a ratio of 1:5 prior to injecting into Fgf142/2 cerebellum. CAG, chicken b-actin promoter with CMV enhancer; in, SV40 intron; IRES, internal
ribosome entry site; pA, polyadenylation site; ITR, inverted terminal repeat. B. Confocal images of sagittal sections from an Fgf142/2 cerebellum co-
injected with AAV1-CAG-GFP and AAV1-CAG-FGF14B-IRES-tdTomato and immunostained for FGF14 (red). GFP expression is readily visible in Purkinje
neuron somata and dendrites, and FGF14 is properly localized to the AIS. While some Purkinje neurons express FGF14 but not GFP, all GFP expressing
Purkinje neurons express FGF14. Scale bars: 25 mm (B, top); 5 mm (B, bottom).
doi:10.1371/journal.pone.0104062.g008
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Since GFP fluorescence in FGF14B-GFP expressing Purkinje

neurons was not visible without immunostaining, other strategies

to co-express a fluorescent reporter gene in Fgf142/2 Purkinje

neurons transduced with an FGF14-expressing virus were tested.

Figure 6A, illustrates an AAV transfer vector in which FGF14

expression is driven by the CAG promoter and tdTomato

expression is controlled by an internal ribosome entry site (IRES)

downstream from FGF14B. To verify expression of tdTomato in

the IRES context, CHL cells were transfected with CAG-

FGF14B-IRES-tdTomato plasmid DNA, and tdTomato fluores-

cence was examined 24 h after transfection. As shown in

Figure 6B, tdTomato was expressed in a cytoplasmic distribution

in these cells. To investigate the distribution of FGF14 and

tdTomato in transduced Purkinje neurons, FGF14B-IRES-tdTo-

mato-expressing AAV1 virus was stereotactically injected into

Fgf142/2 cerebellum, and sagittal cerebellar sections were

immunostained for FGF14. Consistent with findings from

FGF14B-GFP transduced Purkinje neurons (Figure 5), FGF14

immunolabeling was present at the AIS of FGF14B-IRES-

tdTomato-transduced Purkinje neurons (Figure 6C, Table 1).

Surprisingly, however, tdTomato fluorescence was not detectable

(Figure 6C). In regions near the injection site, 97.9% of Purkinje

neurons were transduced with the FGF14B-IRES-tdTomato virus,

as demonstrated by the number of anti-FGF14 positive Purkinje

neuron AIS relative to the number of anti-AnkyrinG positive

Purkinje neuron AIS (Table 2).

2A sequences have been shown to mediate cleavage between

two protein coding sequences via a ribosomal skip mechanism [9],

and have been used in viral vectors to coordinate expression of two

genes in neurons [4,37,38]. An AAV-CAG vector in which

FGF14B was separated from GFP by a P2A (porcine-teschovirus-

1) peptide coding sequence [27] was generated (Figure 6D). To

verify fluorescence of GFP and P2A-mediated cleavage of FGF14

from GFP, the FGF14B-P2A-GFP or FGF14B-GFP (fusion)

constructs (Figure 6D and 5A) were transfected into CHL1610

cells, and 24 h following transfection, cells were examined for GFP

fluorescence (Figure 6E). Similar to previous reports in NIH3T3

cells [39], GFP expression in cells transfected with FGF14B-GFP

plasmid was excluded from the nucleus and present in discrete

punctae adjacent to the nucleus (Figure 6E, top). In contrast, in

cells transfected with FGF14B-P2A-GFP, GFP expression was

localized throughout the cytoplasm (Figure 6E, bottom). A similar

GFP expression pattern was seen in cells transduced with virus

expressing FGF14-P2A-GFP (data not shown). Following analysis

of GFP expression, cells were immediately processed for Western

blot analysis, and membranes were probed with anti-GFP or anti-

FGF14 specific antibodies. Consistent with previous Western blot

studies of FGF14B-GFP [36], immunoblotting of protein extracts

from FGF14B-GFP transfected cells revealed a ,50 kDa band

when probed with the anti-GFP antibody (Figure 6F, bottom), the

expected size for an FGF14B-GFP fusion protein. A ,50 kDa

band was also present in FGF14B-GFP extracts probed with the

anti-FGF14 antibody (Figure 6F, top), indicating that the

FGF14B-GFP fusion protein is detectable with both anti-GFP

and anti-FGF14 antibodies. In stark contrast, a ,25 kDa band

was present in FGF14B-P2A-GFP extracts probed with either the

anti-GFP antibody (Figure 6F, bottom) or the anti-FGF14

antibody (Figure 6F, top). No ,50 kDa band representing

FGF14B-GFP fusion protein product was evident in the

FGF14B-P2A-GFP cell extracts when probed with either antibody

(Figure 6F), indicating that the P2A-mediated cleavage was

efficient in CHL cells.

