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Abstract: Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and
inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information
carried by glycan structures, and non-covalent interactions of selectins with these glycan structures
mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential
glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of
the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes
with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident
that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll
and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections
and inflammatory diseases. The most prominent function of selectins is associated with the initial
stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling.
The first adhesive event occurs through specific non-covalent interactions between selectins and
their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the
endothelium. Targeting these interactions remains a principal strategy aimed at developing new
therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will
survey the significant contributions to and the current status of the understanding of the structure
of selectins and the role of selectins in various biological processes. The potential of selectins and
their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will
also be discussed. We will emphasize the structural characteristic of selectins and the catalytic
mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants.
Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a
focus on the various strategies used for the development of glycosyltransferase inhibitors, including
substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of
the catalytic mechanism.

Keywords: selectins; selectin ligands; carbohydrate determinants; sialyl Lewis x; glycosyltransferases;
inflammation; cancer; selectin-ligand interactions; inhibitors; transition state analog inhibitors

1. Introduction

The adhesion of molecules, either among cells or between an immune cell and target cellular
component of the extracellular matrix, is the crucial event in the physiological process. In all
organisms, these cell-cell interactions are mediated by adhesion molecules, which are highly expressed
glycoproteins that mediate and regulate cell migration, survival, and apoptosis [1]. Adhesion molecules

Molecules 2020, 25, 2835; doi:10.3390/molecules25122835 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-2740-944X
https://orcid.org/0000-0002-8115-0486
http://dx.doi.org/10.3390/molecules25122835
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/12/2835?type=check_update&version=3


Molecules 2020, 25, 2835 2 of 61

are divided into five groups: integrins, selectins, cadherins, members of the immunoglobulin
superfamily, including nectins, and others such as mucins [2–4].

Selectins mediate cell-cell adhesion by recognizing carbohydrates presented on the cell surface [5,6].
Selectins are cell membrane glycoproteins that mediate adhesion of hematopoietic and cancer cells to
endothelial cells, leukocytes, and platelets in flowing blood [7–9]. These adhesion events play a crucial
role in inflammation, infection, cancer, lymphocyte and bone marrow stem cell homing, and immune
cell surveillance. Selectins also assist homing of aberrant leukocytes in chronic and acute inflammatory
diseases [10–12]. Recently, selectins were implicated in promoting cancer metastasis [13,14]. Selectins
thus behave like Dr. Jekyll and Mr. Hyde; they have two faces, two kinds of behavior. The “good”
one represents the functioning of selectins in physiological events such as inflammation, immune
response, wound repair, and hemostasis. The “evil” one represents the functioning of selectins in
pathophysiological processes.

Selectins belong to the group of C-type mammalian lectins that bind carbohydrate ligands in a
Ca2+-dependent manner [9]. There are three members of the selectin subfamily: leukocyte (L)-selectin
(CD62L), platelet (P)-selectin (CD62P), and endothelial (E)-selectin (CD62E). The primary sequences of
the P-, L-, and E-selectins display a substantial similarity to each other and also to selectins in other
species [15]. However, their structure and pattern of cell-type expression is diverse [16]. P-selectin is
highly expressed in platelets, endothelial cells and stored in α-granules of platelets and Weibel-Palade
bodies of endothelial cells. E-selectin is constitutively involved in leukocyte rolling and adhesion
to endothelial cells and is significantly expressed in the endothelia of the bone marrow and skin.
In contrast to P- and E-selectin, L-selectin is constitutively expressed on lymphocytes, monocytes,
and granulocytes and is cleaved from the cell surface after cell activation. The selectins and their
ligands have become therapeutic targets in the prevention or at least alleviation of various diseases,
including cancer.

Several reviews on various aspects of selectins; such as selectins in inflammation and
infection [10,16], selectins in cancer [13,14,17], selectins in immunity [10,18,19], the role of glycosylation
in selectin interactions [19], and selectins as therapeutic targets [20,21]; have been reported over the last
decade. However, whereas the role of selectin and selectin-ligand interactions in health and disease is
highlighted in these reviews, the structural features of selectins and glycosyltransferases responsible
for the creation of selectin ligands are lagging behind. In this comprehensive review we survey the
significant contributions to and the current status of the understanding of the structure of selectins
and their roles in various biological processes as well as discussing the potential of selectins and
their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer. In the
review, we will emphasize the structural characteristic of selectins and the catalytic mechanism of
glycosyltransferases involved in biosynthesis glycan determinants. Also, the recent development in
the synthesis of selectin inhibitors will be reviewed here with the focus on the various strategies used
for glycosyltransferase inhibitors including transition state analog inhibitors based on the knowledge
of the catalytic mechanism. Of course, due to the complexity of the subject, only selected details are
discussed, but detailed coverage of this complex and multidisciplinary area of research is outside of
the scope of this review.

2. The Structure of Selectins

Selectins are closely related cell membrane molecules composed of an N-terminal
calcium-dependent lectin domain (CRD) responsible for carbohydrate recognition, an epidermal
growth factor-like (EGF) domain, a series of consensus repeats (CR) domains, a transmembrane
domain, and a short cytoplasmic tail [15]. Selectins exhibit calcium-dependent carbohydrate binding
activity and are known as C-type lectins. The presence of a carbohydrate recognition domain is
responsible for all three types of selectins recognizing a common motif, the sialylated and fucosylated
tetrasaccharide sialyl Lewis x (sLex) and its modifications displayed at the end of O-glycans, N-glycans,
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glycoproteins, or glycolipids [19,22]. These tetrasaccharides are the minimal glycan structures for
selectins counter-receptors.

Cloning and structural studies of selectins revealed their unique domain topology that regulates
their function and specificity [9]. All three selectins contain the N-terminal lectin-like domain
with 120 amino acids and with a 60–70% identity that effectively binds with carbohydrates [23–26].
The adjacent EGF-like domain also shares ~60% sequence similarity. This is followed by the CR domain
with a variable number (2–9) of consensus repeats of ~60 amino acids in length, and then a short
transmembrane domain and a cytoplasmic domain (Figure 1).
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Figure 1. Schematic representation of P-, E-, and L- selectin structures. Selectins are closely related
cell surface glycoproteins composed of five domains: the N-terminal calcium-dependent lectin
domain responsible for carbohydrate recognition (CRD), the epidermal growth factor-like (EGF)
domain, the series of consensus repeats (CR) domains, the transmembrane domain, and the short
cytoplasmic tail.

It was reported [24] that the sequence of human P-selectin consists of 120 amino acids,
has molecular weight of about 140 kDa, and extends approximately 40 nm from the endothelial
surface. While expressed on the membrane of platelets, the mass of P-selectin is about 149 kDa,
under reducing conditions, and contains 28.8% carbohydrates by weight. Nine consensus repeats
in a CR domain are typical for P-selectin. It associates into a homodimer by the interaction of
transmembrane domains and has been suggested [27] that the dimerization of P-selectin and its ligand
PSGL-1 facilitate leukocyte rolling. A small fraction of the soluble form of P-selectins (sP-selectin)
is derived through mRNA splicing, which lacks the exon of the transmembrane domain. The main
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fraction of sP-selectin is shed into the circulation system from the activated platelets. Both the soluble
and membrane form are significantly involved in the expression of stimulated endothelial cells and the
platelets [24,28]. Upon activation, P-selectin is translocated within minutes onto the cell surface [15].
The maximal expression of P-selectin is 5–10 min after stimulation, and within 30–60 min P-selectin
is cleared from the cell surface. This guarantees that P-selectin is only present on the endothelium
surface in inflamed tissues.

E-Selectin is a glycoprotein with a molecular weight of about 116 kDa, highly expressed on
the external membrane surface of vascular endothelial cells and responsible for the expression of
cytokines such as tumor necrosis factor (TNF) [29]. It has a particular lectin domain, an EGF domain,
and six consensus repeats of the CR domain. The amino acid sequence of the E-selectin have about six
cysteine-rich consensus repeats followed by an N-terminal lectin domain of 119 residues, which are
responsible for the binding of the oligosaccharide [9]. The EGF-like domain of E-selectin connects this
domain to the stem of six consensus repeats and the bottom of the stem through single transmembrane
α-helices to a small C-terminal cytoplasmic domain [30]. The expression of E-selectin after stimulations
necessitates de novo transcription. As a result, the E-selectin is detectable on the cell surface 3–4 h after
stimulation and after 16–24 h decreases back to basal levels.

L-selectin has a similar organization of extracellular domains to P- and E- selectins and has two
short CRs of the complement regulatory protein domain with molecular weight of about 75 and
110 kDa depending upon the cell being investigated. The N-terminal nine amino acids play a crucial
role in the binding mechanism between the ligand molecule and L-selectin [31]. This region is also
required for the binding of lymphocytes to the high endothelial venules (HEV) of peripheral lymph
nodes and the invasion of neutrophils into the site of inflammation [32,33]. L-selectin participates in
the homing of leukocytes into inflamed tissues, and an increased level of L-selectin ligands initiates
L-selectin–mediated adhesion events. Another critical role of L-selectin is in the adhesion of leukocytes
onto leukocytes already adhered to the blood vessel wall, known as secondary tethering.

Although the primary structures of three lectins have been known for three decades, the 3-D
structures of the selectins have been determined only recently. The structures of E-selectin [34,35]
complexed with sLex and P-selectin complexed with sLex and PSGL-1 (P-selectin glycoprotein ligand)
were solved [36], while for L-selectin only the structure of the lectin and EGF domains complexed with
a fucose mimetic is available [37]. The crystal structures of the P-selectin construct (P-LE) containing
only two domains (CRD and EGF) complexed with sLex were solved at a resolution of 2.4 Å [36].
The comparison of all three determined structures showed that all three selectins adopt a similar 3-D
structure (Figure 2). The structures also revealed the same arrangement of the sLex ligand in the
binding site. The critical binding interaction is electrostatic interaction between the selectin bivalent
Ca2+ cation and the hydroxyl groups at C3 and C4 of the fucose residue of the tetrasaccharide. Further
stabilization of the selectin-ligand complex is provided by hydrogen bonds between the galactose
residue of sLex and Tyr4 and Glu92 of P-LE.; and between sialic acid and Tyr 48.
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Figure 2. The 3-D structure of P-selectin (purple, PDB 1g1r [36]), E-selectin (red, PDB 4cs [36]),
and L-selectin (green, PDB 3cfw [37]).

To shed some light on the different binding affinity of the selectin ligand PSGL-1 (nanomolar)
compared to that of sLex (millimolar), the 3D structure of the P-LE complex with the truncated PSGL-1
construct was also determined to a resolution of 1.9 Å [36]. The crystal structures showed changes in
P-LE conformation upon PSGL-1 binding. Although sLex interactions with a divalent metal cation
are essential for binding, the crystal structure revealed that the interaction between PSGL-1 sulfated
tyrosines and the Arg 85 and His114 of P-LE appears to be the crucial factor for the high affinity
of PSGL-1. The authors suggested that P-selectin exists in two conformations: a conformation that
binds sLex and an extended conformation that binds PSGL-1 with higher affinity (Figure 3). Recently,
crystal structures of E-selectin complexed with glycomimetic antagonists showed [35] an extended
conformation of E-selectin that represents the high-affinity binding state.
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3. Selectin Ligands

Simple and complex carbohydrates (glycans) constitute a significant component of the outer
surface of vertebrate cells (glycocalyx). They are the essential biomolecules that mediate a large
number of biological and pathological events [38]. The flexibility of glycans allows them to adjust
their 3-D structure to physiological needs. Thus in glycans, function determines structure, not vice
versa [39]. Glycans exhibit an extraordinary heterogeneity and have a capacity to store information
content that far surpasses nucleic acids and proteins [40]. This information is decoded by families of
glycoproteins named lectins, to which the family of selectins belongs. In selectins, the Ca2+-dependent
carbohydrate-recognition domains are responsible for the recognition and binding of glycans linked
to glycoproteins and glycolipids. A large number of heterogeneous molecules have been shown to
bind to all three selectins. However, only a few of these binders were involved in the mediation of
biological processes. Criteria have been proposed [41] that characterize a real selectin ligand: (1) The
ligand should be present in the right place at the right time; e.g., a true P-selectin ligand should be
present on the surface of a mature circulating blood cell at a time when P-selectin is actively expressed
on an endothelial or platelet surface in the vasculature; (2) The selective removal or blockade of the
putative ligand on the intact cell should abrogate biologically relevant interactions; (3) The ligand
should be recognized with some selectivity by the specific selectin in question, with a relatively high
affinity, and preferably with well-defined stoichiometry.

3.1. Glycans as Minimal Recognition Determinants for Selectins

The minimal structural determinant recognized by the Ca2+-dependent lectin domain in all three
selectins is tetrasaccharide sialyl Lewis x (sLex) and its isomeric form sialyl Lewis a (sLea) [22], shown in
Figure 4. Selectins bind sLex with low affinity in the millimolar range. NMR experimental data [42]
revealed that P-selectin exhibited millimolar affinity to sLex, which is 10-fold lower than E-selectin:
KD(P-selectin) = 7.8 mM, KD(E-selectin) = 0.72 mM, and KD(L-selectin) = 3.9 mM.

