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An Inducible System for Silencing Establishment Reveals a
Stepwise Mechanism in Which Anchoring at the Nuclear
Periphery Precedes Heterochromatin Formation
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Abstract: In eukaryotic cells, silent chromatin is mainly found at the nuclear periphery forming
subnuclear compartments that favor silencing establishment. Here, we set up an inducible system
to monitor silencing establishment at an ectopic locus in relation with its subnuclear localization
in budding yeast. We previously showed that introducing LacI bound lacO arrays in proximity to
gene flanked by HML silencers favors the recruitment of the yeast silencing complex SIR at this
locus, leading to its silencing and anchoring at the nuclear periphery. Using an inducible version
of this system, we show that silencing establishment is a stepwise process occurring over several
cell cycles, with the progressive recruitment of the SIR complex. In contrast, we observed a rapid,
SIR-independent perinuclear anchoring, induced by the high amount of LacI binding at the lacO array
leading to nucleosome eviction at this array and to the phosphorylation of H2A in the neighboring
nucleosomes by Mec1 kinase. While the initial phosphorylation of H2A (H2A-P) and perinuclear
anchoring are independent of the SIR complex, its latter recruitment stabilizes H2A-P and reinforces
the perinuclear anchoring. Finally, we showed that Sir3 spreading stabilizes nucleosomes and limits
the access of specific DNA-binding protein to DNA.
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1. Introduction

In eukaryotic cells, discrete regions of the genome assume heritable chromatin struc-
tures that silence genes located in these regions. In most organisms, and most cell types,
silent chromatin or heterochromatin is enriched at the nuclear periphery forming subnu-
clear compartments where general repressors of transcription concentrate, thus favoring
silencing establishment at the nuclear periphery [1,2].

In budding yeast, silent chromatin is mainly found in subtelomeric regions, at the two
cryptic mating type loci (HML and HMR) and at the ribosomal DNA locus. In cycling cells,
telomeres and HM loci are preferentially located at the nuclear envelope, forming repressive
domains that sequester the yeast silencing factors (SIRs) [3] in a manner comparable to
heterochromatic chromocenters, which sequester HP1 in metazoans [1,4].

Similarly to HP1, the yeast silencing complex SIR2/3/4 is able to spread along the
chromatin and to repress gene transcription owing to the histone deacetylase activity of
Sir2 that creates a binding surface for Sir3 [3]. This spreading is limited by the amount of
Sir3 and by the methylation of H3K79, which prevents Sir3 binding to nucleosomes [5].

At telomeres, silencing is nucleated at the subtelomeric TG1-3 repeats by the binding
of the transcription factor Rap1 that contains binding sites for the silencing factors Sir3
and Sir4 at its C-terminal end. At the cryptic mating type loci, recruitment of the SIR
complex requires the presence of cis acting elements called silencers that are formed by
combinations of binding sites for DNA binding proteins including Rap1, Orc1, and Abf1,
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which like Rap1 have other functions in the cell. A common feature of these factors is their
strong ability to displace nucleosomes [6].

At the rDNA, Sir2 is recruited by Net1 that associates with the RNA-polymerase I and
Fob1 that binds the rDNA replication fork barrier as part of the RENT complex [7]. While
Sir2, Sir3, and Sir4 are all required for silencing at HM loci and subtelomeres, Sir2 only is
required for silencing at the rDNA, although Sir3 is found associated with the rDNA by
ChIP and live microscopy [8,9].

In addition to these canonical sites, Sir3 is also found by ChIP at few sites located
on chromosome arms [5,10–12]. In contrast to the situation at HM loci and subtelomeres,
Sir3 does not spread from these recruitment sites owing to the presence of H3K79me3
nucleosomes on the flanking regions [5]. What triggers the recruitment of Sir3 at these sites
is not known. Even at canonical silenced loci, it is not clear how the combination of binding
sites for factors with independent roles in the cell can create a silencer able to nucleate gene
silencing. It is generally admitted that the property of silencers emerges from the close
juxtaposition of factors that interact directly or indirectly with one or more Sir proteins:
a sufficiently high local concentration of Sir proteins to sustain silencing being achieved
only when multiple binding sites are combined. However, there is no clear evidence for
Abf1 interaction with any of the SIR proteins, suggesting that other mechanisms must
be involved.

An important feature of heterochromatin in budding yeast is the limiting amount of
the silencing factors Sir2 and Sir3, leading to an intranuclear competition between their
target sites [13–15]. Another consequence of the limiting amount of SIR protein is that the
efficiency of HM silencers is sensitive to the distance to telomeres, which are located in
compartments of the nucleoplasm enriched in silencing factors [16]. Accordingly, reporter
genes flanked by functional silencers are weakly repressed by the SIR complex when
integrated away from a telomere [17–21].

We previously showed that introducing tight protein–DNA complexes such as LacI
bound lacO arrays in proximity to a reporter gene favor the recruitment of the SIR complex
in this context [17], acting as a proto-silencer promoting gene silencing and change in
subnuclear localization.

As mentioned above, silent chromatin is preferentially associated with the nuclear
periphery due to different anchoring pathways, one of them involving Sir4 association with
a network of docking sites on the inner nuclear membrane [16]. Reciprocally, the artificial
tethering of a gene to the nuclear periphery favors SIR-mediated silencing [22] due to the
high local concentration of SIR protein in this area of the nucleus [21]. Peripheral anchoring
and SIR spreading thus reinforce each other once heterochromatin is established. However,
their respective contribution for the establishment of silent chromatin is not known.

Heterochromatin establishment has been mainly studied using different strategies,
most of them using conditional or inducible SIR3 alleles [23–32], thus affecting all silent
loci and possibly changing the stoichiometry of the SIR complex. Here, we developed
and characterized an inducible system to study the establishment of silencing at a sin-
gle ectopic locus, while silencing is already established at canonical loci, without affect-
ing the levels of silencing factors. We used this system to explore the relationship be-
tween histone modifications, perinuclear anchoring, and silencing factor recruitment upon
silencing establishment.

2. Materials and Methods
2.1. Media and Growth Conditions

Yeast cells were grown either in rich medium (YP) supplemented with 2% glucose;
3% raffinose or 2% galactose (wt/vol) or in synthetic medium (YNBAS MP Biomedicals,
Solon, OH, USA) plates or liquid enriched for 2× dropout CSM-TRP (MP Biomedicals)
and supplemented with 2% glucose (w/v) (referred as CSM-TRP plates or medium). All
the strains were grown at 30 ◦C with shaking at 250 rpm. For galactose induction, YP was
supplemented with 0,008% adenine-HCl (SIGMA A8751, Sigma-Aldrich, St. Louis, MO,
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USA). Typically, (for Figures 1–6 but Figures 6F and S6B) on day one, cells were thawed
on YPD or CSM-TRP plates; on day two, cells were grown 6 h to 7 h in liquid YPAD and
diluted at 0.01 OD600 nm overnight in YPA 3% raffinose; on day three, cells were diluted
at 0,2 OD600 nm in YPA 3% raffinose for 2 h then split in two. Galactose (2% final) was
added to one half of the culture for galactose induction, the other half was kept in the same
medium YPA 3% raffinose as a control, and cells were put back to grow. At the end of
day 3, both cultures were diluted at 0.005 OD600 nm and grew overnight to obtain the 20 h
(or 1200 min) time point.

