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ABSTRACT 

Methods for assessing compound identification confidence in metabolomics and related studies 

have been debated and actively researched for the past two decades. The earliest effort in 2007 

focused primarily on mass spectrometry and nuclear magnetic resonance spectroscopy and 

resulted in four recommended levels of metabolite identification confidence – the Metabolite 

Standards Initiative (MSI) Levels. In 2014, the original MSI Levels were expanded to five levels 

(including two sublevels) to facilitate communication of compound identification confidence in high 

resolution mass spectrometry studies. Further refinement in identification levels have occurred, 

for example to accommodate use of ion mobility spectrometry in metabolomics workflows, and 

alternate approaches to communicate compound identification confidence also have been 

developed based on identification points schema. However, neither qualitative levels of 

identification confidence nor quantitative scoring systems address the degree of ambiguity in 

compound identifications in context of the chemical space being considered, are easily 

automated, or are transferable between analytical platforms. In this perspective, we propose that 

the metabolomics and related communities consider identification probability as an approach for 

automated and transferable assessment of compound identification and ambiguity in 

metabolomics and related studies. Identification probability is defined simply as 1/N, where N is 

the number of compounds in a reference library or chemical space that match to an experimentally 

measured molecule within user-defined measurement precision(s), for example mass 

measurement or retention time accuracy, etc. We demonstrate the utility of identification 

probability in an in silico analysis of multi-property reference libraries constructed from the Human 

Metabolome Database and computational property predictions, provide guidance to the 

community in transparent implementation of the concept, and invite the community to further 

evaluate this concept in parallel with their current preferred methods for assessing metabolite 

identification confidence. 
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INTRODUCTION 

Comparing Molecular Identification Among Omics Measurements 

In biomedical research, systems biology studies1-3 are used to discover new disease biomarkers 

and elucidate underlying biological mechanisms. Such studies are driven by multiple high-

throughput omics technologies: genomics,4, 5 transcriptomics,6 proteomics7, 8 and metabolomics.9, 

10 Genomics and transcriptomics are the most mature, owing to the more limited chemical diversity 

of DNA and RNA relative to proteins or metabolites,11, 12 the fidelity and accuracy of the associated 

measurement techniques (i.e. sequencing)5, and the breakthrough of having a complete human 

genome reference sequence as a result of the Human Genome Project.13 Today, whole genomes 

can be sequenced in just 1-2 days with error rates <0.1%,14 using modern high throughput 

sequencing technology (e.g. Illumina NovaSeq) and exploiting the fidelity of DNA polymerase for 

molecular replication and the specificity of fluorophores read from labeled base pairs.5 

Proteomics is next in technical maturity. This is because proteins have only slightly greater 

chemical diversity compared to DNA and RNA, as they are composed of 22 amino acids. 

However, the complexity of the proteome can increase greatly if all possible protein post-

translational modifications (PTMs; e.g. phosphorylation) are considered, and the computational 

time required for processing mass spectrometry-based proteomics data scales exponentially with 

the number of PTMs considered. Mass spectrometry-based proteomics7, 8 exploits several 

characteristics of proteins and their constituent peptides. First, proteins are direct readouts of the 

genetic code, and if the genome is known, then associated protein sequences can be 

determined.15 Second, peptides dissociate characteristically around the amide bond during a 

tandem mass spectrometry (MS/MS) measurement, allowing for accurate prediction of their 

fragmentation spectra.16, 17 These characteristics have led to analytical workflows that can 

determine the proteomes of moderately complex samples, as well as methods for estimating and 

controlling peptide and protein identification false discovery rates (FDRs).18, 19 Completely 

measuring the proteomes of highly complex samples (e.g., human blood plasma) requires a 

balancing of time and cost. In addition, comprehensive determination of post-translationally 

modified proteins20 and hybrid peptides21 remains challenging. 

Metabolomics is the least mature among the omics sciences, with high-throughput, untargeted 

measurements having the goal of identifying and quantifying as many non-protein, small 

molecules (e.g., 50-1500 Da) as possible. Given their high sensitivity and broad molecular 

coverage, a variety of liquid chromatography-mass spectrometry (LC-MS) techniques are used in 

untargeted metabolomics. Typically, LC-MS assays yield thousands of signals with unique m/z 

and retention time (RT) coordinates. Each signal, defined as a “feature”, represents a potential 

small molecule of interest. However, these features may also be due to chemical noise or 

contamination and chemical variants of small molecules such as protonated- or sodiated-adducts. 

The rate-limiting step in untargeted metabolomics is discerning among these signals to annotate 

the chemical structures associated with the detected features. The current paradigm for confident 

metabolite identification involves comparing experimental MS (or nuclear magnetic resonance 

spectroscopy; NMR) data from biological measurements to comparable data from purified 

reference metabolites that were measured under similar conditions, preferably in the same 

laboratory. Unlike proteomics, where the analytes of interest are encoded by the genome and 

limited to linear polymers of repeating amino acids, the chemical space being profiled in 

metabolomics is essentially unconstrained, especially if exogenous metabolites (such as food 

products), microbial transformations and other chemical exposures are considered. As a result, 
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much less is known about the complete composition of the human metabolome than the genome 

or the proteome. This is because relatively few reference standards are available relative to the 

known chemical space, and the measured properties such as mass fragmentation patterns are 

less predictable for metabolites than peptides. Consequently, metabolite identification in 

metabolomics is often prone to more errors or uncertainties than other omics technologies. Even 

if we could computationally predict all metabolites likely to exist in a given organism or biofluid, 

based on genomes or proteomes, the search would not be complete due to interaction of the 

organism with non-biological sources. As a result, even though metabolomics reference libraries 

continue to grow22, 23, they are unlikely to ever be complete. This has inspired efforts to increase 

reference data through enzymatic biotransformation of drugs and other xenobiotic chemicals.24 