The molecular recognition of sLex by its respective receptors plays a crucial role in many
pathophysiological events. Notably, an interaction with P-, L-, and E-selectin is of central importance
in the inflammatory cascade mechanism [16]. This interaction is influenced by the conformation of the
sLex that is defined by the relative orientation of the monosaccharide residues around glycosidic bonds
and also by the conformation of their side chains. Molecular modeling showed that sLex and sLea are
flexible molecules and in solution exist as a mixture of several conformations [43]. High-resolution
NMR has been used to determine the conformation of sLex in aqueous solution and when bound to
P-, E-, and L-selectin [42,44]. The analysis of the 2D transferred-NOESY spectrum indicated that P-
and E-selectin bound a similar conformation of sLex while a different conformer of sLex is recognized
by L-selectin. The binding studies of synthesized sLex derivatives were crucial for understanding of
the structure-function relationship between the selectin molecules and carbohydrate ligands [45–57].
These studies not only confirmed the structure and function of the ligands but also found the interaction
of essential groups of ligands to be responsible for the carbohydrate recognition mechanism and
revealed that the optimal interaction of L-selectin requires GlcNAc sulfation.

The description of selectin-sLex binding modes at the atomic level was obtained by solving the
crystal structures of P- and E-selectin complexed with sLex and PSGL-1. The X-ray structures of sLex

bound to P- and L-selectin [35,36] revealed that interactions of the OH3 and OH4 hydroxyl groups of
fucose with the Ca2+ ion are crucial for binding in a bent conformation. The fucose hydroxyl groups
replace water molecules in free selectin structures and complete coordination of the cation Ca2+. In the
extended binding state of E-selectin, beside the OH3 and OH4 hydroxyl group interactions with
Ca2+ ion, additional interactions between the OH2 hydroxyl group of fucose and Glu88 of E-selectin
contribute to its high-binding affinity [35].
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sLex, sLea, and 6-sulfo sLex.

Selectin binding determinants, carbohydrate structures that are present at the end of O-glycans,
N-glycans, glycoproteins, or glycolipids, are the result of posttranslational modifications of their
protein or lipid scaffolds using a repertoire of glycosyltransferases (GTs). Their biosynthesis occurs in
the endoplasmic reticulum and Golgi apparatus. Glycosyltransferases are the enzymes that catalyze
the transfer of a monosaccharide residue from an activated donor to the hydroxyl group of an acceptor,
thus creating a new glycosidic linkage. It is assumed that there is a specific glycosyltransferase for each
glycosidic linkage [58]. The donors for the catalytic reaction are nucleotide sugars, e.g., UDP-GlcNAc,
UDP-GalNAc, UDP-Glc, UDP-Gal, GDP-Fuc, GDP-Man, CMP-NeuAc, etc. The side groups of
synthesized glycans can be further modified; e.g., sulfotransferase modifies the hydroxyl OH6 of
GlcNAc by adding a sulfate group and forms 6-sulfo-sLex, which is an L-selectin ligand. The catalytic
mechanism of GT was recently extensively studied both experimentally and using molecular modeling
methods [59–61]. The biosynthesis of the selectin binding determinant tetrasaccharide sLex at the end
of an O- and N-glycan will be discussed later.
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3.2. P-Selectin Ligands

Although the binding affinity of glycan determinants sLex or sLea is in the millimolar range, they are
an essential component of many glycoproteins or glycolipid ligands. These determinants are frequently
present on proteins in clusters and thus involved in multivalent interactions. Multivalent interactions
that dramatically enhance binding are characteristic of protein-carbohydrate interactions [62–64].
A large number of glycoproteins and glycolipids have been proposed to be selectin ligands, some
of them with high-affinity binding. This implies that the protein backbone and its conformation
contribute to selectin binding and selectivity [65].

P-selectin glycoprotein ligand-1 (PSGL-1) is undoubtedly the best-described selectin ligand to date.
PSGL-1 is the high-affinity ligand molecule that binds through the N-terminus to all three selectins
but with different affinities: KD(P-selectin) = 320 nM [66], KD(E-selectin) = 15 µM, and KD(L-selectin)
= 5 µM [67–69]. PSGL-1 is a 120 kDa disulfide-linked homodimer [70–72]. It was suggested that
the first two biosynthesized molecules of PSGL-1 bind through non-covalent interactions, and then
two cysteins near the transmembrane domain form a disulfide linkage (Figure 5a) that stabilizes the
homodimer [73,74]. PSGL-1 is a transmembrane sialomucin with O-linked glycan determinant sLex

and specific sulfated tyrosines.
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PSGL-1 contains transmembrane, cytoplasmic, and extracellular domains [75]. Its transmembrane
and cytoplasmic domains are highly conserved. The cytoplasmic domain binds to the Nef-associated
factor and plays a crucial role in the signaling induced by P-selectin binding to PSGL-1. The extracellular
domain consists of serine, threonine, and proline-rich decameric repeats that vary among species [76]
and protrudes from a cell surface. The extracellular domain exhibits conformational flexibility that
facilitates the binding of PSGL-1 with counter-receptors on interacting cells. The extracellular domain
is O- and N-glycosylated. Despite the variability in the extracellular domain, the core O-glycosylation
site of threonine (Thr-58) located near the N-terminus is conserved. This posttranslational modification
of threonine bearing sLex permits PSGL-1 binding to selectins. Sulfated tyrosine (Tyr-46, Tyr-48,
and Tyr-51) are essential for the high affinity of human PSGL-1 binding. The role of the individual
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sulfated tyrosines was investigated using synthesized glucosulfopeptides that modeled the binding
region of PSGL-1 [68]. It was found that for binding to P-selectin, the sulfation of at least one tyrosine
is important, but the sulfation of Tyr-48 (KD ~ 6 µM) contributes to binding more than the sulfation of
Tyr-46 (KD ~ 10 µM) or Tyr-51 (KD ~ 10 µM). A model with Tyr-46, Tyr-48, and Tyr-51 sulfated exhibited
a higher binding affinity (KD = 0.65 µM), while the non-sulfated model had considerably lower affinity
(KD ~ 25 µM). This study also suggested that the fucose contribution to binding is more significant
than that of sialic acid and that all interactions are charge dependent.

The investigation of interactions between recombinant soluble P-selectin (sP-selectin) reveal that
monomeric sP-selectin binds to dimeric PSGL-1 in a 2:1 stoichiometry with nanomolar affinity [55].
Interestingly, the sulfation of the GlcNAC residue of sLex that leads to 6-sulfo-sLex enhanced its
L-selectin binding affinity. In contrast, the recognition of E-selectin is sulfation independent [77].
The binding of the P-, L-, and E-selectin with sLex and PSGL-1 were investigated by molecular
modeling [78]. The analysis of the calculated binding free energies of selectin with ligands reveals how
individual molecular moieties affect the binding affinity.

PSGL-1 is expressed on the surface of lymphoid and myeloid cells, including platelets and
activated T-cells. PSGL-1 is involved through PSGL-1-P-selectin interactions in the rolling/tethering of
neutrophils on endothelial cells and promotes targeted extravasation into tissues. Thus, PSGL-1 is a
physiological ligand that fulfills the suggested criteria for a real ligand [41].

It was reported that CD24, also known as heat-stable antigen (HSA), binds to P-selectin. CD24 is
a cell-surface glycoprotein that is highly glycosylated and was shown to mediate rolling leukocytes
and cancer cells [79,80]. CD24 is expressed by neutrophils and various cancer cells and the binding
of the binding of CD24 onto P-selectin is not yet clarified. It was also shown that heparin sulfate
glycosaminoglycans are recognized by P-selectin [81].

3.3. E-Selectin Ligands

Various glycan determinants expressed on leukocytes that contain sLex and sLea, and their
modifications were reported to be E-selectin ligands [82]. E-selectin is the most effective at recognizing
a variety of fucosylated and sialylated glycoproteins and glycolipids, while the P-selectin and L-selectin
require a sulfate group on tyrosine residues and the GlcNAc residue, respectively, for a full affinity to
ligands [83–87].

E-selectin ligand-1 (ESL-1) is a transmembrane glycoprotein that is recognized by E-selectin
but not P-selectin. ESL-1 has a molecular weight of about 150 kDa and consists of a glutamine-rich
N-terminal segment of 70 amino acids and cysteine-rich repeats, a transmembrane domain, and a
short 13 residues cytoplasmic tail. It also contains five exclusively N-glycosylated sites and differs
from sialomucin selectin ligands that are characterized by O-linked carbohydrate side-chains [88,89].
ESL-1 is expressed in many cells and primarily localized in the Golgi apparatus. A small portion of
ESL-1 is also expressed on the leukocyte cell surface [90,91]. Binding studies of E-selectin with ESL-1
revealed [92] that ESL-1 requires derivatization with fucosyltransferase IV (FucT-IV) in contrast to
P-selectin, which needs fucosyltransferase VII (FucT-VII). A knock-out mouse study revealed that
without the presence of ESL-1, the expression of soluble E-selectin is reduced. However, when both
PSGL- 1 and ESL-1 are absent the expression of E-selectin is abolished [93]. Experimental studies of
the binding affinity of E-selectin to sLex estimated dissociation constants KD between 107 µM and
1800 µM [42,48,49,94]. A significantly lower KD = 62 µM was determined by SPR measurement for the
dissociation of the mouse recombinant E-selectin with ESL-1 [52].

CD44 is a family of transmembrane glycoproteins (glycoforms) with a molecular weight between
80 and 220 kDa [95]. Posttranslational modifications and alternative splicing are responsible for the
extreme variability in the structure and function of this adhesion molecule. CD44 is a lectin with
hyaluronic acid as the primary ligand. The smallest and most abundant glycoform of CD44 is a standard
one, CD44s (85–95 kDa). Human CD44s glycoprotein is composed of several domains [96] with six
or seven potential sites for N-linked and O-linked glycosylation (Figure 5b), respectively. CD44s is
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expressed mainly on leukocytes, larger glycoforms of CD44 occur on different normal and malignant
cells. Studies on L-selectin ligands led to the discovery [96–98] of the CD44 glycoform (90–100 kDa)
that only bound to E-selectin. This glycoform was named Hematopoietic Cell E- and L-selectin
Ligand (HCELL). Thus, in contrast to CD44, HCELL is the selectin ligand [99]. It was found that
HCELL is expressed by human hematopoietic stem and progenitor cells [100,101], some malignancy
cells [101–103], and by classical human monocytes [10,104]. Interestingly, human hematopoietic stem
and progenitor cells exhibit the carbohydrate determinant sLex exclusively at the end of N-linked
glycans, while classical monocytes express sLex on O-linked glycans of CD44s [10,104].

It has been shown [105] that the glycoform of CD44 expressed by human mesenchymal stem cells
(MSC) bearα(2,3) sialylated N-acetyllactosamine. The selectin carbohydrate determinant is thus missing
fucoseα(1,3)-linked to the GlcNAc to have a complete sLex as in HCELL. To generate the HCELL selectin
ligand from CD44 glycoform, the authors [105] developed so-called “Glycosyltransferase-Programmed
Stereosubstitution” (GPS). They used glycosyltransferase FucT-VI for the formation of an α(1,3)-linkage
between the fucose and GlcNAc to create HCELL from the native CD44 of human MSC. Further
biochemical studies [106] showed that the HCELL of human MSC exhibited robust tethering and rolling
interactions on marrow vessels. These results suggest that the programmed glycan engineering could be
employed to increase cell delivery to tissue sites and thus in stem cell-based regenerative therapeutics.

CLA and CD43 are also E-selectin ligands. Cutaneous Lymphocyte Antigen (CLA) is a specialized
glycoform of PSGL-1. CLA is a 240 kDa transmembrane sialomucin with O-linked glycan determinant
sLex [107,108]. CLA is primarily expressed as a homodimer and is responsible for lymphocyte
migration to the skin. CD43E is the 115–135 kDa glycoform of CD43 cell surface glycoprotein that
displays an O-glycan structure with sLex at the end. CD43E is expressed on hematopoietic cells and
exhibits E-selectin binding affinity [104,109].

3.4. L-Selectin Ligands

L-Selectin is the third member of the selectin family that binds to ligands expressed on high
endothelial venules (HEV). The essential feature for L-selectin recognition is the GlcNAc sulfated sLex

epitope (6-sulfo-sLex) being present on biantennary O-glycans of numerous glycoproteins [9,110,111].
The primary physiological ligand for L-selectin is PSGL-1 though the affinity for P-selectin is
considerably higher (KD(P-selectin) = 320 nM [66], versus KD(L-selectin) = 5 µM) [67–69].

Other L-selectin ligands have been recognized on the HEV of peripheral lymph nodes.
These ligands are sialomucins belonging to the family of peripheral node addressins (PNAds), but their
role in binding L-selectin is still not fully understood. A protein backbone of PNAd proteins serves as a
scaffold for posttranslational modifications and the creation of proper glycan determinants. They were
first detected by a monoclonal antibody, MECA-79, which identifies glycoproteins containing the
carbohydrate determinant 6-sulfo sLex on core-1 O-glycans [110]. PNAD mucins are comprised of cell
adhesion molecule-1 (MAdCAM-1), GlyCAM-1 (glycosylation-dependent cell adhesion molecules-1,
Sgp50), CD34 (Sgp90), podoxalin, endomucin, nepmucin, and Spg200 [112]. L-selectin ligands are
glycoproteins with various core-1 or core-2 type O-linked glycans capped with 6-sulfo-sLex.