For Figures 6F and S6B, freshly thawed strains on CSM-TRP plates were grown 6 h
to 7 h in liquid 2 × CSM-TRP medium, then diluted at 0.01 OD600 nm overnight in 2 ×
CSM-TRP medium. The next day, cells were diluted at 0.2 OD600 nm in 2 × CSM-TRP
medium and imaged at 1 OD600 nm.

2.2. Strains

The strains used in this study are listed in Supplementary Table S1. They are all deriva-
tives of W303 [33], except for yAT1798, yAT1909, and yAT2142 (S288C, [34]). Gene deletions,
insertions of alternative promoters, and gene tagging were performed by PCR-based gene
targeting on plasmids from [35,36].

2.3. Plasmids

The plasmid encoding the GFP-LacI construct to be integrated at the ADE2 locus
(pAT378) was constructed as described below: a part of the ADE2 ORF (nucleotide144-950)
was amplified by PCR from pAT147 (pEADEI from [18]) using primers oAT884 and oAT885
that contain, respectively, in their 5′ extremity a SacI and SacII cutting sites. The PCR
product was digested and cloned into pAT123 [17] digested by SacI and SacII yielding
pAT376. A second PCR product spanning from nucleotide 1278 of ADE2 to nucleotide
2635 of RGA1 was amplified from pAT147 using primers oAT995 and oAT996 that contain,
respectively, in their 5′ extremity a SacI and NaeI cutting sites. This PCR product was
digested and cloned into pAT376 digested by SacI and NaeI to obtain pAT377. Then,
pAT377 was cut by HindIII and religated to obtain the final plasmid pAT378. Another
version of this plasmid encoding a LacI protein resistant to galactose (LacI R197K) was
obtained by directed mutagenesis on pAT378 using primers oAT1221 and oAT1222, yielding
pAT391. pAT390, another version of the GFP-LacIR plasmid that is integrating at the LEU2
locus, was obtained by directed mutagenesis on pAT123 using primers oAT1168 and
oAT1169. See sequences of the primers in Supplementary Materials Table S2.

2.4. ChIP and Quantitative PCR Analysis

A total of 20 OD600 nm equivalent of cells was fixed in 20 mL with 0.9% formaldehyde
for 15 min at 30 ◦C, quenched with 0.125 M glycine for 5 min, and washed once in cold
1× TBS pH 7.6. Pellets were suspended in 1 mL 1× TBS, centrifuged again, and frozen
in liquid nitrogen after removal of the supernatant for −80 ◦C storage. All the following
steps were done at 4 ◦C unless indicated. Pellets were resuspended in 500 µL of lysis buffer
(0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA pH8, 16.7 mM Tris pH 8, 167 mM NaCl,
0.5% BSA, 0.02 g/L tRNA, and 2.5 µL of protease inhibitor from Sigma-Aldrich P1860,
Sigma-Aldrich, St. Louis, MO, USA) and mechanically lysed using a FastPrep instrument
(MP Biomedicals) with 0.5 mm zirconium beads (Biospec Products, Bartlesville, OK, USA):
intensity 6, 3 cycles of 30 s with 3 min incubation on ice in between cycles. The chromatin
was fragmented to a mean size of 500 bp by either sonication using the Bioruptor XL
(Diagenode, Liège, Belgium) for 14 min at high power with 30 s on/30 s off, or sonication
in the Bioruptor Pico at high intensity for 3 cycles of 30 s on/30 s off. The extracts were
cleared by centrifugation for 5 min at 16,000 g. Ten microliters was kept to be used as
input. Cleared lysates were incubated overnight with the antibody used for chromatin
immunoprecipitation: 1 µL of polyclonal antibody anti-Sir3 (Agro-bio) (Ruault et al. 2011),
2 µL of custom made polyclonal anti-Sir4 (Proteogenix, Schiltigheim, France), 3 µL of
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polyclonal anti-H2A (Active motif, 39,235), 1 µL of polyclonal anti-Histone H2A (phospho
S129) (Abcam, ab15083, Cambridge, UK), and 4 µL of polyclonal anti-acetyl-Histone H4
(Lys16) (Merck-Millipore, 2073125, Burlington, MA, USA). The next day, 50 µL of magnetic
beads protein A (NEB) was added to the extracts/antibody mixture and incubated for 4 h at
4 ◦C on a rotating wheel. Then, the magnetic beads with the immunoprecipitated material
were washed sequentially once with lysis buffer, twice with RIPA buffer (0.1% SDS, 10 mM
Tris pH 7.6, 1 mM EDTA pH8, 0.1% sodium deoxycholate, and 1% Triton X-100), twice with
RIPA buffer supplemented with 300 mM NaCl, twice in LiCl buffer (250 mM LiCl, 0.5%
NP-40, 0.5% sodium deoxycholate), once with 1× TE 0.2% Triton X-100, and a final was
in 1× TE. The beads were then resuspended in 100 µL of elution buffer and placed in an
incubator at 65 ◦C with gentle agitation to elute the immunoprecipitated material from
the beads. In the meantime, the inputs were diluted 1/10 with elution buffer. A reversal
cross-linking was performed by heating the samples, inputs and IP, overnight at 65 ◦C.
Proteins were digested with Proteinase K (0.4 mg/mL) in the presence of glycogen, and
the remaining DNA was purified on QIAquick PCR purification columns. Finally, samples
were treated with 29 µg/mL RNase A for 30 min at 37 ◦C and used for quantitative PCR.

ChIP quantification was performed by quantitative PCR (qPCR) either on the 7900HT
Fast Real-Time PCR (Applied Biosystems, Waltham, MA, USA) or on the QuantStudio
5 Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). Sequences of interest
were amplified using the SYBR Green PCR Master Mix (Applied Biosystems, Waltham,
MA, USA) and the primers listed in Supplementary Table S2 on a dilution of immuno-
precipitated DNA at 1/40 and 1/80 for the input DNA. PCR reactions were conducted
using the following program: an initial denaturation at 95 ◦C for 10 min followed by
40 cycles (95 ◦C for 15 s and 60 ◦C for 30 s). Each real-time PCR reaction was performed in
triplicate. The signal from a given region was normalized to the one from the OGG1 control
locus in immunoprecipitated and input DNA samples. Plots represent the mean value
obtained for at least three independent experiments; data are shown as mean ± s.e.m.; see
Supplementary Table S3 for the number of experiments.

2.5. Quantitative Transcript Analysis

Total RNA was isolated from yeast using the RNeasy kit (Qiagen, Hilden, Germany)
followed by a DNase treatment (Qiagen, 79254, Hilden, Germany) to remove contaminating
DNA. First strand cDNA was prepared from 0.5 µg of RNA and SuperScript™ III First-
Strand Synthesis SuperMix for qRT-PCR (ThermoFisher, 11752050, Waltham, MA, USA).
Quantitative PCR was performed on a 1/50 dilution of the reverse transcript mix with a
couple of primers designed in ADE2 and a couple of primers designed in ACT1 (sequences
provided in Supplementary Materials Table S2). Values were normalized by ACT1, then, to
account for the change in expression induced by galactose induction independently of LacI
induction, a ratio was made between strains with LacI expression (wt const. yAT2059 and
wt ind. yAT2078) and a strain without LacI expression (wt No LacI yAT2001).