Placing Confidence in Metabolomics Identifications 

Insufficient knowledge of, or constraints placed upon, which small molecules might be present in 

a sample creates unique challenges when attempting to identify the chemical structure associated 

with a feature detected in metabolomics analyses. Even with the most recent developments in 

software and innovative computational methods that can automate steps in the informatics 

workflow,25, 26 a critical question is the level of confidence that one has in the identifications 

proposed. The extent to which experimental data collected from a sample matches reference data 

is typically used to support feature identification. Unfortunately, there are often dozens to 

thousands of possible isomers in chemical and metabolomic databases. Isomers are chemicals 

with the same elemental formulae but different three-dimensional structures or different atomic 

positions. MS alone is not capable of disambiguating most of these isomers. In addition, other 

kinds of isomers may exist for which reference data do not yet exist.27 Hence, apart from the 

accurate mass (monoisotopic m/z) data and MS/MS spectra obtained from a MS measurement, 

complementary data from additional analytical measurements (e.g., retention time, collision cross 

section (CCS), NMR spectra, different ionization modes or chemical derivatizations) improve 

identification confidence by limiting the number of potential compounds that satisfy the given 

match criteria28. However, currently there is no method for quantifying the ambiguity in a 

metabolite identification in context of the chemical space being considered. Accurately estimating 

total FDR in compound identifications is still in its infancy in metabolomics.29-31 

In 2005, a Metabolomics Standards Workshop32 was convened by the U.S. National Institutes of 

Health and the Metabolomics Society with the goal of establishing a Metabolomics Standards 

Initiative (MSI)33 that would consider and recommend minimum reporting standards for describing 

various aspects of metabolomics experiments. The MSI consisted of five working groups 

comprised of international experts in metabolomics research and that developed recommended 

requirements for biological context, chemical analysis, data processing, ontology, and data 

exchange associated with metabolomics studies. In 2007, the Chemical Analysis Working Group 

of the MSI published the seminal paper on the minimum information for reporting the chemical 

analysis metadata associated with a metabolomics study, including a 4-level, qualitative scheme 

for reporting metabolite identification confidence.28  These MSI-levels have been revised to 

include additional considerations34 or other data types35 but have remained largely unchanged. In 

2014, Sumner et al.36 and Creek et al.37 proposed a transition from the existing qualitative 

metabolite identification confidence levels to a quantitative scoring system based on identification 

points (IP), citing the bias of the traditional MSI-levels towards identifications made in the context 

of data from authentic reference compounds or the need for more granularity in the levels, 

respectively. Most recently, Alygizakis and colleagues used a machine learning approach to 
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develop a new IP-based system.38  All three papers cited the EU Guideline 2002/657/EC39 as a 

motivating example. 

Reporting qualitative MSI-confidence levels in metabolite identifications is infrequently and 

inconsistently used by members of the metabolomics community. This is likely because assigning 

confidence scores is still a subjective process for most data reporters. Recipients of such data 

reports lack sufficient information or tools to independently verify metabolite identifications. Many 

reports include only chemical names, but not chemical or structure identifiers like PubChem 

Compound Identifications (PubChem CIDs) or International Chemical Identifiers (InChIs).40 

Chemical names can be highly ambiguous and misleading for data consumers and easily lead to 

problems in comparing data across different biological studies, as recently highlighted by 

arguments in the lipidomics literature.41 For scientists who process LC-MS/MS data, deciding 

whether a given experimental MS/MS spectrum matches a reference spectrum is dependent on 

the metric used, the threshold set, and many other ambiguous decision points.29 The current best 

alternative to MSI-confidence levels is to provide both raw and processed data in public 

repositories such as the Metabolomics Workbench42 and MetaboLights43 to support claims of 

reported metabolite identifications and to allow for independent verification. 

Expanding from Measures of Confidence to Measures of Ambiguity 

For both qualitative levels of metabolite identification confidence28, 34, 35 and quantitative scoring 

systems36, 37, the methods are not easily automated or transferable between analytical platforms 

(e.g., MS and NMR) and the degree of ambiguity or uncertainty in identifications is not fully 

represented. That is, given a reference library of a certain size and composition, and an analytical 

approach of certain resolution and precision, what is the likelihood of one identification being more 

correct than another given the available evidence? Here, we introduce a concept for moving from 

levels of identification confidence or cumulative point scoring systems to a universal method that 

assigns a mathematical probability to a given identification being correct. Importantly, this concept 

considers the composition and size of the reference library used, the numbers and types of 

measurement dimensions included in the experimental analysis, and each measurement’s 

precision. It is also easily automated and the results transferable between analytical platforms. 