GlyCAM-1 is a secreted mucin-type glycoprotein from the HEV of peripheral lymph nodes,
which might be responsible for a transduction of signals into leukocytes and is not involved in
leukocyte adhesion [9]. In GlyCAM-1, both arms of the core-2 structure appeared to be sulfated at
position C-6 of GlcNAc [113]. The binding affinity of the interaction of L-selectin with GlyCAM-1 was
estimated [114] to be KD = 108 µM. CD34 (Sp90) is expressed on the cell surface of endothelial cells.
For L-selectin binding, however, CD34 is only properly glycosylated in the HEV [111,115,116]. Though
the binding affinity of CD34 was not determined, it was anticipated that L-selectin binds to CD34 with
similar affinity than to PSGL-1 [117]. CD34 has an extensively O- and N-glycosylated extracellular
domain, a cysteine-containing globular domain, and a juxtamembrane stalk region. The single-pass
transmembrane domains is followed by short cytoplasmic tails containing putative phosphorylation
sites (Figure 5c) [118]. CD34 mediates the initial loose interactions of lymphocytes to HEV [119].
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Another potential L-selectin ligand is mucosal addressin cell adhesion molecule-1 (MAdCAM-1).
MAdCAM-1 is a transmembrane adhesion molecule with a mucin-like region that displays an L-selectin
glycan determinant [120]. MAdCAM-1 supports lymphocyte tethering and rolling through interaction
with L-selectin and the α4β7 integrin. Also, it has been observed that MAdCAM-1 facilitates the
tethering of lymphocyte on the HEV [121,122]. Increased expression of MAdCAM-1 was observed in
patient with active or chronic intestinal inflammatory diseases, which suggested a MAdCAM-1 role in
lymphocyte rolling to the gut [19].

4. Glycosyltransferases Involved in the Biosythesis of Glycan Determinants

Glycan structures found in P-, E-, and L-selectin ligands are the result of the post-translational
modification of protein or lipid scaffolds by the enzymatic process called glycosylation. The glycan
structures of a ligand reflect the presence of functionalizing carbohydrate processing enzymes, such as
glycoside hydrolases and glycosyltransferases. Glycosylation proceeds in a stepwise manner in the
endoplasmic reticulum and Golgi apparatus. The repertoire of biosynthesized glycans is determined
by the expression and specificity of the enzyme. The resulting glycans can be further modified by
carbohydrate-modifying enzymes, including sulfotransferases. There are two main biosynthetic
pathways of glycan synthesis that lead to O-linked and N-linked glycans. Both types of glycans may
contain the terminal tetrasaccharide sLex or sLea, and their modifications that are crucial for selectins
binding. The subsequent action of several glycosyltransferases is responsible for the formation of these
carbohydrate determinants.

Glycosyltransferases utilizing a sugar-nucleotide as the donor are called “Leloir-type”
enzymes. [58,123,124]. Acceptor substrates are carbohydrates, proteins, lipids, DNA, antibiotics,
or other small molecules. Glycosyltransferases exhibit low sequence homology [125]. Amino acid
sequence comparisons led to their classification into 90 families, GT-1 to GT-90 [125,126]. Interestingly,
despite a low homology, GTs exhibit extraordinarily conserved three-dimensional architectures.
Their X-ray structures mainly show two general types of folds, termed GT-A and GT-B [60,61].

The chemistry of the catalytic reaction resembles a nucleophilic displacement reaction, in which
the nucleophilic hydroxyl residue of an acceptor replaces the leaving group at the anomeric carbon C1
of a sugar nucleotide, e.g., a UDP moiety in the case of UDP-GlcNAc. In this glycosylation reaction,
the resulting C1-O bond is oriented either axially or equatorially. Thus, based on the orientation of
the glycosidic linkage, glycosyltransferases were described as either retaining or inverting enzymes
(Figure 6). The structure and catalytic mechanism of GTs were recently reviewed [59–61]. Recent
advances in characterizing the activities of glycosyltransferases and sulfotransferases using knock-out
mice revealed the essential role of several GTs involved in the biosynthesis of carbohydrate determinants
of selectin ligands [5,22].
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4.1. The Glycosyltransferase Polypeptide UDP-GalNAc Transferase

The biosynthesis of O-linked (mucin-type) glycans is initiated by replacing the hydroxyl group of
the serine or threonine on a protein with an N-acetylgalactosaminyl (GalNAc) group. The reaction is
catalyzed by glycosyltransferase polypeptide UDP-GalNAc transferase (ppGalNAcT2) (Figure 7a).
This step is essential for the biosynthesis of carbohydrate determinants. This was demonstrated
by knock-out mice lacking ppGalNAcT2 that exhibited a reduction in lymphocyte homing, rolling,
and the recruitment of leukocytes into inflamed tissue [127]. Therefore, the authors suggested that the
inhibition of ppGalNAcT2 activity might have therapeutic potential for some pathogenic syndromes
involving increased thrombosis, chronic inflammation, and immunological diseases of B lymphocytes.

The enzyme ppGalNAcT2 exists in a large variety of isoforms [128] and the X-ray structures
of human isoform 2 complexed with an acceptor and UDP [129] and isoform 10 complexed with
UDP-GalNAc [130] have been solved. In both isoforms, the catalytic domain adopted a GT-A fold [131].
The ppGalNAcT2 glycosyltransferase behaves as the retaining enzyme, and its function depends on a
divalent manganese ion. An investigation of the catalytic mechanism of the retaining ppGalNAcT2
transferase [132,133] showed that the catalytic reaction of ppGalNAcT2 proceeds as an SNi nucleophilic
substitution. The calculations also determined the transition state structure of the reaction.Molecules 2020, 25, x FOR PEER REVIEW 13 of 64 
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4.2. Glycosyltransferases Core-1 β-1,3-Galactosyltransferase and Core-2 β-1,6-GlcNAc-Transferase

After the addition of a GalNAc residue to a threonine or serine of a protein through α-linkage,
the O-glycan is elongated by a core-1 β-1,3 galactosyltransferase (Core-1 GalT, C1GalT) that forms a
new β-glycosidic linkage of galactose to position 3 of the GalNAc (Figure 7b). The core-1 structure is
further extended by the Golgi enzyme β-1,6-GlcNAc-transferase (Core-2 GnT, C2GnT). C2GnT adds
GlcNAc to the GalNAc of the core-1 structure via a β-(1,6)-linkage and forms the core-2 structure
(Figure 7c). C2GnT is an inverting, metal-ion-independent enzyme. The crystal structures of murine
C2GnT-L in the absence and presence of the acceptor substrate were recently resolved at a resolution
of 2.0 and 2.7 Å and revealed a GT-A fold [134]. Molecular modeling supported a concerted SN2-like
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mechanism in which a nucleophilic attack by O6 and the separation of the leaving group all occur
almost simultaneously [135].

The branching extension of the core-1 structure, which leads to the core-2 type O-glycan, is
required for the biosynthesis of core-2 glycans containing the terminal tetrasaccharide sLex. The C2GnT
knock-out mice [136] showed that the binding of P- and L-selectin to leukocytes was almost entirely
absent, and binding to E-selectin was diminished [137]. These results show that the action C2GnT-I
transferase is important for the biosynthesis of P-selectin ligands, whereas for some E-selectin ligands it
is not critical [138]. It was found that in the core-2 knock-out mice, the binding of P-selectin to PSGL-1
was greatly diminished, and as a result, a reduced rolling of leukocytes was observed. These results
led to the conclusion that the proper functioning of P-selectin ligands require the functioning of the
C2GnT-I enzyme.

In contrast, C2GnT-I only partially influences E-selectin–mediated rolling in vivo [139]. Some
results suggest that there is a competition [140] between C2GnT and sialyltransferase ST6GlcNAc in
the formation of the β-(1,6) linkage on the core-1 structure and as a result the biosynthesis of sLex on a
core-2 glycan is altered. Since in leukocytes the expression of sLex is found exclusively on the core-2
structures, the C2GnT enzyme is a potential target for inhibiting selectin binding to granulocytes.

4.3. Glycosyltransferase β-1,4-Galactosyltransferase-1

The invertingβ-1,4-galactosyltransferase-1 (β4Gal-T1) adds galactose to the terminal GlcNAc of the
core-2 structure via a β-(1–4)-linkage, thus forming N-acetyllactosamine (Figure 8a). This disaccharide
is crucial in the biosynthesis of selectin carbohydrate determinants. The β4Gal-T1 is the Mn2+

transition metal-dependent enzyme, and the crystal structures of the catalytic domain of β4Gal-T1
have been solved both without any substrate and complexed with substrate [141,142]. Based on
the crystal structural data, an ordered sequential mechanism has been proposed for the reaction
catalyzed by β4Gal-T1. A molecular modeling study supported a concerted SN2-type displacement
mechanism [143]. How the β4Gal-T1 affects the selectin ligand activity was investigated using β4Gal-T1
knock-out mice [144,145]. The results showed significantly lower binding of P-selectin to nucleophiles,
which implies a diminished recruitment of leukocytes. An analysis of O-glycan structures revealed a
significantly reduced number of core-2 side branches and supported the role of β4Gal-T1 structures in
P-selectin binding. In contrast, lymphocyte homing was not influenced in the absence of β4Gal-T1
suggesting that the biosynthesis of the L-selectin ligand was not significantly affected.

Molecules 2020, 25, x FOR PEER REVIEW 14 of 64 

 

core-2 structures, the C2GnT enzyme is a potential target for inhibiting selectin binding to 
granulocytes. 

4.3. Glycosyltransferase β-1,4-Galactosyltransferase-1 

The inverting β-1,4-galactosyltransferase-1 (β4Gal-T1) adds galactose to the terminal GlcNAc 
of the core-2 structure via a β-(1–4)-linkage, thus forming N-acetyllactosamine (Figure 8a). This 
disaccharide is crucial in the biosynthesis of selectin carbohydrate determinants. The β4Gal-T1 is 
the Mn2+ transition metal-dependent enzyme, and the crystal structures of the catalytic domain of 
β4Gal-T1 have been solved both without any substrate and complexed with substrate [141,142]. 
Based on the crystal structural data, an ordered sequential mechanism has been proposed for the 
reaction catalyzed by β4Gal-T1. A molecular modeling study supported a concerted SN2-type 
displacement mechanism [143]. How the  β4Gal-T1 affects the selectin ligand activity was 
investigated using  β4Gal-T1 knock-out mice [144,145]. The results showed significantly lower 
binding of P-selectin to nucleophiles, which implies a diminished recruitment of leukocytes. An 
analysis of O-glycan structures revealed a significantly reduced number of core-2 side branches and 
supported the role of  β4Gal-T1 structures in P-selectin binding. In contrast, lymphocyte homing 
was not influenced in the absence of  β4Gal-T1 suggesting that the biosynthesis of the L-selectin 
ligand was not significantly affected. 

 

Figure 8. Schematic diagram of enzymatic reaction catalyzed by (a) β4Gal-T1 and (b) α1,3FucT. 

4.4. Glycosyltransferases α-1,3-Fucosyltransferase and α-2,3-Sialyltransferase 

The biosynthesis of selectin carbohydrate epitopes continues by sequential fucosylation and 
sialylation of N-acetyllactosamine. Fucosylation is carried out by fucosyltransferases (FucTs) that 
catalyze the transfer of the L-fucose residue from the donor guanosine diphosphate β-L-fucose 
(GDP-Fuc) to various saccharides [146–149]. There are six α-1,3-fucosyltransferases (FucT-III, 
FucT-IV, FucT-V FucT-VI, Fuc-TVII, and FucT-IX) involved in the biosynthesis of the Lex antigen 
[146]. Two of them, FucT-III and FucT-V, are also able to form an α-1,4-linkage to GlcNAc and thus 
creating the Lea antigen. The glycosyltransferase α-1,3-FucT is a metal-dependent inverting enzyme 
with a divalent metal cation Mn2+ in the active site (Figure 8b). The X-ray structures of the 
fucosyltransferase α-1,3-Fuc-T from Helicobacter pylori were solved [150]. It has been proposed that 
the catalytic reaction of α-1,3-FucT proceeds via an SN1-like mechanism [150,151]. The role of 

Figure 8. Schematic diagram of enzymatic reaction catalyzed by (a) β4Gal-T1 and (b) α1,3FucT.



Molecules 2020, 25, 2835 14 of 61

4.4. Glycosyltransferases α-1,3-Fucosyltransferase and α-2,3-Sialyltransferase

The biosynthesis of selectin carbohydrate epitopes continues by sequential fucosylation and
sialylation of N-acetyllactosamine. Fucosylation is carried out by fucosyltransferases (FucTs) that
catalyze the transfer of the l-fucose residue from the donor guanosine diphosphateβ-l-fucose (GDP-Fuc)
to various saccharides [146–149]. There are six α-1,3-fucosyltransferases (FucT-III, FucT-IV, FucT-V
FucT-VI, Fuc-TVII, and FucT-IX) involved in the biosynthesis of the Lex antigen [146]. Two of them,
FucT-III and FucT-V, are also able to form an α-1,4-linkage to GlcNAc and thus creating the Lea antigen.
The glycosyltransferase α-1,3-FucT is a metal-dependent inverting enzyme with a divalent metal cation
Mn2+ in the active site (Figure 8b). The X-ray structures of the fucosyltransferase α-1,3-Fuc-T from
Helicobacter pylori were solved [150]. It has been proposed that the catalytic reaction of α-1,3-FucT
proceeds via an SN1-like mechanism [150,151]. The role of α-1,3-FucT has been illustrated by FucT-VII
knock-out mice that showed the abnormality of leukocyte extravasation during inflammation [152,153].