2.6. Microscopy

The set of images from any given figure panel was acquired using identical acquisition
parameters. For all fluorescent images, the axial (z) step is 200 nm, and images shown
are a maximum intensity projection. Images were acquired using a wide-field microscopy
system driven by MetaMorph software version 7.8 (Molecular Devices, Silicon Valley, CA,
USA) based on an inverted microscope (Nikon TE2000, Nikon, Minato City, Tokyo, Japan)
equipped with a 100×~/1.4 NA immersion objective, a C-mos camera (ORCA-flash C11440,
Hamamatsu, Japan), and either a xenon arc lamp (Sutter Instrument Co. Lambda LS,
Novato, CA, USA) or a Spectra X light engine lamp (Lumencor, Inc, Beaverton, OR, USA).
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2.7. Image Processing and Analysis

Deconvolution of images acquired with the wide-field microscopy system was made
using the Meinel algorithm in MetaMorph (eight iterations; sigma = 0.8; frequency 3; MDS
Analytical Technologies, Sunnyvale, CA, USA).

All the microscopy image quantifications were done using either a single Fiji macro or
MATLAB scripts with an additional expert supervision step to ensure that only relevant
data are included in the statistical analysis.

2.8. Spot Localization

The spot localizations are extracted using a Fiji macro applying Laplacian of Gaussian
filters on pre-processed images followed by an h-maxima transform. Due to the presence
of highly variable signals present inside the yeast vacuoles, no reliable segmentation of the
nuclear periphery has been achieved. Hence, a manual intervention from an expert was
implemented in order to define two locations on the nuclear membrane: the closest point to
the detected spot and on the opposite side of the nucleus in order to measure, respectively,
the distance to the edge of the nucleus and its radius. The expert can also filter out any
detection error and define the cell cycle.

2.9. Intensity Quantifications

Two different schemes are used to extract the spot intensities. The first, encapsulated
inside the same Fiji macro for the spot localization, sums the intensities—minus the image
background measured as its median intensity—of all the pixels comprised inside a three-
by-three-by-three cube centered around the detection.

The other approach was preferred for data without the need to quantify the spot
locations inside nuclei; thus, the signals inside vacuoles were not deemed problematic.
It relies on qFOCI, a MATLAB application currently being developed to extract diverse
information from yeast nuclei and the spots they may contain. With this method, the spots
are fully segmented in 3D through multiple Hessian of Gaussian filters followed by an
MSER detector [37] and their intensities are the total integrated pixel values. Finally, the
previous Fiji macro was adapted to add cycle information for the cells of the detected spots
and to discard any false detection.

2.10. Statistical Analysis

In order to assess the presence of statistically significant differences between two given
yeast strains or incubation time, be it among the localizations or intensities, Kruskal–Wallis
tests by ranks were performed [38]. This non-parametric method tests for the null hypothe-
sis stating that the different sets of data originate for the same distribution. In the case of
multiple comparisons, the p-values are corrected using Tukey’s range test [39]. All statistical
analyses are performed with a significance level of 0.01 to reject the null hypothesis.

3. Results
3.1. An Inducible and Reversible System to Establish Gene Silencing at an Ectopic Locus

As mentioned above, HML-mediated gene repression is dependent on the proximity
to telomeres [20]. When an ADE2 gene flanked by the HML silencers is introduced at the
LYS2 locus located 339 kb away from telomeres (hereafter named lys2::E-ADE2-I locus),
yeast colonies are white, indicative of ADE2 expression [18]. However, introducing a LacI
bound lacO array in proximity to this construct leads to the formation of pink colonies,
indicative of ADE2 repression [17]. Here we modified this strain, placing the GFP-LacIR,
a galactose-resistant variant, under the control of the inducible GALS promoter to be
able to tightly control its expression (Figure 1A). Cells bearing a wild-type or mutated
allele of ADE2 at its endogenous location are shown for comparison. As expected, in
non-inducible conditions (glucose-containing medium) our inducible strain formed white
colonies, similarly to a strain bearing no LacI gene (Figure 1B). In contrast, in inducible
conditions (galactose-containing medium; Figure 1B) the inducible strain formed colonies
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as pink as the strain expressing GFP-LacIR under the control of the constitutive HIS3
promoter. Consistent with our previous work [17], cells deleted for SIR1, SIR3, or SIR4
formed white colonies confirming that the SIR complex repressed the lys2::E-ADE2-I locus,
when the neighboring lacO array is bound by LacI proteins (Figure S1).
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Figure 1. An inducible and reversible system to establish silencing at an ectopic locus. (A) Schematic representation of
the construct used to study silencing establishment. A lacO array and the ADE2 reporter gene, flanked by HML silencers
E and I, were inserted at the LYS2 locus and referred to as the lys2::lacO E-ADE2-I locus. (B) Assessing the inducibility and
reversibility of the system. The GFP-LacIR protein (R for resistant to galactose) was expressed either under the constitutive
HIS3 promoter (constitutive strains) or under the inducible GALS promoter (inducible strains). We followed the silencing of
the ADE2 gene by recording the color of the colonies streaked on plates (colonies are white when ADE2 is expressed and
pink when it is repressed). From left to right, pictures of a wild-type (WT) ADE2 strain as a control (yAT126), a strain bearing
the lacO E-ADE2-I construct at LYS2 (yAT2001), a strain bearing the lacO E-ADE2-I construct at LYS2 and expressing the
integrated GFP-LacIR under the constitutive HIS3 promoter (yAT2059) or under the inducible GALS promoter (yAT2078),
and the WT ade2-1 strain unable to produce adenine as a control (yAT1). Strains were streaked on glucose (repressive
condition for the GALS promoter), then from glucose to galactose (inducing conditions for the GALS promoter) and back to
glucose plates.

When pink colonies from the inducing plate were streaked on non-inducible medium,
cells formed white colonies, indicating that the silencing at the ectopic locus is not main-
tained in the absence of LacI expression (Figure 1B, bottom row).

Thus, LacI binding to lacO in vicinity to the E-ADE2-I reporter gene induces a re-
versible SIR-dependent repressed state.

3.2. Perinuclear Anchoring Occurs independently of the Cell Cycle and Precedes Gene
Silencing Establishment

As mentioned above, LacI induced silencing of the lys2::lacO E-ADE2-I reporter is
accompanied by its association with the nuclear periphery [17]. We used our inducible
system to monitor the subnuclear localization of the locus and the expression of the ADE2



Cells 2021, 10, 2810 7 of 21

reporter gene upon LacI induction. Cells were first grown in raffinose-containing medium
before adding galactose to the medium. Faint GFP foci, corresponding to LacI binding the
lacO array, were visible in 51% of cells 30 min after galactose induction in all phases of the
cell cycle (determined using the transmission images based on the absence or presence
of a bud), suggesting that LacI binding does not require a passage through S phase. This
percentage raised to 84% after 45 min, and above 95% after 90 min of induction (Figure 2A).
Foci intensity increased rapidly before saturating after three hours of induction in both
G1 and S-G2 phase cells (Figures 2B and S2A). Intensity distribution of GFP spots in
the strain expressing constitutively the LacI protein under the HIS3 promoter (here after
the constitutive strain) is shown for comparison and is similar to the intensity observed
after 45 min of induction (Kruskal–Wallis ANOVA test; p = 0.9). We noticed that in the
constitutive strain, intensities of the GFP spots were lower in the G1 phase than in the
S-G2 phase (Figure S2A; p = 1 × 10−10), as expected, since the lacO array replicates during
the S phase [40]. This difference was not observed after 30 min or 45 min of induction
(p = 0.38 and 0.04 respectively), but it was statically significant after 90 min and even more
obvious at later time points (p values ranging from 3 × 10−6 to 10−10).