 

INTRODUCTION TO METABOLITE IDENTIFICATION PROBABILITY 

Logic Supporting the Concept 

Metabolite identification probability represents a first step in moving away from semi-manually 

assigning subjective, constantly evolving levels of identification confidence (e.g., MSI levels) or 

IP-based methods towards a universal, automated method. Importantly, while methods for 

estimating FDRs for non-peptide small molecules have been explored in the context of MS/MS 

spectral matching, these have not been extended to other technologies (e.g., NMR) and data 

types (e.g., retention times, CCS values). The identification probability concept that we introduce 

here can be applied to any metabolomics measurement technology or method that relies on 

reference libraries (e.g., MS, GC-MS, LC-MS, LC-ion mobility spectrometry (IMS), LC-IMS-MS, 

LC-IMS-MS/MS, NMR, LC-NMR, etc.). Identification probability is defined as follows: 

Identification Probability = 1/N  
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where N is the number of molecules in a reference library that match an experimentally 

measured feature within the precision(s) of the given measurement technology or method and 

the user-defined tolerances allowed in the measurement precision(s) 

Based on this definition, higher dimensional analytical approaches or those that provide 

measurements of more properties should provide higher probability in a compound identification 

due to their ability to provide higher resolution of chemical space, while larger reference libraries 

would make it more difficult to completely resolve molecules in chemical space due to higher 

potential for conflicts.  

Let’s consider a single dimension or single property analysis to start. MS when used alone 

produces mass spectra, and the spectra will have a given resolution, based on the type of mass 

spectrometer used. Fourier transform ion cyclotron resonance (FTICR)-MS provides the highest 

mass resolution among current mass spectrometers used for metabolomics and related studies 

and can lead to extremely high accuracy in determining the exact molecular formulae that 

correspond to detected isotope patterns in the mass spectrum. The determined molecular 

formulae can then be searched against an appropriate reference library consisting of known 

molecular formulae; in our example, we consider a subset of the Human Metabolome Database 

(HMDB)44 consisting of 22,077 non-lipid molecules for which computationally-predicted reference 

data were generated (Supplemental Table S1). If one were to perform a metabolomics 

experiment and detect a feature with protonated exact mass equal to 116.07115 Daltons, then 

the calculated molecular formula would be C5H9NO2, which may correspond to the target molecule 

4-amino-2-methylenebutanoic acid. When that formula is searched against the down-selected 

HMDB library that contains molecular formulae for up to 9 compounds with the same formula, 

then the probability of the experimentally measured formula C5H9NO2 actually being 4-amino-2-

methylenebutanoic acid (or any of the 9 candidates) would be 1/9 or 11% (Figure 1). Now, on the 

other end of the extreme, let’s consider a multi-dimensional analysis, such as IMS-MS/MS. From 

this analysis, we would determine an IMS drift time or CCS value, a MS/MS spectrum and an 

accurate mass. The individual measurement precisions of any of these dimensions is not 

sufficiently high as to allow exact determination of any given property, and so matching of 

experimental data to the library proceeds within ranges or tolerances determined by typical 

experimental precision: ± 10 ppm for mass, ± 1% for CCS, and ≥ 850 for cosine similarity score 

(for MS/MS spectral matching). In the example shown in Figure 1 for the target molecule 4-amino-

2-methylenebutanoic acid, the combination of ± 10 ppm and ± 1% CCS reduces the candidates 

in the reference library to 7, and the identification probability for all candidates is 1/7 or 14%. For 

the same example, the combination of ± 10 ppm, ± 1% CCS, and ≥ 850 cosine similarity score 

reduces the candidates in the reference library to 1, and the identification probability is 1/1 or 

100% for the measured feature corresponding to the target molecule 4-amino-2-

methylenebutanoic acid. A key advantage to higher dimensional analyses is that the likelihood in 

complete overlap among property sets for library entries decreases roughly in proportion to the 

number of dimensions of the analysis.  
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Figure 1. Demonstration of the metabolite identification probability concept using 4-amino-2-

methylenebutanoic acid as the target molecule. Conventional metabolite identification (left panel) is based on 

manual or semi-automated comparison of experimental data to similar data contained in reference libraries, with final 

identification confidence determined by a data analyst. Probability-based identification (right panel) is similarly based 

on comparison of experimental and reference library data and is fully automated. Identification probability is defined as 

1/N, where N is the number of molecules in the reference library that match an experimentally measured feature within 

the precision(s) of the given measurement technology or method and the user-defined tolerances allowed in the 

measurement precision(s). In the examples shown, the target molecule is 4-amino-2-methylenebutanoic acid, and the 

reference library is a subset of HMDB consisting of 22,007 non-lipid molecules. In the top row, identification is based 

on a single dimension of analysis, formula match (1). In the middle row, identification is based on the combination of ± 

10 ppm and ± 1% CCS matching (2). In the bottom row, identification is based on the combination of ± 10 ppm, ± 1% 

CCS, and ≥ 850 cosine similarity score match (3). 

Impacts of reference library size, property match tolerances, and analysis dimensionality  

To evaluate how library size, property match tolerances, and dimensionality of analytical analysis 

might impact metabolite identification probabilities, we further explored the 22,077 non-lipid 

molecules from HMDB, as well as a complementary set of 44,537 lipid molecules (Supplemental 

Table S2), from the same source. The molecules were classified into a chemical ontology using 

the ClassyFire tool,45 and compounds with an invalid chemical classification value (“NA”) were 

excluded (Supplemental Figure S1). The two molecule sets were placed in separate matrices, 

together with the protonated mass (m/z), RT, CCS, and MS/MS spectra for each molecule. The 

protonated mass was calculated from the protonated molecular formula. DarkChem46 was used 

to predict CCS for all lipid molecules; for non-lipid molecules, DarkChem, AllCCS,47 and 

DeepCCS48 were used to predict CCS for 9308, 10,669, and 2100 molecules, respectively, as 

indicated in Supplemental Table S1. RTs were predicted using Retip49 under hydrophilic 

interaction liquid chromatography (HILIC) conditions for non-lipid molecules or reversed-phase 

chromatography conditions for lipid molecules (based on ClassyFire assigned superclass of 

“Lipids or Lipid-like molecules”), and MS/MS spectra were predicted using CFM-ID 4.050 at a 

“medium” collision energy level of 20 eV. We then matched each of the two molecule sets and 
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their calculated/predicted properties to themselves to simulate the processing of a metabolomics 

data set. 