The biosynthesis of tetrasaccharide epitopes (sLex and sLea) is completed by adding
N-acetylneuramic acid (Neu5Ac, sialic acid) to a trisaccharide Lex or Lea by a sialyltransferase
(ST) ST3 (Figure 9a). Sialyltransferases are grouped based on the acceptor position to which
Neu5Ac is attached. This position is either α-2,3 (ST3), α-2,6 (ST6) or α-2,8 (ST8) leading
to an α-glycosidic bond between the C2 atom of Neu5Ac and the 3′-, 6′-, or 8′-hydroxyl
group of the acceptor, respectively [154,155]. Also, an acceptor saccharide is specified (e.g.,
ST3Gal-1, ST3Gal-2, etc.). STs operate as inverting glycosyltransferases, likely utilizing an SN2-like
direct displacement mechanism [156]. The ST3Gal-1 enzyme transfers Neu5Ac from the donor
cytidine-5′-monophospho-N-acyl-neuraminic acid (CMP-Neu5Ac) to the acceptor, which is O3 of a
terminal galactose on Lex or Lea. The crystal structures of the ST3Gal-1 and ST6Gal-1 have been solved
recently [157–159] without the metal cation in the active site, supporting the proposal that the activity
of STs does not depend on metal ions.
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Knock-out ST3Gal-4 mice were generated to investigate the influence of the sialylation of a Lewis
epitope on selectin ligand function [160]. The binding experiment revealed a decreased affinity of P-,
E-, and L-selectin to leukocytes with knock-out ST3Gal. For example, L-selectin-dependent rolling was
eliminated by removing ST3Gal-4. Interestingly, leukocytes rolling in Peyer’s patch HEV, which is
mediated by unknown endothelial L-selectin ligands, was not reduced in the absence of ST3Gal-4.
These results showed that PSGL-1 binding depends on ST3Gal-4, while ST3Gal-4 is not required for
L-selectin ligand activity on high endothelial cells of Peyer’s patch HEV. Studies of ST3Gal knock-out
mice showed an increased expression of core-2 decorated O-glycans with an increased binding of
selectins to their ligands, suggesting that both Core-2 GnT and ST3Gal compete for the same acceptor
substrate [161].

4.5. Sulfotransferases GlcNAc-6-Sulfotransferase and Tyrosylprotein Sulfotransferase

Sulfotransferases play an important role in the biosynthesis of selectin ligands [113,162–164].
An analysis of L-selectin ligand activities revealed [56] that optimal binding requires the sulfation of
GlcNAc at carbon C6. Thus, an optimal ligand for L-selectin to mediate leukocyte rolling is 6-sulfo sLex

and not just sLex. The sulfation of GlcNAc is carried out by the enzyme GlcNAc-6-sulfotransferase
(GlcNAc6ST) that transfers a sulfuryl group from the donor 3′-phosphoadenosine 5′-phosphosulfate
(PAPS) to the GlcNAc of sLex (Figure 9b). The crystal structure of the Golgi resident enzyme GlcNAc6ST
is not solved yet. However, a comparison of sequences of GlcNAc6ST with the known crystal structures
indicated a similar structure of the catalytic site [165,166]. Recently, it has been shown that double
knock-out (GlcNAc6ST-1 and GlcNAc6ST-2) mice eliminated leukocyte homing [167,168].

It is well established that the sulfation of tyrosine residues at the N-terminal of PSGL-1 increases the
binding affinity of PSGL-1 to P- and L-selectin considerably [169,170]. Tyrosine sulfation is catalyzed by
the Golgi enzyme called tyrosylprotein sulfotransferases (TpsT1 and TpsT2). The enzymes utilize PAPS
as the donor (Figure 9c), and the structure of human TpsT2 complexed with a substrate peptide has
been solved recently at a resolution of 1.9 Å [171]. Structural analysis implied an SN2-like mechanism
that was supported by the results of molecular modeling [172]. Activity studies of PSGL-1 revealed
that both isomeric forms of TpsT contribute equally to the proper function of PSGL-1 [173,174].

5. The Biological Role of Selectins

The adhesion of selectins to other cells or matrix components is mediated by interaction with
their counter-receptors. The selectin binding interactions play a pivotal role in the many normal
physiological processes and mediate the adhesion of leukocytes to endothelium, which is followed by
their extravasation to the site of inflammation or injury to resolve infections and heal wounds [7,9,16,175].

Although selectins are often considered to be benign, it has been shown that selectins play a
detrimental role in various acute and chronic inflammatory diseases [10–12]. It was observed that
elevated levels of selectins often correlate with the severity of inflammatory diseases, including asthma
and chronic obstructive pulmonary disease (COPD) [176,177], psoriasis [178–180], thrombosis [181],
or arthritis [182]. The aberrant homing of leukocytes into endothelial cells mediated by P- and
E-selectins plays a crucial role in atherosclerosis [183]. The role of selectins in this chronic inflammatory
disease was supported by mouse experiments that showed substantially lower levels of atherosclerotic
plaques in P- and E-selectin-deficient mice [184,185]. Upregulated P- and E-selectin expression observed
in rheumatoid arthritis [186,187], multiple sclerosis [188], and type 1 diabetes [189] suggested their
roles in the pathology of inflammatory diseases.

Moreover, selectin-ligand interactions have been associated with tumor progression and
metastasis [14,17,21,190,191]. Recent experimental data support the idea that tumor cells exploit
the tethering and rolling adhesion cascade employed by leukocytes to migrate through the vasculature
into a particular tissue required by infection or injury [13,14,192].
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5.1. Selectins in Inflammatory Processes

Selectins are involved in leukocyte emigration from the bloodstream into tissues through multiple
sequential molecular interactions (often referred to as the multi-step paradigm), including the tethering
and rolling interaction of leukocytes on the surface of the activated endothelium, leukocyte activation,
immobilization, and endothelial transmigration (Figure 10) [192–194]. It is noteworthy that all these
molecular interactions occur in the bloodstream under fluid shear stress. In the first step of the
inflammatory response, the circulating leukocytes in flowing blood interact with (tether to) vascular
surfaces, overcome the shear forces and adhere to the endothelial surface. Then repeated rolling
interactions reduce cell speeds on the surface below that of flowing blood [16,195,196]. There appears
to be a correlation between the shear stress of the fluid and reversible interactions (adhesive slip
and catch bonds) between rolling cells and surface [16]. Slow rolling cells decrease the distances
between cells and the surface and bring them closer to another antagonist. As a result, this kind of
signaling (chemokines, cytokines, etc.) activates the upregulation of integrins, which is necessary for
firm adhesion and finally transmigration.
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Figure 10. The leukocyte adhesion cascade and circulating tumor cells tethering, rolling, and firm
adhesion on the endothelium share many paradigms. Most of the selectin ligands on leukocytes except
L-selectin are also present on cancer cells. Recently, novel ligands on cancer cells have been observed to
facilitate selectin-mediated rolling on the endothelium Reprinted with permission from [197]; copyright:
Springer 2012.

The initial interactions of tethering and rolling of leukocytes are mainly dependent on the
interaction of endothelial P- and E-selectin and their principal ligand PSGL-1. The L-selectin is
primarily involved during the later phase, where binding with PSGL-1 facilitates interactions between
leukocytes and thus leads to an increased level of leukocytes at the inflammation site [198–200].
The E-selectin has been shown to act as a mediator for the adhesion cascade mechanism and was found
to be responsible for an increase in the adhesion of isolated blood neutrophils in the inflammation
process [201,202]. The significant role of E-selectin was described through their interaction with
ligands such as ESL-1 or CD44 [203,204]. The binding of E-selectin with ESL-1 plays a key role in
changing initial tethering into slower rolling, whereas the binding of CD44 affects rolling speed [93].
These interactions change the rolling of the circulating cells to stable adhesion that is also facilitated
by interactions with other adhesion molecules, including integrins [205]. They also regulate selective
migration; for example, naive T cells preferentially migrate into lymph nodes through the interaction
of L-selectin and cells on HEV [196].
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5.2. Mechanism of Selectin-Ligand Interaction

The tethering and rolling of leukocytes along the endothelium to the site of infection or
injury requires a rapid turnover of reversible interactions between selectins and their ligands.
The lectin-ligands adhesive interactions, which have been reviewed in detail [194,206,207], are specific
since they occur under various shear stresses in blood flow and the motion of molecules is restricted
to a two-dimensional space. The tethering and rolling also require the rapid formation (defined as
the on-rate, kon) and dissociation (defined as off-rate, koff) of adhesive complexes, called “bonds”.
The binding affinity constant KD of the selectin-ligand complex is the ratio of the kon to the koff that
characterizes the association and dissociation of the selectin-ligand bonds (complexes). Bond formation
between the selectin and ligand involves many non-covalent interactions that include electrostatic
interactions, hydrogen bonds, and van der Waals interactions. The strength of the non-covalent
interactions between selectins and their ligands determines the extent of the binding affinity. It has
been shown that a threshold shear is required by selectins for the tethering and rolling [208–210],
and that shear of the blood flow affects the lifetime of these interactions mainly by altering their
off-rates [211]. Only a few leukocytes tether and roll at shear stress below a certain threshold; when the
shear stress increases, the number of tethering and rolling leukocytes increases until a maximum is
reached, then any further increase in shear causes a lower number of rolling leukocytes [209,210]. Thus,
the dissociation rates of selectin-ligand interactions on vascular surfaces are affected by the imposed
shear forces.

The rolling behaviors of leukocytes on P-, L-, and E-selectins substrates differ as a result of the
different kinetic properties of the interacting molecules. Various experiments have been performed
to estimate the affinity (KD) and off-rates (koff) of selectin-ligand interactions [194,206]. Dynamic
rolling assays showed that the L-selectin mediated rolling of polymorphonuclear leukocytes (PMNs) is
5–10 times faster than on P-selectin, and 8–11.5 times faster than on E-selectin substrates [208,212,213].
This was further supported by studies using knock-out mice [199,214]. Intuitively, leukocyte tethering
and rolling requires rapid on- and off-rates, and based on single-molecule force spectra it was
suggested that a higher koff, as well as a higher susceptibility for complex dissociation, are reasons
for the faster rolling of PMNs over L-selectin compared to P- and E selectin [215]. The zero-force koff

measured for the dissociation of PSGL-1 from P-selectin was determined to be from 0.55 s−1 to 2.68 s−1

depending on the method [66,216–219]. The dissociation of PSGL-1 from L-selectin was characterized
by koff ≥ 10 s−1 [66,114], whereas for E-selectin, koff = 4.6 s−1 was estimated [52,219]. These values are
significantly higher than the values from single-molecule force spectroscopy, where 0.85 s−1, 0.31 s−1,
and 0.22 s−1 values of koff were estimated for L-, E-, and P-selectin interactions with PMNs [215].

Two kinetic models have been suggested for dissociation. In the slip-bond model, the lifetime of
the interaction (bond) decreases, and the dissociation increases with the application of force as the result
of the reduced energy barrier between the bound and free states [220]. In the alternative catch-bond
model, dissociation decreases, and the lifetime of the bound state increases as a result of the deformation
of the molecules that then bind more tightly [221]. The stabilization of the selectin-ligand complex by
external force in the catch bond model is a unique and exciting phenomenon. The first measurements
of P-selectin interactions with PSGL-1 using video microscopy [170,208,211] observed only slip bonds.
The high applied forces were likely reasons for the failure of these studies to detect catch bonds.
The use of atomic force microscopy, biomembrane force probes, and flow chamber experiments under
a low external force led to the observation of catch-bonds [222–225]. Thus, selectin-ligand interactions
follow a biphasic behavior under force, first decreasing dissociation (catch-bond) until a maximal
lifetime is achieved and then increasing dissociation (slip-bond) with increasing force. Interestingly,
for selectin-antibody interactions, only slip bonds were observed under force [222,223].

Based on the determined crystal structures of the P-selectin complexed with sLex and PSGL-1 [36],
two major models were suggested for selectin-ligand catch bonds. Both models are based on the
equilibrium of two selectin conformations, the extended high-affinity and bent conformation observed
by crystallography [36]. In the allosteric model [226,227], the force alters the conformational equilibrium
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of two conformations of the selectin-ligand complex in favor of the extended high-affinity conformation.
Thus, the force operating on the selectin-ligand complex acts as an allosteric effector and increases the
ratio of the extended conformation. As the selectin extended conformation has a higher affinity to the
ligand than the bent conformation, this results in an elongation of the complex lifetime and decrease in
the complex dissociation represented by koff.

The sliding-rebinding model [225,228] was proposed based on molecular dynamic and Monte
Carlo simulations of selectin-ligand complexes determined by crystallography [36]. The conformational
behaviors of these complexes were investigated without the presence of a force. Also, the role of
the force on the dissociation of selectin-ligand complexes and their conformational change was
explored. The proposed sliding-rebinding model for catch bonds is the two-pathway model. In the
sliding-rebinding model, various stable conformations are in equilibrium mixture, in which the
stability of conformers and their transition from one conformer to another are controlled by an external
force. In the absence of the force the bend conformer is most stable, while under force the extended
conformer predominates. At low force, the bend conformer that predominates can dissociate along a
fast pathway with a short lifetime and without much sliding and rebuilding, or slide into the extended
conformer. At higher force, a conformational equilibrium is shifted towards extended conformation
that helps sliding.