We monitored the relative distance of the lacO array to the nuclear periphery using
Nup49-mCherry to label the nuclear envelope. At early time points of induction, the
spatial distribution of these foci in the nuclear space was slightly biased toward the nuclear
periphery (Figures 2C and S2B) without detectable changes between 30 and 45 min (p-value
> 0.99). In contrast, 90 min after LacI induction, we observed a strong shift toward the
nuclear envelope (p = 4 × 10−6). This distribution was similar after 180 min of induction
(>0.99) and even more peripheral after a long-term induction (1200 min, p = 3 × 10−8).
At this stage the locus was more peripheral than in the strain expressing constitutively
the LacI protein under the HIS3 promoter (p = 3 × 10−3). We observed a similar behavior
when scoring the position of the locus in cells in the S-G2 phase, indicating that this
perinuclear anchoring is mostly independent of the cell cycle (Figure S2C,D). In contrast,
this perinuclear anchoring was not observed in cells without silencers at the LYS2 locus
and expressing LacI under the weak constitutive HIS3 promoter, when grown in the same
medium (galactose containing medium). We thus conclude that perinuclear anchoring
of the LYS2 locus was not induced by growth in galactose medium but requires both the
presence of silencer elements at this locus and LacI expression.

In parallel to the spatial localization of the locus, we monitored the establishment of
the silencing at the ADE2 reporter gene by measuring the ADE2 mRNA levels at different
time points after LacI induction (Figure 2D). To account for the change in expression
induced by galactose addition independently of LacI induction, we calculated the ratio of
mRNA levels between the LacI inducible strain and a strain that did not carry a LacI gene
for each time point. Before induction, ADE2 mRNA levels were 6.5-fold higher than in the
strain with constant LacI expression. We observed a first 25% decrease in mRNA levels
after 90 min of LacI induction, after which we observed little variations up to 360 min after
induction. It was only after a long-term induction (1200 min) that mRNA levels reached the
levels of the constitutive strain. Such a delay between LacI binding that reached the levels
sufficient to induce silencing in the constitutive strain after 45 min of induction and the
decrease in mRNA levels cannot be explained by the half-life of the ADE2 mRNA (which
estimation varies between 13 and 40 min [41–44]).

Thus, complete repression required a long-term induction, although maximum LacI
induction and binding were reached after 180 min. In contrast, association with the nuclear
periphery was to the level of the constitutively silent loci after 90 min of induction and
further increased upon long-term induction.
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value > 0.99). In contrast, 90 min after LacI induction, we observed a strong shift toward 
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this stage the locus was more peripheral than in the strain expressing constitutively the 

Figure 2. Perinuclear anchoring occurs independently of the Cell Cycle and precedes gene silencing establishment.
(A) Representative fluorescent images (maximal projection of a Z-stack) and their corresponding transmission images
of strains bearing the lys2::lacO E-ADE2-I locus and expressing GFP-LacIR either under the constitutive HIS3 promoter
(wt const. yAT2059) or under the inducible GALS promoter (wt ind. yAT2078) at 30 min, 45 min, 90 min, 180 min, and
1200 min after galactose induction. Percentage of cells with one spot is given for each time point after galactose induction
of the GFP-LacIR protein. Bar, 2 µm. (B) Cumulative distributions of the intensity of GFP foci in G1 cells, in strains
bearing the lys2::lacO E-ADE2-I locus and expressing GFP-LacIR either under the constitutive HIS3 promoter (wt const.
yAT2059) or under the inducible GALS promoter (wt ind. yAT2078) at 30 min, 45 min, 90 min, 180 min, and 1200 min
after galactose induction of the GFP-LacIR protein. For statistics: p > 0.01 is non-significant (ns), p ≤ 0.00001(****) and
see Table S4 for statistics. (C) Cumulative distributions of the relative distance of lys2::lacO E-ADE2-I or lys2::lacO locus
to the nuclear periphery in G1 cells, in strains expressing GFP-LacIR either under the constitutive HIS3 promoter (wt
const. yAT2059 and wt cont. No Silencer yAT3420) grown in galactose-containing medium or under the inducible GALS
promoter (wt ind. yAT2078) at 30 min, 45 min, 90 min, 180 min, and 1200 min after galactose induction of the GFP-LacIR
protein. p > 0.01 is non-significant (ns), p ≤ 0.00001(****) and see Table S4 for statistics. (D) Graph showing the levels of
ADE2 mRNA (RT-qPCR) isolated from strains bearing lys2::lacO E-ADE2-I locus and expressing GFP-LacIR either under the
constitutive HIS3 promoter (wt const. yAT2059) or under the inducible GALS promoter (wt ind. yAT2078) in raffinose (t = 0,
no induction) and after 90 min, 180 min, 270 min, 360 min, and 1200 min after galactose induction. To account for changes
in gene expression related to growth conditions independently of LacI induction, ADE2 mRNA levels were normalized to
the ADE2 mRNA levels of a strain not expressing the LacI protein (data are shown as mean ± s.e.m.; see Table S3 for the
number of experiments).

3.3. Sir3 and Sir4 Accumulate over Several Cell Cycles following LacI Induction

We next assessed the recruitment of Sir3 along the lys2::E-ADE2-I locus by chromatin
immunoprecipitation (ChIP) analyzed by quantitative PCR, using primers located along
the locus at different time points after LacI induction (Figure 3A). We previously showed a
basal recruitment of Sir3 and Sir4 at the E silencer and at the ADE2 reporter gene flanked
by the HML silencers, with or without an unbound lacO array located 1.9 kb upstream of
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the silencers (Dubarry et al., 2011). Consistently we observed a low level of Sir3 and Sir4
at these sites before LacI induction (Figures 3A and S3A). Upon induction, Sir3 and Sir4
binding gradually increased all along the locus.
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Figure 3. Heterochromatin formation takes place over several cell cycles. (A) Sir3 occupancy along the of lys2::lacO E-ADE2-I
locus, probed by ChIP-qPCR using an anti-Sir3 antibody developed by us (Ruault et al., 2011), in strains expressing GFP-
LacIR either under the constitutive HIS3 promoter (wt const. yAT2059) or under the inducible GALS promoter (wt ind.
yAT2078) in raffinose (no induction), or after 45 min, 90 min, 180 min, 270 min, and 1200 min of galactose induction of the
GFP-LacIR protein. The data were normalized over OGG1 (shown as mean ± s.e.m.). (P1), (P2), (P3) (P4) amplicons are
respectively located at 3.7 kb, 2.2 kb, 1 kb, and 0.5 kb from the left side of the E silencer, and (P5) and (P6) amplicons are
located at 3.2 kb and 6 kb from the right side of the E silencer. Amplicon positions are localized on the scheme of the locus
with an asterisk and their respective number (see Table S3 for the number of experiments). (B) Sir3 enrichment over time
at three particular sites of the lacO E-ADE2-I construct inserted at the LYS2 locus: at the lacO (P2), nearby the E silencer
(P4), and in the body of ADE2 (P5) obtained by plotting data from Figure 3A. (C) H4K16 acetylation occupancy nearby the
E silencer (P4) and in the body of ADE2 (P5) in a strain bearing the lys2::lacO E-ADE2-I locus, probed by ChIP-qPCR using
an anti-acetyl-histone H4 (Lys16) antibody, in strains expressing GFP-LacIR under the inducible GALS promoter (wt ind.
yAT2078) in raffinose (no induction), or after 45 min, 90 min, 180 min, and 1200 min of galactose induction of the GFP-LacIR
protein. The data were normalized over OGG1 (shown as mean ± s.e.m.; see Table S3 for the number of experiments).

