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It has long been known that circulating levels of IgG and IgM antibodies are elevated in patients with essential and pregnancy-
related hypertension. Recent studies indicate these antibodies target, and in many cases activate, G-protein coupled receptors and
ion channels. Prominent among these protein targets are AT, receptors, &, -adrenoceptors, f3,-adrenoceptors, and L-type voltage
operated Ca®* channels, all of which are known to play key roles in the regulation of blood pressure through modulation of vascular
tone, cardiac output, and/or Na*/water reabsorption in the kidneys. This suggests that elevated antibody production may be a causal
mechanism in at least some cases of hypertension. In this brief review, we will further describe the protein targets of the antibodies
that are elevated in individuals with essential and pregnancy-related hypertension and the likely pathophysiological consequences
of antibody binding to these targets. We will speculate on the potential mechanisms that underlie elevated antibody levels in
hypertensive individuals and, finally, we will outline the therapeutic opportunities that could arise with a better understanding
of how and why antibodies are produced in hypertension.

1. Introduction

Hypertension is defined as chronically elevated blood pres-
sures of >140/90 mmHg. Two of the most common forms of
the condition are essential hypertension, where the under-
lying cause is unknown, and preeclampsia or pregnancy-
related hypertension. For several decades it has been known
that both essential and pregnancy-related hypertension are
associated with elevated serum levels of antibodies [1-4].
More recently, studies in humans and animal models of each
condition have begun to identify the protein targets of these
antibodies as receptors and ion channels with key roles in
the regulation of blood pressure. Such studies not only offer
insights into the mechanisms by which antibodies might
contribute to hypertension but they also highlight potential
new avenues for the clinical management of hypertension. In
this brief review we will summarise the evidence in support
of a role for antibodies in the pathophysiology of essential
hypertension and preeclampsia. We will discuss the protein

targets of the antibodies that have been identified in hyper-
tensive individuals and provide some potential explanations
for why the production of these antibodies may be elevated.
Finally, we will speculate on how such findings may translate
into improved clinical management of hypertension.

2. Antibodies as Causes of Disease

Antibodies, or immunoglobulins (Ig), are produced exclu-
sively by B cells as part of the mammalian adaptive immune
response [5]. Antibodies play a crucial role in adaptive
immunity through their ability to bind antigens, which are
normally toxic substances or fragments of pathogen-derived
proteins. Such binding results in either neutralisation of the
antigen itself or, when the antigen is bound to a cell (e.g.,
bacteria), destruction of that cell via activation of the comple-
ment system, neutrophil degranulation, or phagocytosis by
macrophages (Figure 1).


http://dx.doi.org/10.1155/2014/504045

),

Cytokine release

7

Antibody-
dependent
cell-mediated
cytotoxicity

4
Antibo

/J \ /

Signal transduction
leading to
receptor activation

N

dies

S
'ir’\wr \WF"

BioMed Research International

Direct cell lysis by complement via
formation of membrane attack complex

T

=\
&

7

Neutralisation of free
antigens (i.e., virions)

Antibody-mediated
complement
opsonisation

l

o

@ 5
Oo {%
N

Phagocytosis of
opsonised
pathogens

N

Formation of proinflammatory
immune complexes

FIGURE 1: Schematic diagram showing the various types of antibody-mediated autoimmune responses.

For B cells to generate and secrete antibodies, they
must first undergo differentiation into plasma cells. Naive
B cells detect antigens via their B cell receptors, which
are membrane-bound immunoglobulins (IgM) with unique
and randomly-generated antigen-binding sites [6]. Following
binding, the antigen is internalised, processed, and displayed
by major histocompatibility class II (MHC II) proteins on
the extracellular surface of the B cell [6]. The next step in
B cell differentiation involves the detection of the MHC II-
presented antigen by the T cell receptor (TCR) of an activated
T helper (T}) cell that has previously encountered the same
antigen. The Ty cell also provides essential costimulatory
signals in the form of interactions between its CD40 ligand
and the CD40 receptor on the B cell [7], as well as cytokines
such as interferon-gamma and interleukin-4 [8]. Together,
these signals ultimately promote the differentiation of the B
cell into an antibody-secreting plasma cell. Such signals also
play a crucial role in isotype switching (e.g. IgM — IgG)
[9], which allows the generated antibodies to interact with
different effector molecules and thereby direct the type of
immune response that is mounted.