In the extended conformation, some interactions are broken, and new interactions are formed,
or the original interactions are regenerated. This would move the complex back to the bent conformation
and then to dissociation, thus slowing dissociation and extending the lifetime. The prolonged complex
lifetime is characteristic for catch bonds. In the extended form, a further increase in the force
decreases the transition barrier, which accelerates dissociation and the change from catch-bonds back
to slip-bonds [228]. The steered molecular dynamic simulation [229] described the slip-catch model at
the atomistic level. Simulations supported the sliding-rebinding mechanism and revealed that the
properties of the calcium-binding site might be responsible for this behavior. There are experimental data
that support both the allosteric and sliding-rebinding catch mechanism. It is likely that either model or
another possible mechanism might be used by selectins depending on the structural circumstances.

5.3. Selectins in Hemostasis and Thrombosis

Although selectins are mainly considered to be adhesion molecules supporting leukocyte
recruitment in inflammatory processes, studies over the past few decades have revealed their role in
hemostasis and thrombosis [230–233]. It was found that platelet rolling on the activated endothelium,
similar to the rolling of leukocytes, is mediated by the interactions of P-selectin with its ligand
PSGL-1 [234]. The role of P-selectin in blood coagulation and thrombosis has been shown by in vivo
experiments in baboon [235]. The investigated kinetics of thrombus formation in the arteriovenous
model of thrombosis revealed that anti-P-selectins antibodies significantly block fibrin formation in
the developing thrombus. P-selectin induces the activation of platelets and the adhesion of certain
leukocytes to the vascular endothelial cells [236] and also upregulate tissues factor generation in
monocytes. P-selectin also initiates signaling pathways in leukocytes and subsequently activates the
elaboration of cytokines through a mechanism that involves the binding of P-selectin with its receptor
PSGL-1 [237,238].

The binding of P-selectin with the PSGL-1 ligand also stimulates the formation of procoagulant
microparticles that deliver the tissue factor to the developing thrombus [239,240]. A proteolytic cleaving
of the extracellular domain of P-selectin generates a soluble form of P-selectin [241] that is secreted in
plasma and also plays an important role in hemostasis [233,242]. The glycosphingolipids sulfatides
that are P-selectin ligands were found to be involved in platelet aggregation [243].

The leukocytes and platelets are released together from the same organelle, and their interaction
is mediated by P-selectin. An ample evidence indicates an interconnection between inflammation,
coagulation, and cancer metastasis with P-selectin as a key molecule assisting this physiological
interplay [11]. Taking together, the experimental data accumulated so far revealed three roles that
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P-selectin performs in hemostasis. First, the binding of P-selectin expressed on activated platelets and
endothelial cells to their PSGL-1 ligand mediates platelet rolling. Thus, P-selectin starts a cascade of
events in which platelets can more efficiently contribute to the development of the plug at the site of
injury [231]. Second, P-selectin cleaved from activated platelets or endothelial cells either in a soluble
form or on a microparticle interacts with PSGL-1 on the leukocyte and induce procoagulant microparticle
generation containing a tissue factor [244]. Third, the interactions of P-selectin on activated platelets in
thrombi with PSGL-1 on the microparticles facilitate the recruitment of procoagulant microparticles to
the thrombus. The latter two functions lead to increased thrombin generation and, consequently fibrin
deposition at the site of injury [231].

Several in vivo studies were carried out to explore the possible function of P-selectins
in the pathogenesis of thrombosis using genetically modified animals that were deficient in
P-selectins [245,246]. The results show that there were significantly lower thrombus weights in
genetically modified animals, whereas wild types showed that a high circulating concentration of
P-selectins caused larger thrombi. Elevated levels of sP-selectin were found in disorders associated
with arterial thrombosis [242,247–249].

The clotting system is one of the major components that play a key role in thrombosis; the changes
or abnormality of this clotting system in both anticoagulant and procoagulant systems leads to the
risk of deep vein thrombosis. In this process, sP-selectin mediates the initial tethering of leukocytes
and activated platelets with the endothelial cells as well as interactions with leukocytes and other
platelets [181,233,243,250]. The expression of the P-selectin also influences the interrelationship between
deep vein thrombosis and vein wall inflammatory response [251]. Interestingly, experimental data
indicate that sP-selectin has the potential to be used as a predictive marker for future cardiovascular
events [252,253]. In healthy humans, sP-selectin circulates at a concentration of about 100 ng/mL and its
higher levels in the absence of injury might reflect vascular or thrombotic diseases due to its procoagulant
activity [254]. For example, sP-selectin levels were found to be elevated in patients with atherosclerosis,
hypertension, hyperlipidemia, myocardial infarction, and postangioplasty restenosis [255].

5.4. Selectins in Cancer

In the previous section, we discussed the role of P-, E-, and L-selectin in binding circulated
leukocytes to the endothelium during the inflammatory response. Sufficient data supports the
proposal that selectins also regulate the interactions of circulating cancer cells with endothelial
cells [13,14,17,21,256,257]. Although millions of primary tumors cells intravasate into blood, only a
small number of metastases develop. The process, in which cancer cells form metastases in distant
organs, is not clearly understood. However, the cancer cells have to complete several consecutive
steps: detachment from the primary tumor, intravasation into blood, circulation, and adhesion to
endothelium, extravasation, initial seeding, and proliferation in the target tissue [258,259]. A cancer
cell can only metastasize when all these phases have been completed [260]. Cancer cells interactions
with leukocytes, platelets, and endothelial cells seem to be crucial for the creation of metastasis.
Although cancer metastasis is not entirely understood, there is accumulating experimental evidence
suggesting that the cancer cells during the metastatic cascade (Figure 10) use similar mechanisms that
are employed by leukocytes in the inflammatory cascade [197,261–263].

Cancer cells exhibit aberrant glycosylation, and several alterations of glycan structures
correlate with cancer progression [264–268]. The altered glycan structures vary depending on
the cancer-type, but for N-linked glycans, they also contain antigens sLex, sLea, polylactosamine
chains, β-(1–6)-branching, and their modifications. For mucin-type O-glycans, the presence of
the core-1 and core-2 structures with tetrasaccharides sLex and sLea is enhanced on the cell
surface. This enhanced expression is frequently associated with poor prognosis in various
cancers [17,269,270]. The selectin-ligand interactions participate in the interactions of cancer cells
with platelets and leukocytes, in interactions with endothelial cells, and as signal-transducing
molecules [17]. Thus, selectins facilitate the spreading of tumor cells in blood and blocks the
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microvasculature by mediating specific interactions between the selectin-expressing host cell and the
ligand on tumor cells [261].

The direct participation of P-selectins in the metastasis process was noticed with significant
inhibition of the lung metastasis in P-selectin-deficient mice compared to wild-type controls [271,272].
It was suggested that P-selectin plays a decisive role in the interactions of cancer cells with platelets,
thus facilitating adhesion to the endothelium and promoting metastasis. The interaction of P-selectin on
activated platelets with its ligand on cancer cells leads to the formation of a platelet-rich thrombus around
cancer cells that protects the cell and significantly stimulates the metastatic process [257,258,271,273,274].
In the P-selectin deficient mice, platelet-tumor cell interactions are diminished, and the thrombus was
not formed [257,271,272]. Recently, flow-based cell adhesion experiments [275] showed a different
influence of P- and E-selectin on the rolling adhesion of metastatic and leukocyte cells. These results
revealed that metastatic but not leukocyte cells exhibit a diminished persistence of rolling adhesion
in the presence of P-selectin, but no difference between cell subtypes was found with E-selectin.
This finding suggests P-selectin interactions with cancer cells to be a potential target for cancer therapy.

Besides being a major adhesion receptor for leukocytes expressed on endothelial cells, E-selectin
has been shown to engage in cancer metastasis [269,276,277]. The expression of E-selectin in cancer
progression and metastasis has been described in several types of cancer including breast [278,279],
lung [280,281], prostate cancer [282], and colorectal cancer [103].

In several animal models, E-selectin was found to enhance cancer metastasis. For example,
in metastasis of the liver, an increased expression of the E-selectin was observed, whereas the
down-regulation of E-selectin resulted in the reduction of metastasis [283,284]. However, in E-selectin
deficient mice, the lung metastasis of colon cancer remained unaffected [285]. In contrast, the metastasis
of breast cancer cells was decreased in E-selectin knock-out mice [286]. Recently, it was shown that
E-selectin mediates breast cancer stem cell homing in bone marrow. This underlined the essential role
of E-selectin in breast cancer metastatic relapse that can occur years after therapy [287].

In an early stage of cancer progress, cancer cells produce inflammatory cytokines that stimulate
the considerable expression of E-selectin [276]. In this process, E-selectins are act as a mediator of the
adhesion cascade. With disseminated cancer cells, tissue migration at distal organs is regulated through
an E-selectin-dependent adhesion mechanism in which cancer cells express E-selectin ligands on their
surface to make initial contact with the vascular endothelium. For example, CD44v4 is an E-selectin
ligand expressed in metastatic breast cancer. CD44v4 regulates the interaction of the cancer cell with
endothelial cells via E-selectin to facilitate the transendothelial migration of the cancer cell [284,288].

Various cancer cells express molecules that interact with L-selectin and may, therefore, mediate
metastasis. Experiments with L-selectin-deficient mice showed a decrease in metastasis and confirmed
the role of L-selectin in metastasis [289,290]. Moreover, the synergetic effect on a decrease in metastasis
by P- and L-selectin double knock-out mice was observed [291], thus further supporting the active role
of both selectins in metastasis. In the tumor microenvironment, key components are inflammatory
cells that produce pro-inflammatory cytokines that up-regulate selection expression. The recruitment
of leukocytes by L-selectins to activated endothelial cells may be potential way to enhance metastasis.
The tumor microenvironment is affected by the presence of inflammatory cells, and their increased level
usually correlates with primary tumor growth as well as metastasis [292,293]. It was reported that the
formation of a permissive microenvironment and pre-metastatic niche are crucial for the establishment
of metastases and are responsible for circulating cancer cells being able to colonize distant organs.
Selectins and their respective ligands also contribute to maintaining the shape of the pre-metastatic
niche [294–296].

Selectins perform a dual role in cancer. While selectins mediate metastasis by using the
inflammatory cascade and participating in the shape of the tumor microenvironment, they also
contribute to recognizing and killing tumor cells [3,18,191]. To target cancer cells, the immune system
generates T cell responses that identify and eliminate cellular alterations that are characteristic for
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a given cancer. The effective destroying of cancer cells proceeds in several steps, known as the
cancer-immunity cycle, and selectins are indicated in the infiltration of T cells into tumor sites [191].

5.5. Signaling Functions of Selectins and Selectin Ligands

In addition to their role as initiators of the adhesion events in physiological and pathological
processes, selectin and selectin ligands also operate as signal transducers [16,261,297,298]. The signaling
mediated by selectins was first supported by myeloid cell adhesion to P-selectin on an endothelial
cell in vitro [238,272,299,300]. Several studies imply that selectins trigger signals that modulate β2
integrin functions and mediate slow rolling of neutrophils [301]. The interaction of P-selectins with
PSGL-1 and E-selectins with PSGL-1 or CD44 trigger the neutrophil signaling cascade that involves
the activation of tyrosine kinases and recruitment of an adaptor leading to a change in integrin
conformation [302]. The interaction of platelets with PSGL-1 on myeloid cells initiates the signaling
through the selectin molecule [303]. Interacting platelets and myeloid cells are in contact with various
mediators, and platelets express some chemokines that activate integrins and induce the expression of
other mediators in myeloid cells [238]. In vitro experiments helped to understand the roles of selectin
in signal transduction that influence cell migration as well as the activation of other adhesion molecules
including integrins. However, they are not yet fully understood. Specifically, selectin-mediated
signaling in vivo, where other mediators are present, remains to be clarified.

6. The inhibition of Selectin-Ligand Interactions

Numerous studies, including both in vitro and in vivo models, have demonstrated the essential
role of selectins in various physiological processes and also reported the significant body of information
on numerous inflammatory diseases and cancer. As a result, the selectins and selectin ligands represent
a promising therapeutic target for the treatment of diseases, such as acute or chronic inflammatory
diseases or metastatic cancer. Different types of strategies have been used to inhibit selection functions.
The approaches include the modulation of selectin-ligand interaction, selectin expression, alteration of
the biosynthesis of selectin ligands, and cleaving the selectin ligand [11,20,256,304,305].

6.1. Inhibition of the Expression of Selectins

Selectin’s functions can be disrupted by inhibiting their expression. This approach was used to
alter the progression of inflammation processes. Several compounds were patented for the treatment
of inflammatory diseases and cancer by inhibiting the expression of selectins via various pathways
and with differing success. Here we mention three agents that are widely used for the treatment of
inflammation and cancer, namely dexamethasone, aceclofenac, and lovastatin (Figure 11). It is claimed
that inhibition of the expression of selectins contribute to the mechanism of action of these agents.

Dexamethasone is a synthetic corticosteroid and is used to treat many inflammatory, autoimmune
conditions and cancer. Dexamethasone was developed by Merck in 1957 [306] and was approved
for medical use in 1961. The molecular mechanism of dexamethasone’s action was investigated in
porcine aortic endothelial cells [307]. The authors observed that in the presence of dexamethasone,
the E-selectin expression induced by proinflammatory stimuli is reduced markedly and identified
nuclear factor-kappaB as the primary target for corticosteroid-mediated E-selectin repression.