The fastest and highest recruitment was observed at the E silencer (Figures 3A,B and S3A),
suggesting that Sir3 and Sir4 are first recruited at this site before spreading on the flanking
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regions. However, after 270 min of induction Sir3 enrichment was still below the one of
the strains with constitutive LacI expression, this level being reached only after a long-term
induction (Figure 3A,B). Probing Sir3 binding after 20 h, 48 h, and 72 h of induction revealed
that Sir3 recruitment did not show significant variation after 20 h (Figure S3B).

Focusing on the individual amplicons, we observed that Sir3 recruitment increased
similarly at the lacO array and at the E silencer during the first 3 h of induction and increased
abruptly at the E silencer after this time point, while Sir3 increased more progressively at
the ADE2 gene over the time course (Figure 3B). These data suggest that the SIR complex is
recruited both at the lacO array and the silencer at early time points before spreading on
the ADE2 gene.

The kinetics of Sir3 and Sir4 recruitment are in good agreement with the slow repres-
sion observed in Figure 2 and the kinetics of H4K16 deacetylation (Figures 3C and S3C,D).
Indeed, H4K16 ChIP signal showed little variations during the first 180 min after LacI
induction in the body of the reporter gene and reached the levels of the constitutive strain
only after a long-term induction (Figures 3C and S3C,D). In contrast, we noticed an abrupt
decrease in H4K16 acetylation along the lacO array, during the first 90 min following LacI
induction (Figure S3C), even when normalizing the H4K16Ac ChIP signal by nucleosome
occupancy (Figure S3D).

Altogether, our data show that heterochromatin formation and silencing establishment
are slow processes taking place over several cell cycles. This is in contrast with the kinetic of
perinuclear anchoring that occurs mainly during the first 90 min following LacI induction.

3.4. Perinuclear Anchoring Is Partly Sir3 Independent

The difference in kinetic of perinuclear anchoring and silencing factor recruitment
suggests that perinuclear anchoring of the lys2::E-ADE2-I locus could occur indepen-
dently of heterochromatin formation upon LacI binding. To test this hypothesis, we mon-
itored the distance of this locus to the nuclear periphery in SIR3 or SIR4 deleted strains
(Figures Figure 4A and S4A). In the sir3∆ strain, the localization was similar to the wt
strain, when monitored 30–45 min after LacI induction (p = 0.96). After 3 h of induction
the locus was shifted toward the nuclear periphery to a similar extent than in the wt strain
(p = 0.9), but no further changes in localization were observed after a long-term induction in
both sir3∆ and sir4∆ strains. Similar results were obtained in G1 or S-G2 cells (Figure S4B).

We thus observed an SIR-independent anchoring of the locus to the nuclear periphery
following LacI induction. We next tested whether this perinuclear anchoring was also
independent of the presence of a neighboring silencer element.

In the absence of silencers, the LYS2 locus also showed a more peripheral localization
upon high LacI expression compared with a strain expressing the LacI protein under the
weaker constitutive HIS3 promoter grown in the same medium (Figure 4B, p = 3.8 × 10−9).
The only difference between these two strains is the amount of LacI expression and binding
to the lacO array, the median intensity of the lacO spot being 3.7-fold higher in the induced
strain than in the constitutive strain (Figure 4C,D). Therefore, a high level of LacI binding is
sufficient to induce a shift of the locus to the nuclear periphery independently of Sir3, Sir4,
or the presence of silencer elements. However, this LacI induced Sir3-independent perinu-
clear anchoring is weaker than the one observed when the locus is silenced (p = 5 × 10−4).
We thus conclude that the perinuclear anchoring of the lys2::lacO E-ADE2-I locus, following
LacI binding to the lacO array, is partially independent of heterochromatin establishment.
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Figure 4. Perinuclear anchoring is partly Sir3 independent. (A) Cumulative distributions of the relative distance of the
lys2::lacO E-ADE2-I locus to the nuclear periphery, in G1 cells, in strains expressing GFP-LacIR under the control of the GALS
promoter in the WT (wt ind., yAT2078), and in a sir3∆ strain (sir3∆ ind., yAT2370) after 30–45 min, 3 h, and 20 h of galactose
induction. p > 0.01 is non-significant (ns), p ≤ 0.01 (*), p ≤ 0.00001 (****) and see Table S4 for statistics. (B) Cumulative
distributions of the relative distance of lys2::lacO E-ADE2-I locus to the nuclear periphery in G1 cells, in strains expressing
GFP-LacIR under the inducible GALS promoter in the WT (wt ind. yAT2078), and in a sir3∆ (sir3∆ ind., yAT2370) strains
after 20 h of galactose induction. Cumulative distributions of the relative distance of the lys2::lacO array locus (No Silencer)
to the nuclear periphery in G1 cell, in strains expressing GFP-LacIR either under the inducible GALS promoter (wt ind. No
Silencer, yAT3471) after 20 h of galactose induction or under the constitutive HIS3 promoter grown in galactose (wt const.
No Silencer, yAT3420). p > 0.01 is non-significant (ns), p ≤ 0.00001 (****) and see Table S4 for statistics. (C) Representative
fluorescent images (maximal projection of a Z-stack) of strains bearing the lys2::lacO array locus (No Silencer) and expressing
GFP-LacIR either under the constitutive HIS3 promoter (wt const. No Silencer yAT3420) or under the inducible GALS
promoter (wt ind. No Silencer yAT3471) at 20 h after galactose induction. Bar, 2 µm. (D) Cumulative distributions of the
intensity of GFP foci in G1 cells, in strains bearing a lys2::lacO array locus (No Silencer) and expressing GFP-LacIR either
under the constitutive HIS3 promoter (wt const. No Silencer yAT3420) or under the inducible GALS promoter (wt ind.
No Silencer yAT3471) at 20 h after galactose induction. p > 0.01 is non-significant (ns), p ≤ 0.01 p ≤ 0.00001(****) and see
Table S4 for statistics.

3.5. LacI Binding Induces a Mec1 Dependent H2A-P

We hypothesized that the Sir3-independent change in localization induced upon
LacI binding could result from chromatin stress induced by the LacI binding to the lacO
array. We thus set out to monitor the presence of histone H2A phosphorylation, a mark
associated both with silent chromatin and DNA damage [45,46], at the lys2::lacO E-ADE2-I
locus following LacI induction. To account for potential variation in H2A occupancy,
we normalized the H2A phosphorylation (H2A-P) ChIP signal against total H2A ChIP
performed on the same samples.