Although antibodies normally target foreign molecules,
under some circumstances they may be raised against host-
derived molecules. Such a loss of recognition of “self”
is the basis for autoimmune diseases. There are several
mechanisms by which aberrant antibody production can
lead to autoimmune pathologies (Figure 1). For example, the
binding of antibodies to antigens expressed on the surface
of endogenous cells may lead to the destruction of these

cells via complement- or leukocyte-dependent interactions.
This type of response is termed a “Type II Hypersensitivity
reaction” and is the cause of the loss of erythrocytes in
autoimmune haemolytic anaemia [10]. Alternatively, “Type
III Hypersensitivity reactions” involve the recognition of
soluble antigens in the host by antibodies and the subsequent
formation of “immune complexes” Immune complexes are
cross-linked aggregations of antibodies and antigens that can
be deposited in various tissues to cause local inflammatory
responses [11]. Immune complexes are a hallmark of several
autoimmune disorders including vasculitis and systemic
lupus erythematosus where deposition of such complexes in
the kidneys gives rise to glomerulonephritis [12, 13]. Finally,
some autoimmune diseases are associated with the formation
of nonimmunogenic, agonistic antibodies to receptors [14].
These types of diseases are often classified as “Type V
Hypersensitivity Reactions.” Agonistic antibodies stimulate
receptors in a similar fashion to their cognate ligands and
thus lead to overstimulation of the specific system involved.
Myasthenia gravis is an example of an autoimmune disease
caused by the generation of agonistic antibodies against
nicotinic receptors [14, 15].

3. Protein Targets of
Hypertension-Related Antibodies

Studies dating back to the 1970s demonstrated that essential
hypertension in humans is associated with elevated IgG
and IgM titres [1-4]. However, these early studies did not
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identify the targets of these antibodies and thus provided
no indication of whether they were important to the patho-
physiology of hypertension. Studies from around the same
time on animal models confirmed that hypertension was
associated with an increase in antibody production and even
went some way towards implicating a possible causative
role for these antibodies. For example, Ba et al. identified
autoantibodies in the serum of spontaneously hypertensive
rats (SHRs) that were cytotoxic to T cells. Although the
authors did not establish a precise mechanism by which
these antibodies contribute to hypertension, they implied
that the antibodies might induce apoptosis of “suppressor” T
cells that normally prevent damage to the vascular wall and
thus protect against cardiovascular disease [16]. In a separate
study, it was shown that rats with hypertension induced by
renal infarction had high serum levels of antibodies that
bound to arteries, glomeruli, and basement membranes of the
kidneys [17]. Given the key roles of the kidney and vasculature
in the regulation of hemodynamic parameters, this latter
study provided an indication that elevated antibody pro-
duction may actually contribute to the chronic elevation in
blood pressure that defines hypertension. And indeed, more
recent work identifying the specific molecular targets of the
antibodies present in individuals with essential hypertension
and preeclampsia not only supports this idea, but also begins
to shed light on how elevated antibody production might
contribute to elevated blood pressure.

3.1. Angiotensin II Type-1 Receptors. The angiotensin II type-1
receptor (AT, R) plays a crucial role in the regulation of blood
pressure [18]. Stimulation of the AT, R by its cognate ligand,
angiotensin I, results in vascular smooth muscle cell (VSMC)
contraction and proliferation, release of aldosterone from the
adrenal glands, and activation of the sympathetic nervous
system [18, 19]. Furthermore, it has recently been discovered
that AT, receptor activation on T lymphocytes promotes a
proinflammatory phenotype that contributes to hypertension
[20].