Impact of reference library size. To evaluate the impact of reference library size on metabolite 

identification probability, we performed Monte Carlo simulations to randomly draw smaller library 

subsets (e.g. 1,000, 5,000, or 10,000 molecules) from the full lipids and non-lipids libraries. We 

evaluated 100 randomly drawn subsets for each library size, matched each subset to itself by 

mass (±10 ppm), aggregated results, and compared the number of matches returned per 

database search (Error! Reference source not found.2). Our results demonstrate that as the size o

f the library increases, the relative proportion of matches at a given probability decreases; thus, 

smaller reference libraries will tend to yield artificially high identification probabilities. Comparing 

lipids vs non-lipids, the impact of reference library size on identification probability is more 

pronounced for libraries with more heterogenous content. 

 

Figure 2.  Impact of reference library size on metabolite identification probability. Monte Carlo simulations were 

performed to randomly draw subsets of the full lipids (left panel) and non-lipids (right panel) reference libraries of size 

1K, 5K, and 10K. Match probability is shown on the x-axis, and the proportion of compounds in each dataset matched 

within ±10 ppm and with a given probability is shown on the y-axis. For example, for non-lipids, a little over 40% of 

compounds are unambiguously matched when matching the full library to itself with a mass tolerance of ± 10 ppm. 

Solid lines indicate the mean value, and shaded regions indicate ± 1 standard deviation from the mean based on 100 

Monte Carlo simulations (note that no shaded region exists for the full dataset, for which random subsets were not 

drawn).  

Impact of property match tolerances and dimensionality of analytical analysis. We next 

evaluated the impacts of individual property match tolerances and the dimensionality of the 

analytical analysis on metabolite identification probability. Overall, varying property match 

tolerance has different impacts on the number of unambiguous identifications depending on the 

property considered. For instance, the evaluated m/z match thresholds gave rise to little, if any, 

change in the proportion of unambiguous matches from both the lipids and non-lipids datasets, 

either alone or in combination with other properties (Error! Reference source not found.3). We h

ypothesize that the low variance in match performance across m/z tolerances can be attributed 

to the relative density of compounds occupying m/z space vs. the variability of the error thresholds 

in practical terms. For instance, at an m/z of 800 Da (close to the median m/z for lipids of 821.8 

Da), the error thresholds of ± 0.1, 1, 5, and 10 ppm correspond to  0.00008 Da,  0.0008 Da,  

0.004 Da, and  0.008 Da, respectively. The resolutions may not differ sufficiently to effect 

significant changes to the number of matches within each corresponding tolerance. 
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In contrast to m/z, CCS search tolerance has a more pronounced impact on unambiguous 

matches. While searching by CCS alone produces zero or near-zero unambiguous matches 

across both lipids and non-lipids datasets, when used in combination with other analytical 

dimensions, the effect of CCS search tolerance becomes much more pronounced. In some cases, 
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Figure 3. Impact of property match tolerances and dimensionality of analytical analysis on metabolite 

identification probability for lipids (left) and non-lipids (right). Each boxplot summarizes the fraction of each 

database that is unambiguously matched (k = 1) when varying the search tolerances evaluated in each dimension (m/z, 

CCS, RT, and MS/MS, respectively) as shown. The first set of boxplots in each plot represent results when only 

considering the dimension of interest and varying search tolerance within that single dimension, with the subsequent 

boxplots depicting results upon inclusion of additional search dimensions but only varying the search tolerance of the 

first dimension. For each dimension, search tolerances include m/z ± 0.1 ppm, ± 1 ppm, ± 5 ppm, and ± 10 ppm; CCS 

± 0.1%, ± 1%, and ± 3%; RT ± 0.1 min, and ± 0.5 min; and MS/MS cosine score ≥ 750, ≥ 850, and ≥ 950.  

we observe a two-fold or even greater increase in the fraction of the dataset which can be 

definitively matched, particularly in the case of lipids (Error! Reference source not found.3). Our s

imulation data suggests that when used in conjunction with other measurements, accurate CCS 

measurements have the potential to increase the number of confident identifications. However, 

we note that the highest-accuracy CCS error threshold evaluated is a CCS error of  0.1%, which 

may be achievable experimentally only using very high-resolution ion mobility separations, such 

as structures for lossless ion manipulations (SLIM).51 Inclusion of CCS in compound matching at 

this tighter threshold produced marked improvements in the proportion of unambiguous matches.  

Neither of the two RT thresholds evaluated ( 0.1 min and  0.5 min) produced any unambiguous 

matches in the database using RT alone for the lipids or non-lipids datasets (data not shown). 

However, as with CCS, RT combined with additional measurement dimensions produced more 

confident matches (Figure 3). Reducing the RT tolerance from 0.5 min to 0.1 min correspondingly 

increases the proportion of unambiguous matches. While the observed effect is smaller than the 

impact of CCS, the inclusion of RT still substantially improves unambiguous identifications, 

especially compared with m/z.  