To examine localization and cleavage of FGF14-P2A-GFP in

Purkinje neurons, FGF14B-P2A-GFP-expressing virus was stereo-

tactically injected into Fgf142/2 mouse cerebellum, and sagittal

cerebellar sections were immunostained with anti-FGF14 and

anti-AnkyrinG-specific antibodies. Similar to previous reports in

wild type neurons [40], AnkyrinG localized to the AIS in

Fgf142/2 Purkinje neurons (Figure 6G). Transduced Purkinje

neurons were identified by FGF14 immunolabeling, which was

present in the Purkinje neuron soma and AIS (Figure 6G,

Table 1). Unexpectedly, no GFP fluorescence was visible

(Figure 6G), despite the fact that an AAV-GFP virus containing

the same GFP coding sequence produced robust GFP expres-

sion in Purkinje neurons (Figure 5B). To determine if GFP

protein was synthesized in these cells, sagittal cerebellar sections

from brains injected with FGF14B-P2A-GFP were immuno-

stained with anti-FGF14 and anti-GFP antibodies (Figure 6H).

Transduced Purkinje neurons were identified by anti-FGF14

immunolabeling (Figure 6H). Surprisingly, while no direct GFP

fluorescence was visible, the presence of GFP protein was

confirmed by anti-GFP immunolabeling (Figure 6H). Moreover,

the subcellular localization of FGF14 and GFP immunolabeling

was identical (Figure 6H), consistent with a failure of P2A-

mediated cleavage in murine Purkinje neurons in situ and loss

of fluorescent properties of the non-cleaved FGF14-P2A-GFP

fusion protein.

Transgene expression in cerebellar cells transduced with
dual-promoter AAV virus

Viral vectors with dual promoters have also been used to

drive expression of separate transgenes in neurons [5]. To

determine whether FGF14 and GFP could be co-expressed in

the same Purkinje neuron using a dual promoter vector, an

AAV construct was generated in which FGF14A expression was

controlled by the CAG promoter and GFP was controlled by the

PGK promoter (Figure 7A). The PGK promoter was chosen for

the second promoter because GFP was expressed in some

Purkinje neurons when driven by the PGK promoter in a

lentiviral construct (Figure 3H–J). Fgf142/2 mice cerebella

were stereotaxically injected with CAG-FGF14A-PGK-GFP-

expressing AAV1 virus, and cerebella were examined for GFP

and FGF14 expression three to four weeks after injection by

immunostaining sagittal sections with anti-FGF14 and anti-

AnkyrinG antibodies. Similar to other FGF14 expressing

viruses, transduction with CAG-FGF14A-PGK-GFP-expressing

virus resulted in FGF14 immunolabeling in the Purkinje neuron

AIS, where it colocalized with AnkryinG (Figure 7B, Table 1).

FGF14 immunolocalization was not, however, found in the

cytoplasm of the Purkinje neuron soma but was observed at the

Purkinje neuron soma membrane, albeit at a lower level than at

the AIS (Figure 7B). In regions near the injection site, 97.5% of

Purkinje neurons were transduced with the CAG-FGF14A-

PGK-GFP virus, as demonstrated by the number of anti-FGF14

positive Purkinje neuron AIS relative to the number of anti-

AnkyrinG positive Purkinje neuron AIS (Table 2). Surprisingly,

GFP expression was not present in Purkinje neurons but instead

was robustly expressed in small cells in the Purkinje layer that

extend radial processes into the molecular layer, a pattern that is

consistent with Bergmann glia (Figure 7B), even though

Purkinje neurons were clearly transduced, as evidenced by

FGF14 immunolabeling. Conversely, no FGF14 expression was

apparent in Bergmann glia, despite the fact that Bergmann glia

were also clearly transduced with CAG-FGF14-PGK-GFP

expressing virus (Figure 7B).
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Co-injection of two AAV1-CAG viruses allows expression
of transgene and fluorescent reporter gene in the same
Purkinje neuron