AT, R-activating IgG autoantibodies (AT,-AAs) directed
against the second extracellular loop of the AT, R are preva-
lent in over 95% of patients with pregnancy-associated
hypertension, and antibody titres correlate positively with
disease severity [21, 22]. AT, -AAs appear to activate a cascade
of proinflammatory cytokines that contribute directly to
hypertension in preeclampsia [23]. In vivo administration
of AT, -AAs isolated from preeclamptic humans to pregnant
mice was shown to induce hypertension in those animals
[24]. Furthermore, AT,-AA treatment causes an increase
in the circulating levels of tumour necrosis factor-a and
interleukin-6 in pregnant mice and inhibition of these
cytokines with neutralising antibodies blunts hypertension
(24, 25].

AT,-AAs have also been identified in a subset of indi-
viduals with essential hypertension [26-28]. These AT,-AAs
appear to be similar in function and specificity as those
identified in preeclamptic patients as they also bind to the
second extracellular loop of the AT R [26, 28]. The fact
that essential hypertensive patients with AT,-AAs respond

with greater blood pressure reductions to AT, R blockade by
candesartan than hypertensive individuals without AT,-AA
[29, 30] suggests a causal role for AT, -AAs in at least some
cases of hypertension.

3.2. Alpha-1 Adrenergic Receptors. The alpha-1 adrenergic
receptor (a;AR) is a G-protein coupled receptor that is
primarily expressed on VSMCs and proximal renal tubules
[31]. Activation of the «; AR by its endogenous ligands,
noradrenaline and adrenaline, or synthetic compounds such
as phenylephrine, results in VSMC contraction and increased
total peripheral resistance, as well as increased Na* reab-
sorption in the kidney causing elevated blood pressure [32].
IgG receptor-activating autoantibodies against the «;AR
(a;AR-AA) have been described in patients with essential
hypertension [28, 33-35]. Unlike AT,-AAs, which appear
to bind to a similar domain of the AT R (i.e., the second
extracellular loop) irrespective of the patient from which
they were derived, &; AR-AA from different patients display
selectivity towards separate regions of the receptor, with anti-
bodies from some individuals targeting the first extracellular
loop, and antibodies from other individuals targeting the
second extracellular loop [33, 34]. It is unclear whether these
varying binding properties have implications for the ability
of a specific antibody to modulate receptor function. It is
also unclear whether o; AR-AAs are present or elevated in
individuals with preeclampsia.

3.3. Beta-1 Adrenergic Receptors. The -1 adrenergic receptor
(B;AR) shares the same endogenous agonists with a; ARs
but differs in ligand affinity, tissue distribution, and func-
tional outcomes following stimulation. f3; ARs are localised
predominately in cardiac tissue where activation results in
increased heart rate and contractility and an overall increase
in cardiac output [36]. Cardiac output is a major determinant
of blood pressure and thus f3; AR blockers have long been
used as antihypertensive agents [37]. ;AR agonistic IgG
autoantibodies (f3; AR-AA) against the second extracellular
loop of the receptors were detected in the serum of spon-
taneously hypertensive rats [38]. Furthermore, injection of
B1AR-AAs into healthy Lewis rats promoted cardiomyopathy
and increases in systolic blood pressure [39]. Although
evidence for the presence of 5;AR-AAs in human essential
hypertension and preeclampsia is lacking, these antibodies
have been identified in patients with idiopathic dilated
cardiomyopathy [40].

3.4. L-Type Voltage Gated Calcium Channels. L-type volt-
age gated calcium channels (L-type VOCCs) are expressed
on VSMCs in resistance vessels and, in their open state,
directly contribute to vascular tone and blood pressure by
facilitating the influx of extracellular Ca** [41]. Tt is well
established that L-type VOCC expression in the vasculature
is upregulated in experimental hypertension and that this
contributes to increased Ca** levels in VSMCs and thus
elevated vascular resistance [42-47]. The importance of L-
type VOCCs in human hypertension is highlighted by the fact
that inhibitors of these channels (e.g., nifedipine) continue to
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FIGURE 2: Schematic diagram showing the mechanism by which autoantibodies may promote increases in vascular tone, cardiac output,
Na"/water reabsorption, and renal and vascular inflammation, and thereby contribute to hypertension.

represent one of the most effective and widely-used classes
of antihypertensive medications [48]. Thus, it is noteworthy
that autoantibodies against L-type VOCCs were identified
in some patients with essential hypertension [49]. Although
the authors did not examine the effect of these antibodies
on L-type VOCC function, a separate study demonstrated
increased intracellular Ca** influx in pancreatic islet cells fol-
lowing the binding of analogous IgG and IgA autoantibodies
to L-type VOCCs in the setting of Type-1 diabetes [50]. This
implies that antibodies against L-type VOCCs are likely to
be agonistic in nature and could thus contribute to increased
VSMC Ca** influx in hypertension.