Aceclofenac is a nonsteroidal anti-inflammatory drug (NSAID) that has a fast and potent effect
on the expression of cell adhesion molecules. Aceclofenac was developed in 1991 to improve the
gastrointestinal tolerability of diclofenac [308] and is used for the treatment of chronic inflammatory
conditions such as osteoarthritis, rheumatoid arthritis, and in pain management [309,310]. In vitro
adhesion assays using flow cytometry showed that aceclofenac caused a dramatic decrease in L-selectin
expression and significantly reduced the L-selectin dependent neutrophil adhesion to endothelial
cells [311].
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involved in the inhibition of selectin expression.

Lovastatin belongs to a group of drugs known as statins that are inhibitors of
3-hydroxy-3-methylglutaryl-coenzyme A reductase. Lovastatin was discovered in the late 1970s
at Merck Research Laboratories (Kenilworth, NJ, USA) and is a natural compound obtainable,
for example, from red rice [312] or Pu-erh tea [313]. Lovastatin is a prodrug and is widely used as
a cholesterol-lowering drug and for the treatment of cardiovascular disease. Several studies have
suggested anti-tumor and immunomodulatory properties of lovastatin [314,315]. It was found that
lovastatin decreases the expression of E-selectin [316]. It was also shown that lovastatin reduces
inflammatory and fibrotic response in a mouse model [317].

6.2. Glycomimetic Inhibitors

The inhibition of selectin-ligand interactions as a tool for altering selectin activity is, without a
doubt, the most commonly employed approach. Different types of strategies were used to design
selectin antagonists, including carbohydrates, glycomimetics, non-carbohydrate small molecules,
macromolecules, peptides, monoclonal antibodies, and DNA-aptamers. These efforts were reviewed
recently [11,20,256,304,305,318–324].

The tetrasaccharides sLex, sLea, and 6-sulfo-sLex have been identified as the minimal structural
determinants recognized by CRD of all three selectins. The design of carbohydrate analogs of sLex with
improved potency appeared to be challenging. Indeed, the synthesized analog of sLex, pentasaccharide
celexin (CY-1053) (Figure 12b), though useful in blocking selectins, has pharmacokinetics parameters
that are unsuitable for a drug candidate [321]. The likely reasons were the low metabolic stability and
the rapid clearance of carbohydrates. An additional reason may be the weak binding interactions
of sugars with proteins, including selectins. The KD values are usually in the millimolar range,
and as a result, native ligands are quickly replaced by bulk solvent, influencing residence time.
Glycomimetics, chemically modified analogs of carbohydrates, have been used to overcome these
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problems. The main goal of glycomimetics is to improve drug-like properties, increase selectivity and
potency, and enhance stability compared to native sLex. Numerous studies focused on the development
of orally-administrated, potent, low molecular weight selectin antagonists.

Various strategies were used, including the replacement of an endo- or exo-oxygen atom
with another atom, the replacement of functional groups, replacement of a glycosidic bond with a
non-glycosidic bond, replacement of a sugar ring with an acyclic linker, utilizing the region near
the binding site to increase potency, or improving the binding affinity by using a multivalency
concept. Sialic acid bearing an anionic carboxylate group is another complicating factor in designing
glycomimetics, and was often replaced with sulfate or phosphate [20,318,319,325]. The rational design
of a glycomimetic requires an understanding of the interactions between the carbohydrate determinant
(sLex, sLea, and 6-sulfo-sLex) and selectin.Molecules 2020, 25, x FOR PEER REVIEW 24 of 64 
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Experimental and molecular modeling methods can be used as tools to identify essential
interactions responsible for the specificity and potency of natural ligands. The recently determined
crystal structures of sLex-selectin complexes [34–36] together with the NMR determined [42,44,57]
bound conformation of sLex provided this information (Figure 12a). Many medicinal studies focused
on the design of selectin antagonists using bioactive conformation of sLex as a guide. Numerous
glycomimetics were synthesized containing one, two or three monosaccharides residues (see examples
in Figure 12), the most potent small-molecule inhibitors having activities in the low micromolar
range [20,304,319,327,330–342].

Studies of sLex analogs showed that crucial interactions for binding, from an inhibitor standpoint,
are provided by fucose and galactose residues of sLex, while the primary function of the GlcNAc
residue seems to be properly orienting the fucose and galactose residue (Figure 12a). Similarly, it was
shown that sialic acid had little effect on the binding to E-selectin [48,343]. Thus, it was suggested to
replace the GlcNAc residue with an acyclic tether with defined conformational bias [344], which led
to the design and synthesis of selectin antagonists that exhibited the required activity both in vitro
and in vivo [345]. Recently, several E-selectin inhibitors that have potential for anti-inflammatory
drug development were designed with an approach that targets neighboring regions of the binding
site [346]. The authors used a fragment-based screening using NMR to identify fragments that interact
with sites surrounding the CRD of E-selectin and prepared several compounds by connecting an sLex

mimetic via a triazole linker to the second-site ligand exhibiting nM binding affinity.
Carbohydrate-lectin interactions are characterized as multivalent interactions [64]. Different types

of multivalent glycoconjugates bearing sLex or their analogs were prepared to mimic the multivalent
arrangement of natural selectin ligands. They exhibited a considerably higher inhibition of selectins
than their monomeric derivatives [347–349]. Numerous synthetic approaches were designed to produce
glyco-clusters [64] with promising results, exhibiting nanomolar inhibitory activity against P- and
L-selectin [350–352]. Unfortunately, despite a high potency, these multivalent compounds do not have
drug-like properties and its remains to be seen whether they can be developed as oral drugs.

6.3. Macromolecular Inhibitors

Another group of selectin inhibitors of carbohydrate origin consists of negatively charged
polysaccharides, and a wide range of sulfated polysaccharides (Figure 13) have been described
to modulate the activity of selectins. Heparin and its derivatives [353] that have been used for
years as anticoagulants have been shown to intervene with selectin-ligand interactions exhibiting
anti-inflammatory and anti-metastatic activity [257,354]. Experiments with P- and L-selectin mice
indicated that heparin attenuates metastasis by inhibiting P- and L-selectin [272].

It is noteworthy that heparin does not seem to influence E-selectin [355]. Also, the effect of heparin
in various inflammatory conditions has been investigated in clinical trials with different results [11].
Other poly-anionic polysaccharides have also been investigated as selectin inhibitors. These include
dermatan sulfate, which exhibits inhibitory activity against P- and L-selectin [356]. A similar activity
has been observed for chondroitin sulfate [357] and sulfated chitosan [358].

Recently, fucoidan, a natural sulfated polysaccharide with a backbone structure formed of sulfated
α-L-fucose, gained attention for its selectin binding properties [359–361]. The anti-cancer properties of
fucoidan were investigated for a variety of cancers [360,362]. It has been shown that P- and L-selectin
inhibition by fucoidan interferes with tumor cell-platelet interaction [363]. Surface plasmon resonance
was used to estimate the binding properties of low-molecular-weight fucoidan, heparin, and dextran
sulfate. The results revealed that the inhibitory activity IC50 of fucoidan was 20 nM compared to
400 nM for heparin and <25 000 nM for dextran sulfate [364]. The authors also found that heparin and
dextran sulfate exhibit dissociation constant two orders of magnitude greater than the KD = 1.2 nM
for fucoidan. Though fucoidan has promising therapeutic potential in cancer treatment, its structural
variety and limited knowledge about its properties will require further studies [359].
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Monoclonal antibodies (mAbs) that bind to a selectin determinant were used in many experiments
studying inflammatory diseases by recognizing surface-expressed P-selectin [365] and were the
first meaningful P-selectin inhibitors. However, the pharmacokinetic properties of mAbs and their
specificity limit their use as therapeutics. For example, the E-selectin monoclonal antibody CDP 850
developed by CELLTECH for treating psoriasis, though well-tolerated, did not possess a therapeutic
effect [366] and its Phase-II clinical trial was discontinued.

Recently, an application of nanoparticles for drug delivery has been extensively investigated [367,
368], and the specific expression of P- and E-selectins on the surface of endothelial cells make them
outstanding targets for the nanoscale targeted delivery of drugs. Therefore, P- and E-selectin were
explored for the site-selective delivery of therapeutic agents to an activated endothelium, and some
studies have showed the efficacy of targeting P- and E-selectin in inflammation and cancer. Various
liposomes conjugated with mAb H18/7 that recognize E-selectin were used to deliver both fluorescent
probes and toxic compounds to activated HUVECs [369]. The results indicated the potential of this
approach in the treatment of various cardiovascular diseases. In another study, it was observed
that polyethylene glycol (PEG)-derived lipids conjugated with mAbs were able to reach and bind
E-selectin in vitro, both in static and dynamic conditions and suggested that they can be used as
a drug delivery system [370]. Polymeric microspheres functionalized with different carbohydrate
ligands for selectins were used to mimic P- and E-selectin-mediated rolling [367] and have potential for
targeted drug delivery. Different chemotherapeutic drugs, including paclitaxel and doxorubicin, were
encapsulated in a nanoparticle based on the polysaccharide fucoidan to target tumors via P-selectin
interactions [368]. The nanoparticles improved drug delivery in both primary and metastatic models
and exhibit extraordinary efficacy.



Molecules 2020, 25, 2835 26 of 61

6.4. Non-Carbohydrate Inhibitors

Although carbohydrate-based inhibitors mimic the essential binding motifs of sLex,
their pharmacokinetic properties are usually not suitable for drug development, because their
potency is only moderate and they are often challenging to synthesize. As a result, there has been
considerable effort to utilize different scaffolds, and non-carbohydrate inhibitors represent an attractive
alternative exhibiting better pharmacokinetic profile. The high throughput screening of a novel series
of synthesized imidazole-based compounds was used to discover the potency of non-carbohydrate
small molecule inhibitors with anti-inflammatory activity [371]. This procedure led to an inhibitor with
significantly enhanced potency, from IC50 = 17 µM for an original lead to IC50 = 290 nM for the new
lead compound. The structure activity relationship (SAR) of these inhibitors revealed three essential
criteria [371] for potency: (1) calcium-binding moiety, (2) a rigid template/core, and (3) a hydrophobic
moiety. One of the more potent compounds (Figure 14a) exhibited activity in all in vitro assays and
reduced inflammation in vivo and also inhibited selectin-mediated rolling.
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derivative [371] (IC50 = 290 nM against P-selectin), (b) gallic acid analog [372] (IC50 = 870 nM against
P-selectin), (c) quinic acid derivative [373], and (d) efomycin M [374].

Various quinic acid derivatives (Figure 14c) were designed as non-carbohydrate selectin antagonists
using a combination of X-ray and molecular modeling methods [373]. Structure-based design led
to compounds with IC50 = 100–1000 µM in the rolling assay. A combination of synthesis and
structure-based design was used in another study to develop a potent non-carbohydrate pan-selectin
inhibitor [375]. The authors used a pharmacophore model based on molecular dynamics simulations of
selectin- ligand complexes [376] that contains three features: (1) one of the carboxylic acids coordinates
calcium; (2) the other carboxylic acid is located at a distance of 8–9 Å and forms electrostatic interactions
with the Lys or Arg in selectin; (3) a long alkyl chain interacts with the hydrophobic region of selectin.
The best compounds inhibited the rolling and adhesion of leukocytes with IC50 = 28 µM. In another
study, a ligand-based approach was used to discover novel small molecule non-carbohydrate and
non-peptidic pan-selectin inhibitor bearing a trihydroxybenzene moiety (Figure 14b) with a molecular
weight below 500 [372]. A small-molecule antagonist of P- and E-selectin efomycin M (Figure 14d) was
chemically prepared from fermentation material of Streptomyces BS1261 [179]. The authors showed
that efomycin M effectively reduced selectin-mediated leukocyte adhesion and exhibited therapeutic
efficacy in mouse models of psoriasis. The combination of NMR methods together with molecular



Molecules 2020, 25, 2835 27 of 61

modeling revealed a similarity of the three-dimensional structures of efomycin M and sLex, and,
therefore, it was suggested that efomycin M is a selectin antagonist. This mode of action is still unclear,
since one study questioned this mechanism [377] while another study supported it [378]. Later, the
total synthesis of efomycin M was published [379].

Recently, several attempts to design peptide inhibitors that modulate selectin-PSGL-1 interactions
have been carried out [20,304,321]. Synthetic sulfopeptides were designed to mimic the N-terminal
domain of PSGL-1 [67,68]. Phage-display libraries were used to discover small peptides that bind
specifically to selectins [380–382]. The identified heptapeptide IELLQAR was found to inhibit selectin
binding to monocytes and subsequently attenuated atherosclerosis. It has been shown that this peptide
analog of a selectin ligand inhibits the binding of P-selectin to monocytes with IC50 = 5 µM [380,382].
Another group discovered a new class of small P-selectin inhibitors based on an EWVDV moiety.
This peptide inhibits the P-selectin–PSGL-1 interaction in a specific and calcium-dependent matter and
exhibited an affinity of IC50 = 12 µM and IC50 = 8 µM for human P-selectin in an HL60 and ELISA
adhesion assay, respectively. Interestingly, the potency of the peptide was increased 200-fold when
present in the tetrameric form [381]. Their specificity, high potency, and affordable synthesis make
these peptides mimicking PSGL-1 promising candidates for new therapeutics.