Co-injection of two viruses expressing different genetic sequenc-

es has been used to co-express multiple transgenes in the same cell

[6]. To determine whether FGF14 and GFP could be co-expressed

in the same Purkinje neuron when delivered by separate viruses,

separate AAV1-CAG viruses expressing either FGF14B-IRES-

tdTomato or GFP were used (Figure 8A). To increase the

likelihood that a given cell expressing GFP would also express

FGF14, viruses were mixed in a 5:1 (FGF14:GFP) ratio and then

stereotactically co-injected into Fgf142/2 cerebellum. Three to

four weeks post-injection, sagittal cerebellar sections were immu-

nostained with an FGF14-specific antibody. Consistent with

previous findings in cerebella injected with a single virus

(Figure 5B and 6C), GFP was expressed throughout the cytoplasm

of many Purkinje neurons, and FGF14 was expressed in both the

cytoplasm and AIS of Purkinje neurons (Figure 8B). Neurons in

the molecular layer (stellate and basket cells) also expressed FGF14

at the AIS (Figure 8B). Multiple Purkinje neurons expressing both

GFP and FGF14 were evident (Figure 8B). Whereas some

Purkinje neurons expressing FGF14 alone were present, no

neurons expressing GFP alone could be identified (Figure 8B,

bottom), which was consistent with the relative amounts of each

virus in the co-injection mix.

Discussion

We have compared gene delivery to mature murine Purkinje

neurons in vivo using AAV1 or lentiviral vectors with various

promoter combinations and optimized for expression of two

proteins in the same Purkinje neuron. Expression of fluorescent

reporter proteins in lentiviral vectors appeared to be highly

promoter dependent, since MND and MSCV promoters pro-

duced almost exclusively glial cell expression patterns, whereas the

UBC promoter expressed well in granule neurons, and the PGK

promoter appeared to express in glial cells and Purkinje neurons.

Because of the low Purkinje neuron transduction efficiency using

lentiviral vectors, we switched to an AAV vector and fortuitously

obtained excellent Purkinje neuron transduction with the first

AAV vector tested, AAV1 with the CAG promoter.

Subsequent experiments designed to co-express two proteins in

the same Purkinje neuron with an IRES sequence, P2A sequence,

or dual promoters were unsuccessful, but we showed that two

AAV1-CAG viruses were capable of efficiently transducing and

expressing different transgenes in the same Purkinje neuron when

co-injected. The results of this study will be useful for future studies

of Purkinje neuron physiology, which require genetic manipula-

tion of mature cells in vivo.

Transduction of cerebellar cells in vivo with lentivirus has been

reported by other groups. Intracerebellar injection of lentivirus

with a ubiquitous promoter from cytomegalovirus (CMV) and

VSV-G envelop protein transduced a wide range of cerebellar cells

including glia and Purkinje, stellate, and golgi neurons [41]. A

recombinant feline immunodeficiency virus (FIV) containing a

CMV promoter transduced Purkinje neurons and stellate and

basket neurons in the molecular layer but few glia cells [33].

Takayama and colleagues compared VSV-G pseudotyped, HIV-

derived lentiviral vectors containing promoters from MSCV,

CMV, CAG, or Rous sarcoma virus (RSV), and found that the

MSCV promoter produced the most efficient transduction of

Purkinje neurons [42,43]. In stark contrast, our study showed that

VSV-G pseudotyped lentivirus with MSCV promoter was

expressed almost exclusively in Bergmann glia. It has been

reported that transduction efficiency of lentivirus with MSCV

promoter shifted from Purkinje neurons to Bergmann glia when

viruses were exposed to lower pH during harvest from packaging

cells, and it was speculated that lower pH activates a proteolytic

mechanism which alters the VSV-G envelop protein and cellular

tropism [44]. Recently, Goenawan and Hirai reported that

addition of Cathepsin K inhibitor to the lentiviral culture media

modulated lentiviral tropism for Purkinje neurons [45]. It is

possible that alterations in our lentiviral production technique

could increase Purkinje neuron transduction efficiency. However,

the fact that all of our lentiviruses were harvested using the same

protocol but expression patterns varied depending on promoter,

argues for a promoter-dependent mechanism for preferential

Purkinje neuron expression. Indeed, a multitude of studies have

shown that choice of promoter is critical to obtain cell-specific

expression with VSV-G pseudotyped lentivirus [42,46–49].