3.5. Heat Shock Proteins. Heat shock proteins (HSPs) are a
family of highly-conserved proteins that provide protection
against danger-related signals by acting as molecular chap-
erones to assist in the folding and trafficking of proteins
during cellular stress [51]. Among the multitude of known
mammalian HSPs, HSP-70 has received most attention in
the field of hypertension research. First, in vitro exposure of
cultured VSMCs, endothelial cells or isolated aortic rings to
hypertension-relevant stimuli such as oxidative stress, cyclic
strain, and angiotensin II, induces the expression of HSP-70
[52-54]. Second, levels of HSP-70 and HSP-70-reactive CD4
T cells are elevated in the kidneys in several rat models of
hypertension [55-57]. Finally, HSP-70 serum concentrations
are elevated in pregnancy-associated hypertension and are
positively correlated with blood pressure in affected women
[58].

Elevated levels of IgG and IgA antibody titres against
HSP-70 have been identified in essential hypertensive indi-
viduals [59, 60]. Surprisingly, elevated anti-HSP-70 antibody
levels in essential hypertension were not associated with
changes in serum HSP-70 in these patients [60]. Thus, the
function of anti-HSP-70 antibodies in essential hypertension
remains unclear. It is possible that anti-HSP-70 antibodies
could either promote inflammation via formation of cir-
culating immune complexes or, alternatively, alleviate the
proinflammatory actions of these proteins via neutralisation.
A more recent study by Molvarec et al. was unable to
demonstrate any changes in circulating levels of anti-HSP-70
antibodies in women with preeclampsia [61].

3.6. Miscellaneous. A study in borderline hypertensive
patients described a reduction in circulating levels of anti-
oxidised LDL IgG antibodies [62]. However, a follow-up
investigation failed to detect any difference in levels of
these antibodies between patients with clinical hypertension
and normotensive controls [63], and thus the significance
of anti-oxidised LDL antibodies in the pathophysiology of
hypertension is unclear. Other studies in borderline hyper-
tensive individuals detected elevations in circulating anti-
endothelial cell IgG and IgM antibodies [64-66]. While
data in the setting of human essential hypertension is still
missing, these antibodies have been identified in women with
severe preeclampsia and have been proposed to contribute to
endothelial dysfunction [67].

Figure 2 provides a summary of the targets of antibodies
that have been shown to be elevated in hypertension and
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the potential mechanisms by which these antibodies may
contribute to disease pathophysiology.

4. Mechanisms Contributing to
Antibody Production

The previous discussion highlighting the association of
hypertension with increased antibody levels raises the ques-
tion: what are the mechanisms involved in antibody produc-
tion during hypertension? There are at least three possible
explanations including (1) neoantigen formation; (2) molec-
ular mimicry; and/or (3) aberrant B cell function.

4.1. Neoantigen Formation. Harrison and colleagues recently
put forward a hypothesis whereby “neoantigens” were high-
lighted as the central mediators of the immune cell activation
that underlies hypertension [68, 69]. These authors suggested
that hypertensive stimuli such as Ang II, catecholamines,
and aldosterone initially induce a moderate increase in blood
pressure via their “classical” actions in promoting Na*/water
retention, vasoconstriction, and/or increased sympathetic
drive [68, 69]. This moderate increase in blood pressure is
postulated to cause both mechanical and oxidative stress in
the walls of blood vessels and also in the kidneys, leading
to structural and chemical modifications to proteins such
that they are no longer recognised as “self, but rather
as neoantigens. These neoantigens are predicted to then
invoke an adaptive immune response, leading to vascular
and renal inflammation and exacerbation of hypertension
[68, 69]. However, it is presently unclear whether any of the
proteins that have been identified as targets of antibodies in
hypertensive animals and humans (e.g., AT, R, o; AR, 3, AR,
L-type VOCCs, or HSP-70) undergo structural or chemical
alterations that may render them as potential neoantigens.