Cells 2021, 10, 2810 12 of 21

The H2A-P/H2A signal increased with time after induction over the locus, with a
faster and higher increase at the E silencer, suggesting that H2A was first phosphorylated
there before the mark spread on the flanking regions (Figures 5A and S5A,B).
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Figure 5. Mec1-dependent H2A phosphorylation induced by LacI binding and stabilized by Sir3 spreading. (A) H2A-S129
phosphorylation occupancy along the lys2::lacO E-ADE2-I locus probed by ChIP-qPCR using an anti-H2A Phospho-S129
antibody in strains expressing GFP-LacIR either under the constitutive HIS3 promoter (wt const. yAT2059) or under the
inducible GALS promoter (wt ind. yAT2078) in raffinose (no induction), or after 45 min, 90 min, 180 min, and 1200 min of
galactose induction. The data were normalized over OGG1 and histone H2A ChIP signal (shown as mean ± s.e.m.; see
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Table S3 for the number of experiments). (P1), (P2), (P3) (P4) amplicons are respectively located at 3.7 kb, 2.2 kb, 1 kb, and
0.5 kb from the left side of the E silencer, and (P5) and (P6) amplicons are located at 3.2 kb and 6 kb from the right side of
the E silencer, amplicon positions are localized with an asterisk and their respective number on the scheme of the locus.
(B) H2A-S129 phosphorylation enrichment over time nearby the E silencer (P4) in strains bearing the lys2::lacO E-ADE2-I
locus, probed by ChIP-qPCR using an anti-H2A Phospho-S129 antibody, in strains expressing GFP-LacIR under GALS
promoter in the WT (wt ind., yAT2078), in a tel1∆ (tel1∆ ind,. yAT2314), and in a mec1∆ (mec1∆ ind., yAT2904) strains in
raffinose (no induction), or after 90 min, 180 min, and 1200 min of galactose induction. The data were normalized over
OGG1 and histone H2A ChIP signal (shown as mean ± s.e.m.; see Table S3 for the number of experiments). (C) H2A-S129
phosphorylation enrichment over time nearby the E silencer (P4) in strains bearing the lys2::lacO E-ADE2-I locus, probed by
ChIP-qPCR using an anti-H2A Phospho-S129 antibody, in strains expressing GFP-LacIR under GALS promoter in the WT
(wt ind., yAT2078), and in a sir3∆ (sir3∆ ind,. yAT2370) strain in raffinose (no induction), or after 45 min, 90 min, 180 min,
and 1200 min of galactose induction. The data were normalized over OGG1 and histone H2A ChIP signal (shown as mean ±
s.e.m.; see Table S3 for the number of experiments). (D) Sir3 enrichment probed by ChIP-qPCR using Sir3 antibody nearby
the E silencer (P4) and at ADE2 (P5) in strains bearing the lys2::lacO E-ADE2-I locus, and expressing GFP-LacIR under the
GALS promoter in the WT (wt ind., yAT2078), and in a hta-S129A (hta-S129A ind, yAT2965) strains in raffinose (no induction),
and 20 h of galactose induction. The data were normalized over OGG1 (shown as mean± s.e.m.; see Table S3 for the number
of experiments). (E) Pictures of yeast colonies bearing the lys2::lacO E-ADE2-I locus and expressing the GFP-LacIR under
the GALS promoter in the WT (yAT2078), in a tel1∆ (yAT2314), in a mec1∆ (yAT2904), and in a hta-S129A∆ (yAT2965) strains
streaked on galactose plate. (F) Cumulative distributions of the relative distance of lys2::lacO E-ADE2-I locus to the nuclear
periphery in G1 cells, in strains expressing GFP-LacIR under the GALS promoter in the WT (wt ind., yAT2078) strain after
3 h and 20 h of galactose induction, in the mec1∆ (mec1∆ ind., yAT2904) and in the hta-S129A∆ (hta-S129A ind, yAT2965)
strains after 20 h of galactose induction. p > 0.01 is non-significant (ns), p ≤ 0.00001(****) and see Table S4 for statistics.

We next tested the respective contribution of the two H2A kinases Mec1 and Tel1 in
this phosphorylation event since Tel1 is the main kinase responsible for H2A-P at telomeres
([45] and Figure S5C), whereas Mec1 is the main kinase acting at processed DSB [47]. While
deleting TEL1 had no significant effect on the kinetic and level of H2A-P, deleting MEC1 led
to a reduction in H2A-P (Figure 5B) upon LacI induction compared to the wild-type strain.
However, we still observed a slow accumulation of H2A-P at the E silencer in the absence
of Mec1. This suggests that although Mec1 is the main kinase responsible for H2A-P at the
E silencer upon LacI induction, Tel1 can at least partially substitute Mec1 activity.

3.6. H2A-P Induced by LacI Binding Is Sir3 Independent but Is Stabilized by Sir3 Spreading

As mentioned above, genome-wide studies showed a strong correlation between
H2A-P and silent chromatin [5,45,46].

The significant increase in H2A-P at the E silencer as soon as 45 min after induction,
before any significant change in localization or in SIR recruitment occurred, indicated
that this phosphorylation event could be SIR independent. We tested this hypothesis
by monitoring H2A-P/H2A in a SIR3 deleted strain upon LacI induction. We observed
a transient phosphorylation of H2A at the E silencer and the lacO array in this strain
(Figures 5C and S5E). This Sir3 independent, LacI induced H2A-P peaked 90 min after
induction before slowly decreasing to reach basal levels upon a long-term induction at the
E silencer and a two-fold enrichment at the lacO array (Figures 5C and S5E). Thus, while the
initiation of H2A-P is Sir3 independent, its accumulation depends on the presence of Sir3.
These data suggest that H2A phosphorylation is an early event induced by LacI binding
at the lacO array, and that this mark is later stabilized by Sir3 binding to nucleosomes. In
good agreement with this hypothesis, we also observed a phosphorylation of H2A after
90 min of LacI induction at the same distance from the lacO array in the strain without
silencer (Figure S5F).

H2A phosphorylation being the first event that we could detect at the silencer, we
wondered whether this modification could be responsible for the recruitment of the SIR
complex. We thus assayed the H2A-S129A (hta-S129A) mutant that could not be phos-
phorylated by the PI3 kinases Mec1 and Tel1 (Downs et al. 2000), for Sir3 recruitment.
Although we observed a slight defect of Sir3 recruitment at the E silencer after a long-term
LacI induction, this was not the case at the ADE2 gene (Figure 5D). Consistently, we did not
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observe any defect in silencing establishment upon LacI induction, neither in this strain nor
in the MEC1 or TEL1 deleted strain (Figure 5E). Similarly, Sir3 recruitment was reduced in
the H2A-S129A mutant strain 0.2 kb from the telomere 6R but unaffected in further distant
subtelomeric regions (Figure S5G). Therefore, H2A-P may have a small contribution at the
nucleation step but did not impact Sir3 spreading and the resulting gene silencing.

We next tested the impact of this modification on the perinuclear anchoring of the
locus. Distributions of the locus in mec1∆ or H2A-S129A expressing strains were similar
to the distribution in the wild-type strain (Figure 5F, p = 0.76). In the absence of Sir3, the
localization of the locus was not significantly different in the absence or presence of this
mutation, although we noticed a higher variability of the data in the double mutant (p = 0.8;
Figure S5H). Thus, H2A phosphorylation is not required for the perinuclear anchoring of
the lys2::lacO E-ADE2-I locus upon LacI binding.

In summary, the H2A phosphorylation event observed 45 min after LacI binding on
the lacO array is independent on Sir3 recruitment, and reciprocally, this modification is
not required for Sir3 recruitment or the perinuclear anchoring of the locus. However, Sir3
recruitment that occurs later after LacI induction (starting at 90 min) allows the stabilization
of this mark, which then accumulates over the long-term induction.