Finally, we evaluated the impact of the MS/MS spectral match threshold. We chose to use cosine 

similarity score due to its ubiquitous use; however, we note that alternative scoring algorithms, 

such as spectral entropy,29 have demonstrated improvements over cosine similarity. Based on 

the range of typical scoring thresholds used for MS/MS matching, we evaluated cosine similarity 

thresholds of 750, 850, and 950. Our results show that among both lipids and non-lipids, MS/MS 

score alone is the best-performing singular measurement in terms of identifying compounds 

unambiguously (Figure 3). In contrast to m/z, however, increasing the MS/MS cosine score 

threshold resulted in significant increases to the proportion of compounds producing 

unambiguous matches in both the lipids and non-lipids libraries. In fact, when matching by MS/MS 

cosine score alone, 63% of non-lipids can be accurately matched with a cosine similarity score of 

≥950, compared to just 24% with a cosine score of 750. As before, the MS/MS dimension can be 

combined with other measurement dimensions to achieve an even greater fraction of 
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unambiguous identifications; in fact, all the best-performing multi-dimensional search parameter 

sets include MS/MS.  

While the example data and toy metabolite identification probability analyses discussed above 

are LC-MS-centric, the concept is applicable for any workflow that produces metabolite 

identifications through matching experimental data to similar data in reference libraries, such as 

NMR and GC-MS. Indeed, many NMR spectral matching algorithms, such as those used in 

MagMet52, Bayesil53 and Chenomx54, use concepts similar to the cosine similarity score used in 

MS/MS. Likewise, GC-MS uses equivalent concepts as LC-MS/MS for spectral matching.   

 

THE ROLE OF REFERENCE LIBRARIES AND HOW TO POPULATE THEM 

Current Landscape and Use of Reference Libraries for Compound Identification 

The metabolite identification probability concept introduced here depends on the size and 

contents of the reference library used. As such, it is essential that reference libraries are populated 

and used correctly. In the following discussion, we describe the current landscape and use of 

reference libraries for compound identification and provide recommendations to the community 

for their use as it relates to metabolite identification probability. For the purposes of this 

discussion, we assume that the contents of these reference libraries are correct and accurate. 

Reference libraries contain varying levels of curated information about compounds (e.g., 

structure, properties, and classifications). At a minimum, useful reference libraries contain 

compound structures in machine readable formats or public identifiers that map to chemical 

structures, alongside derived properties such as elemental formulae and exact monoisotopic 

masses. In particular, many reference libraries developed for use with specific analytical 

approaches contain measurable observables, such as observed precursor ions and MS/MS or 

NMR spectra. They also include experimental metadata that define these spectra, such as the 

type of instrument used or e.g., details of the MS/MS fragmentation method that was applied. For 

the case of high-resolution MS (HRMS), the data can be used to directly search against exact 

masses of known, expected, and even predicted chemical structures. If HRMS data accuracy of 

<0.002 Da is achieved, chemical formulae can be inferred using a variety of different software 

tools, especially if MS/MS and isotope ratio information is included.55-59 Note that a mass resolving 

power of R<250,000 means that alternative formulae might still need to be considered.60  

Many open-access reference libraries exist in the form of compound collections that contain mass, 

formula and structure information for millions of known, suspected or predicted compounds (Table 

1).  These include PubChem61 which has nearly 110 million compounds, ChEMBL62 with 2.1 

million compounds, and the US-EPA CompTox Chemicals Dashboard63 with 1.2 million 

compounds. All of these support mass and formula searching. However, they also include a large 

fraction (>99%) of anthropogenic molecules, making these libraries somewhat more suited for 

exposomics64 or environmental testing studies and less suitable for traditional metabolomics 

studies that focus on physiological metabolites. A number of reference libraries exist that focus 

on storing only known biologically-related compounds. For example, the Human Metabolome 

Database (HMDB) now accounts for 248,097 compounds,44 Lipid Maps65 lists  45,684 
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compounds, KEGG66 denotes 18,784 compounds, and MetaCyc67 includes 16,861 compounds. 

These databases continue to expand in coverage and content and such databases are much 

more suitable for traditional metabolomics studies.  

Library 
Number of 

Compounds 
URL Citation 

ChemSpider >129,000,000 http://www.chemspider.com/ 68 

PubChem >119,000,000 https://pubchem.ncbi.nlm.nih.gov/ 69 

CompTox Chemicals 
Dashboard 

>1,200,000 https://comptox.epa.gov/dashboard/ 63 

RaMP-DB 2.0 >256,000 https://rampdb.nih.gov/ 70 

Human Metabolome 
Database (HMDB) 

>250,000 https://hmdb.ca/ 44 

Metabolomics Workbench >164,000 https://www.metabolomicsworkbench.org/ 42 

Chemical Entities of 
Biological Interest (ChEBI) 

>160,000 https://www.ebi.ac.uk/chebi/ 71 

LipidMaps >47,000 https://www.lipidmaps.org/databases/lmsd/overview 65 

Natural Products Atlas >33,000 https://www.npatlas.org/ 72 

Metabolights >27,000 https://www.ebi.ac.uk/metabolights/index 43 

Kyoto Encyclopedia of Genes 
and Genomes (KEGG) 

>19,000 https://www.genome.jp/kegg/ 66 

MetaCyc >18,000 https://metacyc.org/ 67 

 