4.2. Molecular Mimicry. Another possible explanation for
autoantibody production in hypertension involves molecular
mimicry, where foreign or pathogen-derived antigens trigger
an immune response against “self” peptides of similar homol-
ogy [70]. A prominent example of this is myasthenia gravis,
an autoimmune disease where agonistic antibodies are raised
against nicotinic receptors [14, 15]. These antibodies show
strong cross-reactivity to herpes simplex virus glycoprotein
D [15].

Relating to hypertension, AT,-AAs from women with
preeclampsia were shown to recognise the VP2 caspid protein
from parvovirus B19 [71]. The seroprevalence of this virus has
been reported to be more than 70% of the adult population
[72,73], and its involvement in predisposing infected individ-
uals to various autoimmune disorders has been recognised
[73]. Thus, it is plausible that molecular mimicry underlies
the elevations in AT, -AAs observed in preeclampsia [74] and
essential hypertension.

Although not examined in the setting of hypertension,
there is evidence in other disease states that antibodies against
L-type VOCCs and f;ARs may also arise as a result of
molecular mimicry. For example, autoantibodies against L-
type VOCCs that are present in a subset of individuals

with Type-1 diabetes also recognise the B4 VPI1 protein of
the coxsackievirus [50]. Interestingly, the seroprevalence of
coxsackievirus infection was reported to positively associate
with the incidence of hypertension in a Chinese Mongolian
population [75]. Furthermore, f3; AR-AAs were demonstrated
to recognise the carboxy-terminus of the ribosomal PO and
P2 proteins from Trypanosoma cruzi, the parasite that is
responsible for chronic Chagas heart disease [76-79]. Con-
versely, autoantibodies against human ribosomal P proteins
that are present in patients with systemic lupus erythemato-
sus cross-react with (but do not activate) the 3, AR [78]. These
findings may suggest that a high degree of sequence and/or
structural homology exists between 5, AR and ribosomal P
proteins.

4.3. Aberrant B Cell Function. Hypertensive stimuli such
as Ang II might act to directly modify the function of
B cells, such that their capacity to produce antibodies is
enhanced. Na*/H" ion exchangers (NHEs) are critical reg-
ulators of intracellular pH and are crucial to a variety of
fundamental cellular processes such as proliferation, growth,
and migration [80]. Studies from the 1990s demonstrated
that B cells isolated from a subset of hypertensive patients
display heightened activity of NHEs [81, 82]. Moreover,
these B cells were further characterised as having enhanced
G-protein activation, a higher proliferative capacity, and
augmented IgG and IgM antibody secretion compared to
B cells from nonhypertensive individuals [83, 84]. While
the mechanism underlying this increase in NHE activity in
B cells was not explored, in other cell types (e.g., VSMCs
and cardiomyocytes) it is known that AT, R stimulation can
enhance NHE activity [85-87]. Indeed, B cells express AT, R
[88] and we have preliminary data showing that stimula-
tion of B cells isolated from mice with Ang II potentiates
IgM formation in response to a known B cell stimulator,
the oligodeoxynucleotide CpG (Figure 3). Thus, amplified
antibody production may arise as a result of elevated NHE
function due to the direct activation of AT|R expressed on B
cells.