3.7. Sir3 Spreading Counteracts LacI-Induced Nucleosome Eviction and Limits LacI Binding

Plotting H2A occupancy along the locus at different times after induction revealed
a progressive decrease in H2A ChIP signal over the lacO array, from 45 min to 3 h after
induction. At this time, H2A enrichment (over our reference locus, OGG1) was 3-fold
lower than before LacI induction. However, we observed a slight but reproducible increase
in H2A occupancy after long-term induction (Figure 6A,B). We wondered whether this
late re-association of H2A could be related to the SIR spreading observed after long-term
induction (Figure 3). Indeed, in the absence of Sir3, H2A eviction was stronger than in the
wild-type strain 3 h after induction and remained stable after long-term LacI induction
(Figure 6B). In the constitutive strain expressing a lower level of LacI, we observed a 20 to
25% decrease in H2A occupancy as compared with the signal obtained in the absence of
LacI binding (Figure 6C). Again, in the absence of Sir3, the eviction was stronger, with H2A
occupancy at the lacO array corresponding to 30% of the occupancy of the unbound array.
A similar level of H2A ChIP signal was observed in a wt strain expressing the LacI under
the HIS3 promoter but without silencer flanking the lacO array (Figure S6A). These results
suggest that Sir3 spreading from the silencer stabilizes nucleosomes that are removed by
LacI binding in the absence of Sir3.

It is noteworthy that canonical sites of SIR recruitment are also associated with
nucleosome-poor regions such as the TG repeats, subtelomeric sequences, and the HM si-
lencers. Indeed, H2A signal is rather low immediately adjacent to telomere 6R compared to
other genomic sites (60% of the reference signal), and it is even lower in the absence of Sir3
(Figure 6D), indicating that Sir3 spreading stabilizes the nucleosome, in good agreement
with previous work [48–50].

We then asked whether Sir3 spreading could prevent LacI binding at the lacO array.
We thus compared the intensity of the GFP-LacI spot neighboring the E-ADE2-I reporter in
wild-type or sir3∆ strain expressing the LacI protein under the constitutive HIS3 promoter
(Figure 6E). We observed that the intensity of the spots in G1 cells was higher in the absence
of Sir3 (p = 10−10, Figure 6F). Similarly, GFP-LacI spots were brighter in the absence than in
the presence of a neighboring silencer element (Figure S6B). We thus conclude that Sir3
spreading impairs LacI binding.

All together these data indicate that Sir3 stabilizes nucleosome and prevents the access
of DNA binding factor to DNA.
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Figure 6. Sir3 spreading counteracted LacI-induced nucleosome eviction. (A) H2A occupancy along the of lys2::lacO
E-ADE2-I locus probed by ChIP-qPCR using an anti-H2A antibody in strains expressing either the GFP-LacIR under the
constitutive HIS3 promoter (wt const., yAT2059) or under the GALS promoter (wt ind., yAT2078) in raffinose (no induction),
or after 45 min, 90 min, 180 min, and 1200 min of galactose induction. (P1), (P2), (P3) (P4) amplicons are respectively located
at 3.7 kb, 2.2 kb, 1 kb, and 0.5 kb from the left side of the E silencer, and (P5) and (P6) amplicons are located at 3.2 kb and
6 kb from the right side of the E silencer, amplicon positions are localized with an asterisk and their respective number on
the scheme of the locus The data were normalized over OGG1 (shown as mean ± s.e.m.; see Table S3 for the number of
experiments). (B) H2A enrichment over time at the lacO (P2), and nearby the E silencer (P4), in a strain bearing the lys2::lacO
E-ADE2-I locus, probed by ChIP-qPCR using an anti-H2A antibody in strains expressing the GFP-LacIR under the inducible
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GALS promoter in the WT (wt ind., yAT2078) and in a sir3∆ (sir3∆ ind., yAT2370) strain, in raffinose (no induction), or
after 45 min, 90 min, 180 min, and 1200 min of galactose induction. The data were normalized over OGG1 (shown as
mean ± s.e.m.; see Table S3 for the number of experiments). (C) H2A occupancy at the lacO (P1 and P2) in a strain bearing
the lys2::lacO E-ADE2-I, probed by ChIP-qPCR using an anti-H2A antibody, in a strain without LacI expression (wt No
LacI, yAT2001) or in strains expressing GFP-LacI under the control of the constitutive HIS3 promoter in the WT (wt const.,
yAT2000) and in a sir3∆ (sir3∆ const., yAT2156). The data were normalized over OGG1 (shown as mean± s.e.m.; see Table S3
for the number of experiments). (D) H2A occupancy at 0.2 kb, 0.5 kb, and 1 kb from the end of telomere 6R in strains
bearing the lys2::lacO E-ADE2-I locus, probed by ChIP-qPCR using an anti-H2A antibody, and expressing GFP-LacIR under
the control of the inducible GALS promoter in the WT (wt ind., yAT2078), and in a sir3∆ (sir3∆ ind,. yAT2370) strains. The
data were normalized over OGG1 (shown as mean ± s.e.m.; see Table S3 for the number of experiments). (E) Representative
fluorescent images (maximal projection of a Z-stack) and their corresponding transmission images of strains bearing the
lys2::lacO E-ADE2-I locus and expressing GFP-LacIR under the constitutive HIS3 promoter in the WT (wt const. yAT2059)
and the sir3∆ (sir3∆ const., yAT3525) strains. Bar, 2 µm. (F) Cumulative distributions of the intensity of GFP foci in G1 cells,
in strains bearing the lys2::lacO E-ADE2-I locus and expressing GFP-LacIR under the constitutive HIS3 promoter in the WT
(wt const. yAT2059) and a sir3∆ (sir3∆ const., yAT3525) strains. p > 0.01 is non-significant (ns), p ≤ 0.00001(****) and see
Table S4 for statistics.

4. Discussion

Here we set up an inducible system to monitor silencing establishment at an ectopic
locus without affecting SIR protein expression or activity.

In this experimental system, silencing establishment is induced by the binding of
the LacI protein on a lacO array located 1.9 kb away from a reporter of ectopic silencing
consisting of the ADE2 gene flanked by the HML silencers inserted at the LYS2 locus [17,18].

Using this system, we observe that LacI binding is accompanied by nucleosome
eviction at the lacO array, together with the phosphorylation of H2A within the lacO array
and the neighboring nucleosomes. This is followed by the perinuclear anchoring of the
locus and the progressive recruitment of the SIR complex at the E silencer from where
it spreads on the flanking regions, including the lacO array and the ADE2 reporter gene
leading to its repression after long-term induction. Another consequence of SIR spreading
is the accumulation of H2A-P on the underlying nucleosomes. While the SIR recruitment
and the initial phosphorylation of H2A are independent events, Sir3 recruitment allows
the stabilization of H2A-P. Finally, Sir protein recruitment stabilizes nucleosomes and
counteracts LacI binding.

4.1. LacI Binding Induces H2A Phosphorylation and SIR Recruitment Independently

The phosphorylation of H2A is the earliest event that we could detect upon LacI
binding at the lacO array. This histone modification is triggered by the PI3 kinases Mec1
and Tel1 that are activated upon DNA damage, suggesting that LacI binding induces a
DNA or chromatin stress that is sensed by the checkpoint machinery. This chromatin stress
could result from the abrupt eviction of nucleosomes upon LacI binding. We observed that
this LacI binding induced phosphorylation of H2A depends on both Mec1 and Tel1 with a
preponderant impact of Mec1. However, we could not detect the phosphorylation of the
downstream effector Rad53 (Figure S5D) indicating a mild activation of the PI3 kinases.

Both Tel1 and the DNA repair factor Mre11 were shown to interact with members
of the SIR complex in the two-hybrid system and to promote silencing when artificially
tethered to a defective silencer [51]. Hence, Tel1 and Mre11 may trigger silencing through
the direct recruitment of the SIR complex. Furthermore, both Mre11- and Tel1-mediated
silencing was at least partially dependent on H2A phosphorylation. However, none of these
factors is required for silencing establishment in our system (Figure 5). This is consistent
with the fact that these factors are also not required for silencing at HM loci, despite being
sufficient in Reference [51].