While m/z or formula searching is relatively easy to perform, and the sizes of the reference 

libraries mentioned above are often very large, the reliability of these single parameter matches 

is often quite poor. Indeed, it is often possible to get hundreds of potential matches with a single 

m/z, or even formula, query (Figure 4).73, 74 Additional “observable” information is needed to add 

 
specificity and increase confidence in tentative compound identifications.28, 34 Generally, the most 

accessible and reproducible experimental measurements, beyond molecular weight, are spectral 

Figure 4. Size, composition, and uniqueness of representative reference libraries. (A) Number of unique 

compounds by structure (based on unique canonical SMILES generated by RDKit; Left Panel), and percent of 

compounds unique by formula or parent mass (Right Panel). Unique by parent mass indicates that there are no 

other compounds with a mass within 5 ppm. (B) Percent of library compounds that conflict by parent mass with 

up to >100 other molecules. Number of conflicts by parent mass is a count for how many other structures within 

the given library have a mass within 5 ppm. If there are 0 conflicts for a given structure, it is considered unique by 

parent mass. 

B A 

Table 1. Compound collection reference libraries.  These reference libraries function primarily as collections of compounds 

and include chemical structures, molecular formulae, masses and physicochemical properties, among other data.  
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or separations data. This includes MS/MS spectra (for LC-MS or CE-MS), electron ionization (EI) 

spectra (for GC-MS) or NMR spectra, and retention times (RT; for LC) or retention indices (RI; for 

GC) and drift times or collision cross sections (CCS) for IMS data. More recent technology 

developments allow for the collection of infrared spectra in-line with IMS and MS measurements.75 

The intensity, position, number and character of the peaks seen in MS/MS or NMR spectra is 

often considered sufficient to make identifications of metabolites; however, as shown in Figure 3,  

MS/MS spectral match alone is insufficient for providing unambiguous identification of metabolites 

when matching to large reference libraries. Several different scoring schemes are available to 

facilitate spectral matching and scoring and offer superior results to simply matching based on a 

mass or formula.76, 77  Recently, spectral entropy was developed as a new MS/MS scoring scheme 

to particularly account for spectra with few fragment ions, as often observed in small molecule 

analyses.29 The chromatographic and separation parameters are related to physicochemical 

properties (e.g., size, shape, charge, boiling point, hydrophobicity) and provide information that is 

fundamentally different from measured mass or fragmentation spectra. RI and CCS values can 

be relatively instrument- or condition-independent with proper calibration, making them highly 

reproducible and suitable for compound identification. CCS values are particularly reproducible, 

with relative standard deviations <1% reported in interlaboratory comparisons and under 

standardized conditions.78 Fragmentation spectra (from GC-MS or LC-MS/MS) are generally 

relied upon the most in identification workflows due to their specificity and wide availability of 

associated instrumentation. GC-electron ionization mass spectra were standardized over 60 

years ago. Yet, in comparison, measured spectra from LC-MS/MS are harder to standardize due 

to the variability between instruments, the fragmentation conditions and the collision energies 

used. Therefore, MS/MS libraries often contain multiple spectra for each compound. 

Because of their utility in providing additional confidence in metabolite identification, there are a 

growing number of both commercial and open-access reference libraries that contain various 

properties from experimental measurements of pure reference compounds and that are available 

for matching to metabolomics data. Popular reference libraries that contain mass spectral data 

are MassBank.eu, MassBank of North America (MassBank.us), the NIST spectral library,77 

METLIN,22 and mzCloud, as well as commercial libraries produced by Waters, Sciex, Bruker, 

Agilent, and Thermo Fisher. Other resources exist that contain both spectra from analysis of pure 

compounds but also large numbers of spectra of unknown compounds from analysis of real 

samples, such as GNPS.79 Some of the more popular NMR spectral libraries are the 

BioMagResBank,80 NMRShiftDB,81 NP-MRD,82 and COLMAR,83 as well as commercial libraries 

produced by Bruker and Chenomx. Popular reference libraries that contain RI and/or CCS 

include: the NIST RI library, the FiehnLib RI library,84 the Unified CCS Compendium,85 the Sumner 

CCS library86 and several commercial CCS libraries from instrument vendors such as Bruker, 

Agilent and Waters. MassBank.us contains many metabolites with LC-based retention times, 

including for hydrophilic interaction chromatography (HILIC)49. In contrast to standardized gas 

chromatography RI and CCS measurements, LC RT and electrophoretic mobilities are not easily 

translated from instrument to instrument or from one configuration to another. As a result, 

reference libraries for LC RT and electrophoretic mobility are often quite small.  Recently however, 

the developers of METLIN released a reference library containing >80,000 RTs measured for 

small molecules, called SMRT.87 These data, the largest of their kind, were collected using a 
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single standard chromatographic protocol but has not been validated yet by independent means. 

A more detailed listing of reference libraries focused on housing data from analyses of pure 

reference compounds, their contents, and the number of entries found is provided in Table 2. 