5. The Role of B Cells in Hypertension

Implicit in the previous discussion on antibodies in hyper-
tension is a potentially important role for the cell type
that produces antibodies, namely, B cells. In their seminal
study, Guzik et al. showed that recombinase-activating gene-
1 knockout (RAG1™/") mice—which lack T and B cells—
displayed a blunted hypertensive response to both Ang II
and deoxycorticosterone acetate/salt [89]. Whereas adoptive
transfer of T cells into RAG1™/~ mice recapitulated the full
hypertensive effects of AngII, transfer of B cells had no effect
[89]. There are at least two potential explanations for the lack
of effect of B cell adoptive transfer in Ang II-treated RAG1 ™/~
mice. First, it is possible that the adoptively transferred B cells
did not engraft in sufficient numbers to influence immune
function. Indeed, in a previous study it was shown that
retroviral-mediated reintroduction of the RAGI gene into
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RAG1™/™ mice restored T cells numbers back to levels in wild-
type mice, while B cell numbers only increased marginally
[90]. This suggests that the immunological environment in
RAGI/~ mice, while being favourable to the survival and
function of T cells, may be incompatible with the growth
and function of B cells. An alternative explanation may
lie in the different mechanisms that activate T cells and B
cells during an immune response. Whilst activation of T
cells relies primarily on antigen presentation from innate
immune cells such as dendritic cells (which are relatively
unaffected in RAGI™/~ mice), as discussed previously, B
cell activation and differentiation into an effector phenotype
normally requires interactions with Ty cells [6]. Hence, the
lack of T cells in RAGI™/~ mice may have precluded the
possibility of any adoptively transferred B cells becoming
activated. Indeed, a critical role of Ty cells in B cell activation
during hypertension was suggested in a recent study showing
that adoptive transfer of Ty cells from preeclamptic mice
into normal pregnant mice induced AT, -AA production and
elevated blood pressure [91]. Importantly, a B cell depleting
agent ameliorated both of these effects [91].

6. Therapeutic Implications

An understanding of the role of B cells and antibody pro-
duction during hypertension could aid in the refinement
of current treatment approaches and also in development
of novel antihypertensive therapies. For example, by iden-
tifying the autoantibodies that are specifically elevated in a
given hypertensive patient, it might be possible to “tailor”
the way their disease is subsequently managed for better
clinical outcomes; that is, individuals with AT,-AAs would
favourably respond to AT, R blockers over patients with L-
type VOCC autoantibodies, where calcium channel blockers
such as nifedipine would be preferred.

In terms of new therapeutic approaches, identification
of the specific pathogen-derived or neoantigens that lead to

BioMed Research International

elevated antibody generation in hypertension could lead to
immunisation strategies aimed at neutralising such antigens
or steering the immune response away from one that pro-
motes hypertension. Indeed, two vaccines against Ang I have
been developed and showed some early promise in reducing
blood pressure in hypertensive patients [92]. However, due to
their lower efficacy compared to conventional inhibitors of
the renin-angiotensin system, the vaccines did not proceed
into Phase III clinical trials [93, 94], and thus further work
is needed to determine if alternative immunisation strategies
(i.e., involving different adjuvants and/or immunogens) will
be more effective.

B cell-depleting agents, which include antibodies against
the B cell specific surface receptor CD20 and the B cell activat-
ing factor BAFF, are already in clinical use for the treatment of
autoimmune diseases such as lupus erythematosus [95] and
could potentially be used to treat hypertension. Of course,
these drugs have the potential for causing immunosuppres-
sion and hence their use might be best reserved for those
hypertensive patients that do not respond to conventional
therapies. Until recently, one of the main therapeutic options
for individuals with resistant hypertension was surgical den-
ervation of the renal artery [96]; however, the effectiveness
of this procedure has recently been called into question [97].
Thus, B cell-modulating drugs might yet be a safer and more
efficacious therapeutic option for such patients.

7. Conclusion

There is evidence that circulating antibody levels are elevated
in both essential and pregnancy-related hypertension. Many
of these antibodies appear to target receptors and ion chan-
nels known to be involved in the regulation of blood pressure.
Further studies are required to characterise the precise impact
that antibody binding has on the function of these proteins
and to uncover the mechanisms responsible for aberrant
antibody production in hypertension. Such studies should
not only allow us to evaluate the significance of elevated
antibody production in the pathophysiology of hypertension,
but they may also lead to the development of new therapeutic
approaches and/or the refinement of current approaches,
to improve the management of clinical hypertension in the
future.
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