Genome wide, H2A-P is found enriched at SIR bound loci including subtelomeres
and HM loci, but also smaller regions located on chromosome arms [5,45,46], and this
enrichment decreased in the absence of Sir3. Similarly, we observed a strong decrease in
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H2A-P in the absence of Sir3 after long-term LacI induction. However, the phosphorylation
of H2A observed immediately after LacI binding is Sir3 independent. H2A-P and Sir3
recruitment are thus independent events induced by LacI binding at the lacO array. Still,
Sir3 spreading stabilizes this otherwise transient mark, leaving a scar of the initial chromatin
stress. A similar mechanism could explain the presence of H2A-P at silent loci since natural
silencers are made of binding sites for proteins able to destabilize nucleosomes such as
Rap1, Abf1, or Orc1. Their binding could cause a chromatin stress, leading to H2A-P that
is then stabilized by Sir3 binding. Whether H2A-P and/or Sir3 helps stabilizing these loci
will be interesting to study in the future.

4.2. Silencing Establishment Occurs over Several Cell Cycle

In contrast to H2A-P, SIR recruitment and silencing establishment is a slow process,
with Sir3 and Sir4 binding increasing significantly after 90 min and accumulating over
several cell cycles, leading to gene silencing only after long-term induction (20 h). This
slow establishment of silencing is in contrast with previous reports monitoring silencing
establishment at HM loci [24–28,30–32,50]. This difference could be explained by several
factors: (i) the chromosomal position of the reporter studied (euchromatic regions 339 kb
away from Tel2R in our system versus subtelomeric HML loci); (ii) the strength of the gene
promoter [30]; (iii) the method used to induce silencing establishment. Indeed, in our
system silencing is induced while silencing is already established at other loci, whereas
previous studies used conditional or inducible alleles of SIR3, thus affecting all silent
loci simultaneously. These factors are not mutually exclusive and could even reinforce
each other. Because Sir3 is available in a limited amount for silencing establishment, it
might be more difficult to recruit Sir3 molecules when they are sequestered at other loci,
and the distance to these loci might decrease further the probability to encounter Sir3
molecules [19–22].

4.3. Anchoring at the Nuclear Periphery Precedes Silencing Establishment

Silent loci are enriched at the nuclear periphery, whereas the LYS2 locus, when not
silent, shows an almost random nuclear localization [17]. Here we observed a progressive
accumulation of the locus at the nuclear periphery that precedes silencing establishment.
Consistently, this perinuclear anchoring is partially independent of the SIR complex. How
LacI binding triggers this change in nuclear localization is not clear. This change in
localization that is observed both in G1 and S-G2 phases of the cell cycle, independently
of H2A-P, Tel1, or Mec1, requires a high level of LacI expression. This high level of LacI
binding results in nucleosome eviction, suggesting that a large nucleosome-free region
might be responsible for this relocalization at the nuclear periphery. This SIR-independent
perinuclear anchoring could contribute to silencing establishment by bringing the locus in
proximity to SIR dense regions, as proposed earlier [21,22].

4.4. Possible Mechanisms for Silencing Establishment

What is the mechanism leading to SIR recruitment upon LacI binding? We previously
proposed that the replication stress arising from tight DNA–protein interactions could
favor heterochromatin formation [17]. Here we show that LacI binding is accompanied by
a decrease in histone occupancy along the lacO array. Binding and unbinding of the LacI
protein could increase the turnover of nucleosomes independently of DNA replication,
thus leading to the incorporation of unmodified histones that are more permissive to
Sir3 binding. In particular, H3K79 tri-methylation, which is widespread in euchromatin,
counteracts Sir3 spreading and prevents silencing establishment [5,32,52]. Given the lack
of enzyme to erase this histone mark, its removal can be achieved only through turnover
of the histones that bear it. Histone turnover occurs mainly during the S phase and was
proposed to be a critical cell-cycle-regulated step in silencing establishment [32]. Our data
suggest that the dynamics of LacI binding and unbinding could also stimulate histone
turnover on the lacO array.
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Nucleosome-depleted regions (NDR) were recently shown to improve silencing estab-
lishment and by favoring nucleosome positioning when the distance between two NDRs
allows a regular positioning of nucleosomes [53]. However, this effect decreases with the
distance between the two NDRs and is, thus, unlikely to be at play in our system where the
distance between the E silencer and the lacO array is 1960 bp. Yet, it would be interesting
to test whether shortening this distance to a length that could not be evenly divided into
nucleosomes would prevent silencing establishment.

As mentioned above, the perinuclear anchoring of the locus that occurs independently
of SIR recruitment could also contribute to SIR recruitment by bringing the locus in proxim-
ity to the pool of SIR proteins associated with silent loci enriched at the nuclear periphery.
In turn, SIR recruitment reinforces the perinuclear anchoring of the locus, feeding a positive
loop that increases both SIR recruitment and anchoring at the nuclear periphery.

4.5. SIR Spreading Stabilizes Nucleosome and Limits the Access to DNA

The use of our inducible system to study the establishment of silencing at an ectopic
locus revealed a positive role for the SIR complex in the stabilization of nucleosomes in vivo.
This was also observed at the natural subtelomere 6R where the sequence immediately
adjacent to the telomeric repeats shows a low occupancy in wild-type cells, which is
further reduced in the absence of Sir3. A similar effect of heterochromatin in stabilizing
nucleosomes has also been reported in S. pombe [54,55]. This stabilization could be a direct
consequence of the SIR complex spreading on nucleosomes or an indirect effect owing
from the protection of nucleosomes against histone modifiers and remodelers or to a steric
hindrance preventing the binding of DNA binding protein. Our observation that SIR
spreading at the lacO array reduces LacI binding indicates that SIR bound to nucleosomes
occlude the access of DNA binding protein to DNA. This is in good agreement with in vitro
studies suggesting that association of the SIR complex to chromatin results in the formation
of a fiber characterized by Sir3-dependent stabilization of nucleosomes and occlusion of
DNA linkers [56,57].

In conclusion, using our inducible system, we showed that a massive binding of
LacI protein leads to nucleosome eviction, inducing a chromatin stress as indicated by
the phosphorylation of H2A at this locus and its anchoring at the nuclear periphery. This
is followed by the recruitment of the SIR complex, which in turn stabilizes nucleosomes,
H2A-P, and the perinuclear anchoring of the locus and prevents the access of DNA binding
protein to DNA.

Although artificial, this system may reveal a mechanism at play at natural genomic
loci. Indeed, natural sites of SIR recruitment such as HM silencers or telomeric repeats are
made of combinations of binding sites for protein that are strong nucleosome-displacing
factors (NDFs) [6]. Moreover, binding sites for other NDFs such as Ume6, Reb1, or TFIIIC
can cooperate with silencer elements to strengthen silencing [6,17,53]. Further research will
be needed to decipher the precise mechanism by which nucleosome-depleted regions can
lead to silencing establishment.
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LacI induction; Figure S3: Heterochromatin formation takes place over several cell cycles and Sir3
recruitment plateaus after 24h, Figure S4: Perinuclear anchoring is partly Sir3 and Sir4 independent
in G1 and S/G2 cells, Figure S5: LacI binding induces a transient H2A phosphorylation without
detectable Rad53 phosphorylation, Figure S6: SIR spreading stabilizes nucleosome and limits LacI
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