Library Number of 
Compounds 

Number of 
Experimental 

Reference Values 
URL Citation 

Metlin >860,000 5 million spectra https://metlin.scripps.edu/ 88 

NIST20 EI-MS 
library >306,000 >350,000 spectra 

https://www.nist.gov/programs-projects/nist20-
updates-nist-tandem-and-electron-ionization-

spectral-libraries 
N/A 

NIST RI library 
2020 >139,000 

>447,000 retention 
indices 

https://chemdata.nist.gov/dokuwiki/doku.php?id=che
mdata:ridatabase N/A 

NIST20 
Tandem MS 

library >31,000 
>1.3 million 

spectra 

https://www.nist.gov/programs-projects/nist20-
updates-nist-tandem-and-electron-ionization-

spectral-libraries 
N/A 

MassBank of 
North America 

(MoNA) >227,000 >197,000 spectra https://mona.fiehnlab.ucdavis.edu/ 
N/A 

mzCloud >21,000 
>10.7 million 

spectra https://www.mzcloud.org/ N/A 

MassBank 
Europe >15,000 >90,000 spectra https://massbank.eu/MassBank/ N/A 

Biological 
Magnetic 

Resonance 
Data Bank 

(BMRB) >1,300 
>10 million 

chemical shifts https://bmrb.io/ 

80 

NMRShiftDB >40,000 >68,000 spectra https://nmrshiftdb.nmr.uni-koeln.de/ 81 

Natural 
Product 

Magnetic 
Resonance 

Database (NP-
MRD) >87,000 >1500 spectra https://np-mrd.org/ 

82 

FiehnLib RI 
library >1200 

>1200 retention 
indices https://fiehnlab.ucdavis.edu/projects/fiehnlib 

84 

AllCCS >2100 >3500 CCS http://allccs.zhulab.cn/ 47 

Unified 
Collision Cross 

Section 
Compendium >1700 >3700 CCS 

https://mcleanresearchgroup.shinyapps.io/CCS-
Compendium/ 

85 

 

Recent Advances in In Silico Tools for Expanding Reference Libraries  

As can be seen from Table 2, measured observable data is very limited compared to the number 

of structures we know or suspect to exist. While many reference libraries containing 

experimentally determined values exist, most are currently too small or too incomplete to satisfy 

the needs of metabolomics studies. The most comprehensive untargeted MS-based 

Table 2. Reference libraries of observable data.  These reference libraries contain listings of compounds and their 

observable data, such as mass spectra, retention indices, NMR spectra and CCS values.  
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metabolomics experiments that rely on today’s reference libraries can identify up to 10% of the 

observed features.89 However, such ratios depend on the type of data processing and assay: for 

GC-MS based metabolomics or in lipidomics assays, the ratio of identification is typically at 30% 

of features that have associated mass spectra.90 In fact, high quality data processing should 

include measures of blank sample corrections, adduct deconvolution and the use of pooled 

sample quality controls to reduce the number of spurious features in assessments of metabolome 

coverage statements. 

One route for increasing the amount of observable data in reference libraries is through the 

synthesis or isolation of molecules of interest. However, if one assumes that the total number of 

all known and predicted metabolites, as well as all known anthropogenic chemicals, found in 

humans is ~2 million compounds and the cost to isolate or synthesize and to comprehensively 

characterize these compounds is ~$5000/chemical, such an effort would cost in excess of $10 

billion USD. This initiative would easily take 20+ years and consume a significant portion of the 

NSF or NIH budget. In other words, the time and cost to make the comprehensive reference 

library required for the metabolomics community is simply not feasible. A more cost-effective 

approach will have to be developed. We believe that a viable option, and the future of reference 

library growth, is via in silico approaches. Simply stated, computational approaches could be used 

to generate in silico (i.e., predicted) observable data, based on validated methods.  We propose 

this because of the foundational developments in chemistry and physics and the need to identify 

a vast number of unidentified features.  Development of various machine learning- or quantum 

chemistry-based approaches (reviewed in91) and tools for in silico prediction of various types of 

spectra and other observables has increased the size and chemical appropriateness of existing 

reference libraries. Indeed, there are now several well-developed software tools for predicting 

electron ionization-mass spectrometry (EI-MS), electrospray ionization-tandem mass 

spectrometry (ESI-MS/MS) and NMR spectra, CCS, and RT values using combinatorial 

approaches, machine and deep learning methods, and quantum mechanical techniques. For ESI-

MS/MS spectral prediction, several machine learning methods including MetFrag,92 CFM-ID,93 

MS-FINDER,94 ChemDistiller95 and MAGMa96 have appeared. CFM-ID, MS-FINDER and MAGMa 

in particular have shown excellent performance in terms of spectral prediction accuracy in multiple 

independent tests.97, 98 For EI-MS spectra, two machine learning methods (CFM-ID-EI99 and 

NEIMS100) have been described and both perform well. Separately, a quantum mechanical 

method called QCEIMS101 has been developed to predict EI-MS spectra and more recently ESI-

MS/MS spectra with QCxMS.102 QCEIMS and QCxMS are significantly slower than the ML 

methods, but they provide useful insights into the EI and ESI fragmentation processes. 

Just as with EI-MS, both machine learning and quantum chemistry methods have been developed 

to predict NMR spectra (1H, 13C, 1D and 2D). Density Functional Theory (DFT) has been used for 

many years to predict NMR chemical shifts and coupling constants with errors as small as 0.2 

ppm for 1H shifts and 2.5 ppm for 13C shifts.103, 104 This level of precision can enable distinction of 

closely related diastereomers.105 ISiCLE, which uses NWChem106 for calculations, is an example 

of a recently developed DFT method that is now being used to calculate 1H and 13C NMR spectra 

for thousands of natural products that do not have measured NMR spectra in NP-MRD.82 It is 

expected that ISiCLE will be able to create one of the world’s largest in silico-predicted NMR 

spectral libraries by the end of 2024.  It is also possible to use machine learning and neural 
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networks to predict the NMR spectra of small molecules.103, 107 These programs tend to be much 

faster than QM methods and may be just as accurate.108  

Lastly, the prediction of separation properties, such as RI, RT, and CCS values, has become 

increasingly popular. Several machine learning-based programs for CCS prediction have recently 

appeared including DeepCCS,48 MetCCS predictor,109 and DarkChem.46 Quantum chemical 

methods, such as ISiCLE,110 have also been developed to accurately predict CCS values. 