We also explored the impact of injection technique on Purkinje

neuron transduction efficiency. Lenviral injections performed

using a Hamilton syringe and nanoinjector pump produced a

similar transduction pattern as injections performed using small

diameter pulled glass pipettes and a picospritzer, suggesting that

injection technique does not significantly affect Purkinje neuron

transduction efficiency. In contrast, depth of injection may alter

transduction pattern. Dodge et al reported that injection of various

AAV serotypes into the deep cerebellar nuclei (DCN) of adult mice

yielded widespread transduction of cells throughout the cerebel-

lum, brain stem, midbrain, and spinal cord [50]. Another study

found that AAV2 injected into either the DCN or cerebellar cortex

transduced substantial numbers of Purkinje neurons, but that

more Purkinje neurons were transduced with injections into the

cerebellar cortex [34]. We did not test DCN injections under our

conditions, but because our goal was to selectively transduce

Purkinje neurons (versus neurons in other brain regions),

cerebellar cortical injections were likely appropriate.

The relative contribution of vector promoter versus virus type

or AAV serotype to Purkinje neuron specificity is unclear and

difficult to assess. In our study, intracerebellar injection of AAV1

containing the CAG promoter produced transgene expression in

many Purkinje neurons but also in some stellate and basket cell

interneurons in the molecular layer. In a previous study, AAV5

containing the Rous sarcoma virus (RSV) promoter was found to

produce transgene expression in Purkinje, stellate, and basket

neurons and in a few glial cells [33]. In comparison, lentiviral

particles containing the RSV promoter transduced a high

percentage of glial cells but very few Purkinje neurons [42].

Kaemmerer et al. reported that AAV2 containing CMV promoter

only transduced Purkinje neurons if it was co-injected with

adenovirus 5 (Ad5) as a helper virus, whereas AAV2 containing

the CAG promoter was highly effective at transducing Purkinje

neurons [34], suggesting that the CAG promoter is perhaps more

specific for Purkinje neurons than the CMV promoter. However,

lentiviruses containing the CAG promoter were not specific for

Purkinje neurons [42]. In contrast, the CMV promoter contained

in an AAV1 vector appeared to be highly specific for Purkinje

neurons, at least when viewed at low magnification [35]. CMV

promoter-containing lentiviruses, either derived from HIV [42] or

FIV [33], were not specific for Purkinje neurons, and while the

HIV-derived lentiviruses transduced many glial cells [42], the FIV-

derived lentiviruses transduced mainly neurons [33]. Cell specific

expression is likely a combined result of viral particle interaction

with host cell-surface factors in addition to the activity of the

promoter in a given cell type. Determining the relative contribu-

tions of viral tropism versus promoter activity to gene expression
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following injection of virus into the cerebellum would require a

careful analysis of each factor.

In our in vivo experiments, the FGF14B-GFP fusion protein

failed to fluoresce, in contrast to its fluorescence in heterologous

cells and in cultured hippocampal neurons [26,36]. In addition,

the FGF14B-P2A-GFP virus, which we hypothesize to have also

produced an FGF14B-GFP fusion protein, also failed to fluoresce

in vivo. It is clear that the message and protein is being made at a

reasonable level, since the protein is detectable by antibody

staining. One possible explanation for lack of endogenous GFP

fluorescence could be that localization at the AIS masks the

endogenous fluorescence, possibly due to interactions with other

proteins.

Our results using the dual promoter AAV1 virus, in which PGK

drives expression of GFP and CAG drives expression of FGF14,

indicate that AAV1 does transduce both glia and neurons, but that

neuronal expression is dependent on the promoter, since PGK

drives expression mainly in Bergmann glia whereas CAG drives

expression mostly in Purkinje neurons. Both cell types (neurons

and glia) were clearly transduced by the same dual promoter virus,

so it is unclear why dissociated gene expression was observed. One

possibility is that the PGK promoter is less active in neurons;

however, our study using lentivirus containing the PGK promoter

indicated that PGK could, in fact, drive expression in Purkinje

neurons. Another possibility is that the CAG promoter suppressed

PGK promoter expression in Purkinje neurons by a transcriptional

interference or promoter competition mechanism [51,52]. As an

alternative to using different promoters to drive expression of each

transgene, we could have used two CAG promoters in tandem.