6.5. Compounds in Clinical Trials

Over the last three decades, numbers of small-molecule inhibitors of selectins have been
reported with varying potency and many of them have been validated in animal models. However,
despite this enormous effort, only a few compounds have entered clinical trials, usually without
success [20,176,304,320,324]. Some examples of recently developed small-molecule selectin inhibitors
are given in Figure 15.
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Bimosiamose is a synthetic compound [355] that inhibits all three selectins and is one of the
leading selectin inhibitors currently in clinical development. Bimosiamose is pan-selectin inhibitor
being developed by Revotar Biopharmaceuticals (Hennigsdorf, Brandenburg, Germany) as an
anti-inflammatory drug for the treatment of acute and chronic inflammatory and immunological
disorders. In vitro assays using glycolipids containing sLex showed that Bimosiamose is a competitive
inhibitor of selectin binding sLex. This compound has shown encouraging results in a phase IIa trial
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in patients with asthma, psoriasis, and COPD. After intravenous administration, patients showed a
weakening of airway inflammation and lung function improvements were observed. These findings
support the potential of Bimosiamose as a new anti-inflammatory therapy for COPD [383].

Uproleselan is a specific inhibitor of E-selectin developed by GlycoMimetics (Rockville, MD,
USA) for the treatment of acute myeloid leukemia (AML) and potentially other hematologic cancers.
Uproleselan is a synthetic glycomimetic and has been shown to disrupt cell survival pathway activation,
enhance chemotherapy response, and protect from toxicity with improved survival in vivo. A phase I/II
study of uproleselan added to chemotherapy in AML showed promising remission rates and survival
outcomes [384]. A pivotal phase III study is underway to assess the efficacy and safety of uproleselan
with standard salvage chemotherapy [385]. It is noteworthy that GlycoMimetics scientists have
rationally designed an innovative antagonist of E-selectin, GMI-1687, that is suitable for subcutaneous
administration. GMI-1687 has been observed to have an equivalent activity to uproleselan in preclinical
models but at an approximately 250-fold lower dose.

A less successful story is that of rivipansel (GMI-1070). Rivipansel is a synthetic, glycomimetic
molecule and pan-selectin antagonist, and a potential treatment for the vasoocclusive crisis associated
with sickle cell anemia. It was developed by GlycoMimetics in partnership with Pfizer (New York, NY,
USA). By preventing selectin-mediated cell adhesion in sickle-cell anemia, this agent may inhibit red
blood cell-white blood cell interactions, normalize blood flow, and reduce inflammation and vascular
occlusive pain. The results for rivipansel Phase I and II clinical trials supported the progression of the
potential treatment to Phase III clinical trials [386], but failed to meet its treatment goals. Several other
inhibitors are in preclinical or Phase I trials, for example, PGX-200, PSI-697, OC-229–648 (Figure 15),
quinic acid derivatives, and efomycin M (Figure 14).

7. Carbohydrate Processing Inhibitors

In the development of selectin inhibitors, a great deal of effort has focussed on seeking mimetics of
sLex involved in selectin-ligand interactions, as discussed above. These molecules, so-called blockers,
are expected to occupy carbohydrate-binding sites on selectins and thus block the interaction. Another
strategy for interfering with selectin-ligand interactions is the development of molecules that alter
the biosynthesis of carbohydrate determinant structures, so-called carbohydrate processing inhibitors
(CPIs). Carbohydrate processing inhibitors block the recognition function of selectins by preventing the
specific carbohydrate determinants from being synthesized. Thus, CPIs are, in principle, much more
effective than “blockers” because the ligands are so structurally altered that they cannot be recognized
at all.

However, the development of CPIs has shown to be challenging due to several factors.
Glycosylation occurs in the endoplasmic reticulum and the Golgi apparatus, which means that inhibitors
must be able to access the correct cellular compartment where the targeted GT operates. The inhibitor
must exceed the affinity of the natural substrate, which is usually in the millimolar-micromolar range.
Since several GTs utilize the same donor substrates and show a certain homology of the active site,
the inhibitor must also demonstrate high specificity for the targeted GT. The catalytic mechanism of GTs
is complex and requires that the natural substrates, i.e., donor and acceptor, meet in the catalytic site for
the catalytic reaction to proceed. Thus, CPIs can be divided into three groups: substrate analog inhibitors,
transition-state analog inhibitors, and non-carbohydrate inhibitors. Several excellent reviews have
been recently published that document progress in this area [387–395]. It is noteworthy that despite
their enormous therapeutic potential, only two GT inhibitors are in clinical use. Unfortunately, neither
of them inhibit the GT involved in the formation of the carbohydrate determinant. The iminosugar
N-butyl-deoxynojiromicin (miglustat, Zavesca) [396], used in the treatment of Gaucher disease, inhibits
glucosylceramide synthase, and ethambutol [397] is an inhibitor of arabinosyltransferases (tuberculosis).
This probably reflects the main drawback of the majority of GT inhibitors, that they are donor or
acceptor analogs with poor pharmacokinetic properties.
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7.1. Substrate Analog Inhibitors

Glycosyltransferases catalyze the transfer of a monosaccharide residue from a sugar-nucleotide
donor to the hydroxyl group of an acceptor. Therefore, it is natural that the development of substrate
analog inhibitors for GT has used three different approaches: (1) sugar-nucleotide donor analogs,
(2) acceptor analogs, and (3) bi-substrate analogs, in which the donor and acceptor analogs are
covalently bound. Initially, these analogs were developed for mechanistic and structural studies of
recombinant GTs. The drawback of these approaches is that substrate analog inhibitors often had
reduced membrane permeability, poor chemical stability, and low affinity for the target enzyme.
Moreover, the same donor is usually used by several glycosyltransferases, e.g., there are at least 16
different human N-acetylglucosaminyltransferases (GlcNAc-Ts, or GnTs) utilizing UDP-GlcNAc as the
donor [398], which complicates the development of specific inhibitors based on the donor. Besides
this, the synthesis of substrate analogs is usually a multi-step process, which further complicates their
practical use.

Glycosyltransferases involved in the biosynthesis of minimal carbohydrate determinants sLex

or sLea utilize UDPGalNAc, UDP-GlcNAc, UDP-Gal, GDP-Fuc, and CMP-NeuAc as donors.
Various strategies that include structural modification of the transferred monosaccharide residue,
the replacement of a phosphate unit, and altering the nucleotide residue were used to generate their
mimetics. In alterations of a donor, the monosaccharide ring oxygen or glycosidic oxygen atoms
were replaced by carbon to form carba-analogs of sugar-nucleotides. Another strategy was to replace
monosaccharide hydroxyl groups with various substituents, e.g., a methyl group. A vast range of
compounds was synthesized as potential inhibitors against GTs [389,391–393,399] but only a few
promising results have been obtained. Most of these compounds exhibited Ki values similar to the KM

values of natural substrates in the micromolar range, and therefore, are not suitable as inhibitors.
Selected examples of synthesized compounds are given in Figure 16. The determined crystal

structure of the Helicobacter pylori α-1,3-FucT [150] was used as a guide to developing FucT
inhibitors [400]. The most potent inhibitors exhibited Ki = 62 nM and Ki = 29 nM against FucT-VI
(Figure 16). Click chemistry was used to synthesize a FucT-VI inhibitor, a trialoze derivative with
Ki = 62 nM [401].

Analogous to glycosidases, where the glycosyl fluoride successfully inhibited their enzymatic
action [402], fluoro derivatives of sugar-nucleotides were prepared (Figure 17). The synthesized
UDP-[2F]-Gal, GDP-[2F]-Fuc, and CMP-[3Fax]-Neu5Ac exhibited competitive inhibition of β4Gal-T1,
FucT, and ST6Gal, with Ki values in the micromolar range [403]. Peracetylated derivatives
peracetylated-[2F]-Fuc, and peracetylated-[3Fax]-Neu5Ac were used as cell-permeable metabolic
inhibitors of fucosyl- and sialyltransferase [404]. These compounds are intracellularly converted to
the corresponding donor substrates GDP-[2F]-Fuc, and CMP-[3Fax]-Neu5Ac. In vitro experiments
have shown that fluorinated analogs of fucose and sialic acid inhibited fucosyltransferases and
sialyltransferase and thus alter the glycosylation patterns in the investigated cells. Also, the in vivo
administration of 3F-Neu5Ac to mice decreases sialylated glycans in cells [405]. As a result, cells lost
their selectin binding affinity, and leukocyte rolling was damaged. It has been recently shown that
5-carbamate derivatives of peracetylated-[3Fax]-Neu5Ac exhibited a prolonged and increased inhibition
of STs in several cell lines [406].
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residue UDP-carba-Gal [407], UDP-Gal derivative [408], CMP-Carba-Neu5Ac [409], CMP-Neu5Ac [410],
Triazol derivative of GDP-Fuc [400], and GDP-Fuc [401].

Two monosaccharide derivatives [411,412] have been developed to inhibit the biosynthesis of
sLex (Figure 17). One is a fluorinated analog of N-acetylglucosamine, peracetylated-4-fluorinated
d-glucosamine (4F-GlcNAc). It has been shown that 4F-GlcNAc incorporates into the
poly-N-acetyllactosamine chain and thus interferes with GlcNAc in the biosynthesis of terminal
sLex. The replacement of the O4 hydroxyl group with a fluorine atom in GlcNAc blocks the next
addition of Gal to the C4 carbon atom of GlcNAc, leading to the termination of the sLex biosynthesis.
It has been shown that 4F-GlcNAc reduces expression of the E-selectin ligand with high efficacy and
prevents contact hypersensitivity in mice [412]. Another example, peracetylated 5-thiofucose (5T-Fuc),
utilizes a different mode of inhibitory mechanism [413]. The authors showed that cancer cells utilize



Molecules 2020, 25, 2835 31 of 61

5T-Fuc for the biosynthesis of GDP-5T-Fuc, which is an analog of the natural sugar nucleotide GDP-Fuc.
While GDP-Fuc is the donor for the enzymatic reaction catalyzed by FucT, its 5-thio analog does not
function as the donor. In contrast, GDP-5T-Fuc inhibited the transfer reaction at a low micromolar
value that led to a decreased level of cell surface sLex.
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The contribution of electrostatic interactions between the diphosphate moiety and the metal
cofactor or positively charged amino acids located in the catalytic site is crucial for the binding affinity of
the donor. Various strategies were used to replace phosphate groups [389,393,414] with a phosphonate
group, or a neutral group such as a monosaccharide, peptide bond, malonate or tartrate. Although
these derivatives are more stable and their synthesis is reasonable, their inhibition potency was weak.

The nucleoside base is crucial for the recognition of the donor by GT, and modifications of the base
usually result in a loss of substrate activity. In general, the binding pattern means that there is only
one position in the base that is suitable for alteration, e.g., in UDP, it is position C5 [415]. Therefore,
inhibitors based on the variation of nucleobases are scarce. Recently, a structure-based design led to
the discovery of a new model of GT donor-based inhibitors with Ki values in the low micromolar to
nanomolar range [416–419]. These inhibitors (Figure 18) are characterized by a modification of the C-5
position at the uracil base. The crystallographic studies of β4-Gal-T suggested that glycosyltransferases
with a GT-A fold, after binding the donor, often undergo a conformational change, in which an internal
loop is structured and create the binding site of the acceptor [143,420]. The 5-substituted derivatives
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of uracil are intended to interfere with this movement and thus inhibit the enzyme. Although the
potency of these inhibitors is not high, it was shown [421] that the β4-Gal-T inhibitor, the 5-substituted
UDP-Gal analog 5-(5-formylthien-2-yl) UDP-Gal, attenuates PSGL-1 expression in human monocytes.
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Oligosaccharides that function as acceptors for GTs involved in the synthesis of sLex have
lower affinity than donor substrates. The corresponding KM values are usually in the millimolar
range. Several different approaches have been developed for creating acceptor-based inhibitors
of GTs. The replacement of the nucleophilic hydroxyl groups participating in the enzymatic
reaction is a natural choice for the development of inhibitors providing that the deoxygenated
acceptors are recognized by GT. Several deoxygenated acceptor analogs were synthesized and
their potency screened against eight GTs [422]. Surprisingly, only four GTs were inhibited and
Ki values were similar to KM values indicating weak inhibitory activity. The replacement of the
proton from the anomeric hydroxyl group by hydrophobic aglycon seems to be the most successful
strategy [423–427]. Peracetylated GlcNAc-β-1,3-Gal-β-O-naphthalenemethanol and peracetylated
Gal-β-1,4-GlcNAc-β-O-naphthalenemethanol (Figure 18) inhibited β4Gal-T with Ki = 10 µM – 50 µM.
It has been shown that these compounds are rapidly deacetylated by carboxyesterases [425,426] in
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cells. Deacetylated compounds then function as substrates for Gal-T and as a result, the micromolar
concentration of these disaccharides reduces the expression of sLex using human adenocarcinoma cell
lines. Also, these compounds attenuated the expression of sLex and, therefore, P-selectin-dependent
cell adhesion in Lewis carcinoma cells [423]. It was observed that the 4-deoxy analog of
GlcNAc-β-1,3-Gal-β-O-naphthalenemethanol binds to β4Gal-T [428]. Since in this compound the
nucleophilic hydroxyl is missing, the catalytic reaction cannot proceed and the 4′-deoxy analog behaves
as a competitive inhibitor. A series of peracetylated N-acetyllactosamine analogs with variation at the
aglycon moiety weas synthesized to investigate their inhibitory activity against FucT [429]. Affinity
measurements revealed that deacetylated analogs with naphthalene groups as the aglycon were the
most potent inhibitors against FucT-VI. The naphthalene group linked with a three- and six-atom
linker (Figure 18) exhibited KM values of 64 mM and 70 mM, respectively.