We chose not to do so to avoid the potential problem of DNA

recombination, either in viral packaging cells or in transduced

cells. However, it is possible that we could have achieved co-

expression of FGF14 and GFP using this strategy.

IRES sequences have been used for multiple gene expression in

CNS neurons; however, in many instances, only the first gene is

expressed strongly and IRES-dependent translation is much

weaker [53]. In our hands, IRES-dependent tdTomato fluores-

cence was undetectable in vivo, even though it was robustly

expressed in vitro. Other groups have also reported instances in

which fluorescence of the second, IRES-dependent gene was

undetectable [54]. Furthermore, the efficiency of IRES-dependent

translation has been shown to vary in different cell types [55].

Thus, it is possible that IRES sequences are simply less efficient in

Purkinje neurons; however, other groups have reported co-

expression of two genes in murine Purkinje neurons using IRES

sequences[56]. Further experimentation, such as antibody stain-

ing, would be required to determine whether tdTomato protein

was expressed in cells transduced with our IRES-tdTomato virus.

Another method for expressing multiple proteins from a single

promoter is to use 2A sequences inserted between the coding

regions for each protein. 2A sequences, which induce cleavage by

a ribosomal skip mechanism [9], function in all eukaryotic systems

tested to date, and have become popular due to their small size

and yield of essentially equimolar quantities of each protein

product [8]. In the present study, we used a 2A sequence from

porcine teschovirus (P2A), which was reported to produce the

highest cleavage efficiency compared to other 2A sequences in

multiple mammalian cell types, including mouse liver in vivo [27].

P2A sequences have also been used in lentiviral vectors to express

multiple proteins in rat Purkinje neurons [57]. In our hands, P2A-

mediated cleavage between FGF14 and GFP was quite efficient in

CHL cells; however, there was no apparent cleavage in Purkinje

neurons in vivo, as suggested by the exact co-localization of the

FGF14 and GFP immunostaining at the AIS. A possible

explanation for lack of cleavage could be that the P2A nucleotide

sequence we used [27], differs slightly from the P2A sequence used

by Ohashi and colleagues [57], although the resultant peptide

sequences are identical. However, since 2A-mediated cleavage is

thought to be a co-translational process in which a peptide bond is

‘‘skipped’’ between the Gly and Pro in the 2A motif (D(V/

I)EXNPGP), most of the peptide sequence would have already

been generated by the time the skipped peptide bond was reached,

and it is unlikely that any small changes in nucleotide sequence

would have made a difference. Other studies have shown that

certain peptide sequences upstream of 2A may prevent cleavage

[58,59]. In particular, failure of 2A-mediated cleavage resulted

when some secreted proteins [59] or proteins targeted to the

endoplasmic reticulum (ER) [58] were placed upstream of the 2A

sequence. We placed FGF14 upstream of P2A in our vector, and

while FGF14 (a non-secreted protein) is cytoplasmic in HEK293

cells [39], in neurons it appeared to be localized to the membrane

of the soma and AIS. Whether FGF14 is processed in the ER is

unknown, but inhibition of 2A-mediated cleavage in neurons

could be due to neuron-specific membrane trafficking of FGF14.

Reversing the order of transgenes relative to the 2A sequence may

overcome the inhibition of 2A-mediated cleavage. Other studies

have indicated that placing a flexible Gly-Ser-Gly spacer, furin

proteinase cleavage site, or amino acids from protein 1D

immediately upstream of the 2A sequence improves cleavage

efficiency [60–62]. Placing tandem 2A sequences between the two

transgenes may also improve cleavage efficiency. We did include

the Gly-Ser-Gly spacer in our construct, but we have not tested the

efficacy of other spacers.

In conclusion, we have demonstrated that murine Purkinje

neurons can be transduced by AAV1 vectors containing CAG

promoters, and that co-injection of two CAG containing AAV1

viruses results in co-expression of two transgenes in many Purkinje

neurons. The failure of many of our attempts to co-express two

transgenes in Purkinje neurons highlights the importance of

examining trangenes and delivery methods in the cellular context

in which they will be used.
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