Another approach, a so-called bisubstrate strategy, was designed to improve the specificity and
potency of inhibitors [393,430]. In this concept, bisubstrate analog inhibitors consist of donor and
acceptor mimetics that are covalently linked. The bisubstrate analog inhibitor is supposed to occupy
the active site of the enzyme. Therefore, the three-dimensional shape of a bisubstrate analog should
resemble the three-dimensional shape of the enzyme active site to allow the binding of bisubstrate
analogs. Several substrate analog inhibitors were synthesized; however, assumptions of their high
inhibitory activity prove to be incorrect. Their inhibition, with some exceptions, was weak, with Ki

values in the millimolar range. Moreover, the synthesis of bisubstrate analogs usually requires a large
number of steps and is relatively demanding.

Linking together UDP-Gal and GlcNAc led to competitive bisubstrate analog inhibitors [431]
(Figure 19) against β4-Gal-T with Ki values of 3.3 µM (UDP-Gal) and 1.35 µM (acceptor), respectively.
In this inhibitor, the O-6 oxygen of the GlcNAc residue was connected to the C-2 hydroxyl group of the
Gal residue via a methylene tether. Interestingly, when an ethylene tether was used, the inhibition was
noncompetitive. A similar approach has been used for the synthesis of bisubstrate inhibitors against
α1,3FucT [432]. In this case, the authors replaced fucose in GDP-Fuc with l-galactose, and the O6
oxygen of UDP-l-Gal and the O6 oxygen hydroxyethyl galactose were tethered with methylene or
ethylene linker (Figure 19). The inhibitor with the methylene and ethylene linker against FucT-V was
moderate, with Ki values of 41 µM and 43 µM, respectively. A series of bisubstrate analog inhibitors of
sialyltransferases ST3 and ST6 were prepared by connecting the donor CMP-NeuAc and a disaccharide
acceptor lactose and LacNAc [433]. The O-6 oxygen of the acceptor was linked to the O-3 oxygen
of NeuAc through a sulfide bond separated by an alkyl linker with a variable length. The Ki values
depended on the length of the linker and were in the range of 6–324 µM. Generally, N-acetylated
analogs were more potent than lactose analogs. The analog with butylene linker (Figure 19) was a
potent inhibitor of ST3 with the same Ki values of 6 µM for the donor (CMP-Neu5Ac) and 7 µM for the
acceptor, respectively.

7.2. Non-Substrate Inhibitors

Although plenty of GT inhibitors were developed as substrate analogs, their development into
potential drugs has met with limited success. These compounds usually do not exhibit drug-like
properties. Moreover, due to a lack of cell membrane penetration, they have a problem reaching the
Golgi apparatus where GTs function. Therefore, attention was recently also focused on inhibitors
that are not based on GT substrates [390,394,395]. However, although various chemotypes have been
used, to date inhibitors have been developed only for a small number of GTs. For GTs involved in
the biosynthesis of selectin carbohydrate determinants, mainly inhibitors of FucT and ST3 have been
reported. Selected examples are given in Figure 20.
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The screening of natural products led to several compounds that exhibited a low micromolar
inhibitory activity against ST3. Soyasaponin I, from soybean, inhibits ST3Gal with Ki = 2.1 µM [434]
and also specifically inhibited the transfer of sialic acid on murine melanoma cells [435] Soyasaponin I
is a triterpenoid saponin with an α-l-Rhap-(1→2)-β-d-Galp-(1→2)-β-d-GlcpA moiety attached at the
3-position of a pentacyclic system via a glycosidic linkage (Figure 20). Another steroid-based inhibitor,
a derivative of lithocholic acid showed the noncompetitive inhibition of ST3Gal with Ki = 0.88 µM of
metastasis cancer cells [436,437]. Different groups of ST inhibitors are gallic acid derivatives (Figure 20)
that also exhibited inhibitory activity against ST3; e.g., a value of IC50 = 2.7 µM was measured for the
flavonoid epicatechin gallate [438]. The hexapeptide NH2-GNWWWW (Figure 20) was identified by
high-throughput screening with a Ki value of 8.8 µM and might represent the lead compound for the
further development of potent and specific ST inhibitors [439].

It is noteworthy that gallic acid and several of its derivatives also inhibit FucT, e.g., gallic acid,
methyl gallate, and epigallocatechin are inhibitors against FucTs and STs (Figure 20) with the Ki values
in a low micromolar range [438]. Gallic acid and its derivatives are strong antioxidants with numerous
biological activities [440] and this property might also be responsible for inhibition of some GTs.
An interesting group of compounds, positively charged, bivalent imidazolium salts has been observed
to be inhibitors of various GTs [441]. In these compounds, two imidazolium groups are linked with a
long aliphatic chain. The three most potent compounds (Figure 20) strongly inhibited ppGalNAcT-1
and C2GnT-1, and moderately β4GalT-1 at a concentration of 500 µM. The high-throughput screening
of a vast combinatorial library of compounds designed by rational design led to a new type of
bisphosphonates as selective inhibitors (Figure 20) against β4GalT; (IC50 = 20 µM) [442]. Though there
has been some progress in the development of non-substrate inhibitors for GTs, and new inhibitor
chemotypes have been identified, this approach is still in its infancy. Before these inhibitors enter the
drug refinement cycle, several vital questions must be answered. Probably the most relevant is to
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establish the selectivity of inhibitors against GTs and also against other enzymes. The mechanism of
action is another issue that must be resolved. Since the activity of the vast majority of inhibitors was
tested using recombinant enzymes, it is also crucial to evaluate their activity in cellular assays.
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7.3. Transition State Analog Inhibitors

The best inhibitors of an enzymatic reaction are transition state (TS) analogs [443–445].
These molecules are expected to alter oligosaccharide structures by the efficient inhibition of enzymes
involved in their biosynthesis. Therefore, a great deal of effort has been focused on the development of
mimetics such as transition state analogs for enzyme inhibition [446,447]. The design of transition state
analogs requires knowledge of the transition state structure of a given enzymatic reaction. It is difficult
to determine the transition state structure; therefore, molecular modeling methods are used to provide
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information about the enzymatic mechanism at the atomic level [59,448,449]. The predicted structures
of transition state models can be used as a guide for developing mimetics of the TS, transition state
analog inhibitors (TSAIs).

A lack of transition state structures has hindered the development of transition state analog
inhibitors, and only a few have been reported with Ki values. Until recently [60], transition state
structures were not available for GTs involved in the synthesis of sLex. Therefore, transition state
analog inhibitors were prepared using suggested TS structures. The assumed TS characteristics were
reflected in various approaches used to make TSAIs. These can be divided into four groups: TSAIs with
the ring shape of the transferred saccharides distorted into a quasi-planar conformation with an
sp2 anomeric carbon; TSAIs with an elongated C1-O glycosidic bond; TSAIs with a positive charge
on the C1 anomeric carbon; and TSAIs with phosphate moieties replaced by a functional moiety.
Often TSAIs contained a combination of the above features. Selected examples of synthesized TSAIs
for the relevant GTs with inhibitory activity in the low micromolar range will be discussed and are
given in Figures 21 and 22.

One of the first TSAIs was prepared against β4Gal-T (Figure 21) as the C-glycoside analog
of UDP-Gal with the galactose residue replaced by a residue with a double bond to provide a
planar structure in the transferred saccharide [450]. Several TSAIs against sialyltransferases were
synthesized [451,452] with replacing the NeuAc residue in CMP-NeuAc with an aromatic ring.
(Figure 21) Their Ki values against ST6 were in the range of 40–350 nM. A series of proposed TSAIs
were synthesized where a simple amide mimicked an oxocarbenium ion in the TS [453]. The best
compound (Figure 21) exhibited Ki = 0.016 µM, ~2600-fold higher affinity to ST6 than CMP-NeuAc,
with a KM value of ~41 µM. Unfortunately, the Ki values against ST3 were not reported. The elongation
of the C1-O glycosidic bond by adding a single methylene group between the anomeric carbon and the
phosphate oxygen gave TSAI against ST3 with Ki = 10–20 µM [454]. The same approach was used to
prepare TSAIs against FucT [455]. The synthesized compounds were competitive inhibitor against
FucT-V and FucT-VI with Ki between 8 and 13 µM (Figure 22).

The above-discussed compounds were designed to mimic one or more structural characteristics
of the donor in the transition state of a particular glycosyltransferase. The expectation was that such
compounds might be transition state analog inhibitors. However, the obtained low or moderate
inhibitory activity suggests that these compounds do not represent true TSAI, and could be considered
to be bisubstrate analogs. TSAIs should exhibit much stronger inhibitory potency, with a Ki value in
the picomolar range or at least in the low nanomolar range.

The biosynthesis of selectin minimal recognition determinants, the tetrasaccharide sLex and
its analogs requires the coordinated action of several glycosyltransferases (see paragraph 4),
such as ppGalNAcT2, Core-1GalT, Core-2GnT, β4Gal-T1, FucTs, and GlcNAc6ST. Thus, these
glycosyltransferases are targets for designing transition state analog inhibitors as potential therapeutics.
The investigated catalytic mechanisms of several GTs and the determined transition state structures
have been reviewed recently [59,60].

The results showed that a transition state model consists of both the donor and acceptor that
have their structures distorted compared to the ground state structures and are linked together
with non-equilibrium linkages in a specific orientation. Investigations of the catalytic mechanism of
GTs provided the following general structural features of the TS models [59,60] (Figure 23a): (a) the
transferred monosaccharide ring is flattened, and its conformation resembles a deformed chair/envelope
conformation with oxo-carbenium character at the sp2 hybridized anomeric carbon; (b) the C1–O1
bond is elongated compared to the standard C–O bond length; (c) the formed glycosidic linkage is also
longer than the standard bond length; (d) both, the forming and breaking bonds are oriented almost
perpendicularly to the plane defined by the C2-C1-O5-C5 atoms.

Based on these structural characteristics, two transition state scaffold models have been
proposed [456,457] (Figure 23b,c). The scaffold structures resemble structural features of TS: the distance
C1-O1 is elongated by adding a methylene group, the distance between the anomeric carbon C1 and
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the acceptor oxygen is enlarged by replacing the oxygen with sulfur atom. Thus the distances around
the anomeric center in the scaffolds are similar to those in TS models. A deformed six-membered
hexopyranose ring was replaced with a five-membered furanose ring. Several potential inhibitors based
on these scaffolds have been synthesized [458–460]. Two examples of potential inhibitors are given in
Figure 23d,e. However, further studies are necessary to obtain the transition state analogs of the enzymes
involved in the biosynthesis of sLex with the required potency, specificity, and drug-like properties.Molecules 2020, 25, x FOR PEER REVIEW 38 of 64 
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8. Summary and Perspectives

The extraordinary efforts of many research groups over the last three decades have led to progress
in our knowledge of selectins’ roles and clarified the structure, properties, behavior, and biological
functions of selectins. Selectins are well-characterized adhesion molecules that mediate the interactions
of leukocytes and cancer cells with a vascular wall in various physiological and pathological processes.
The obtained results, based on multidisciplinary approaches that used structural, biochemical,
enzymatic, genetic, and molecular modeling methods, clearly revealed that the selectins exhibit
a dual role or Dr. Jekyll and Mr. Hyde behavior; they are required for a healing process (Dr. Jekyll),
but also are involved in the development of severe diseases (Mr. Hyde). Though the adhesion of
selectins in these processes is controlled by carbohydrate determinants, such as sLex and sLea, a detailed
structure of the physiological ligands and the regulatory processes of their biosynthesis have not
been fully determined. The involvement of selectins as adhesion receptors that mediate inflammatory
diseases and metastasis made the given selectin therapeutic targets for these diseases. The development
of real inhibitors of selectin-ligand interactions in vivo is a challenging task due to the dual role of
selectins. On the one side, extremely potent inhibitors might have undesired effects on healing processes.
On the other hand, weak inhibitors might not intervene sufficiently in the pathological processes
of severe diseases. Therefore, effective therapeutic agents may require well-balanced action against
selectin-ligand interactions. Moreover, the results presented here imply that a clinically successful
inhibitor has to inhibit at least two selectins. Also, the structural features of the calcium-dependent
carbohydrate recognition domain that has a shallow surface make the rational design of selectin
inhibitors difficult. A plethora of diverse glycomimetic or non-carbohydrate, and polysaccharide
inhibitors that inhibit selectin-ligand interactions have been developed and despite this considerable
effort only a few compounds have showed promising results in clinical trials. Recent progress in the
understanding the catalytic mechanism and determining the transition state structure of the enzymatic
reactions involved in the biosynthesis of carbohydrate determinants of selectin counter-receptors offers
potential approaches to the therapeutic intervention of inflammatory diseases and tumor progression
and metastasis. A combination of glycobiology, medicinal chemistry, and molecular modeling will
provide a guide for the rational design of such agents.
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