Regardless of the method chosen, the typical errors between experimentally observed and 

predicted CCS values are as small as 2-3% with correlation coefficients greater than 0.95. Using 

these predictive CCS tools, several  reference libraries have been generated, containing 

hundreds of thousands of predicted CCS values, including CCSBase,111 AllCCS,47 and 

MetCCS.112 Similar efforts are being made in RI prediction and measured data curation.  The 

NIST 20 library contains more than 114,000 experimentally measured Kovats retention indices, 

used for GC-based metabolomics. Using these data, NIST scientists have recently developed a 

graph neural network approach that can predict retention indices with a mean absolute 

percentage error (MAPE) as small as 3% and a correlation coefficient of >0.98.113 This, by far, is 

the most accurate method for RI prediction ever published. A similarly accurate method for RI 

prediction has recently been implemented in the latest version of the HMDB which provides 6.7 

million RIs for >26,000 GC-MS compatible compounds (and their derivatives).44 In principle, these 

methods could be used to generate accurate RI values for each specific GC-MS method, for 

hundreds of thousands of molecules which do not have experimental RI data. In terms of RT 

prediction for LC, several efforts aimed at relative RT prediction have been undertaken using 

highly specified chromatographic conditions. These include the machine learning-based tools 

Retip,49 GNN-RT,114 and the METLIN SMRT predictor87 that showed RT median prediction errors 

as small as 5%. However, the correlation coefficients between experimental and predicted RTs 

are often only ~0.6, suggesting that RT prediction for LC has a long way to go before it matches 

the accuracy of RI prediction. 

With increasing popularity of in silico approaches to generating reference observables, there have 

been similar efforts to predict novel metabolite structures that can be added to reference libraries. 

Currently, there are two approaches for doing so.  One is to use enzymatic modeling to predict 

biotransformations or enzymatic by-products of starting molecules.115 The other is to use 

generative modeling and deep learning to create biofeasible structures.46, 116  Biotransformation 

prediction has been around for many decades and was pioneered by researchers in the drug 

metabolism community.117  As a result, a number of commercial programs have been developed, 

including Meteor Nexus, ADMET-Predictor, MetabolExpert and others, that predict Phase I 

(cytochrome P450) metabolism specifically for drug molecules and a small number of naturally 

occurring metabolites. These programs use expert-derived rules and large internal databases to 

perform look-ups and make their predictions. More recently, several open source or open access 

tools have appeared that perform biotransformation prediction for a larger collection of molecules. 

These include GLORYx,118 FAME 2,119 FAME 3,120 CyProduct121 and BioTransformer.115 These 

software packages, many of which use machine learning techniques, not only predict Phase I 

biotransformation, but also Phase II metabolism and microbial/gut metabolism for drugs, 

pesticides, herbicides and naturally occurring metabolites. Furthermore, they are also able to 

predict these transformations much more accurately than commercial, rules-based software. 
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One of these programs, BioTransformer, has recently been applied to predict the structures of 2 

million biotransformed molecules (Phase I + Phase II + microbial + promiscuous enzyme 

transformations) using a starting set of 120,000 compounds in the HMDB.  Other approaches 

have also made use of enzyme promiscuity to predict biofeasible metabolites. For example, the 

MINE (Metabolic In silico Network Expansions) database used an algorithm called the 

Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction 

rules to generate more than 570,000 biofeasible structures starting from 18,000 KEGG 

metabolites.122 At the time of writing MS-FINDER integrates structures and formulae for 224,622 

known metabolites94 and also includes 643,307 hypothetical metabolites from MINE-DB.122 The 

advantage of these biologically based in silico biotransformation methods is that the enzymatic 

reaction steps and enzymatic mechanisms are explicitly shown or referenced. In other words, the 

rationale and provenance for each predicted compound is available. The disadvantage is that 

these biotransformation programs can occasionally produce unreasonable combinatorial 

explosions. Likewise, they can’t make “out-of-the-box” predictions or generate non-obvious or 

unexpected metabolites. An expansion of this approach was recently published to encompass 

likely occurring chemical damage (such as oxidations) of molecules, in an analogous database 

called CD-MINE to cover spontaneously occurring chemical transformations.123  

Guidelines for Appropriate Reference Library Size and Composition 

Both the size and composition of reference libraries will impact the assessment of metabolite 

identification probability. A reference library that is too small can result in reduced false discovery 

rate and seemingly accurate, and thus overly confident, identification probabilities. One that is too 

large can result in increased false discovery due to the addition of compounds that are highly 

unlikely to be found in such a sample and reduced identification probabilities.30 Similarly, one 

should select the appropriate source of compounds to include in the reference library for a given 

sample type and use case. For example, if a study focuses on a specific organism in a laboratory-

controlled setting, then only those molecules potentially produced or consumed by the organism, 

present in growth media, for example, or known as common contaminants present in the chosen 

analytical method should be included in the reference library. That is, to prevent misidentifications, 

one should use organism-specific or sample-specific reference libraries of appropriate size and 

composition. By comparison, the proteomics community typically uses an appropriate protein 

FASTA file containing the amino acid sequences of all proteins expected in the organism(s) under 

study and that are based on translations of the corresponding genomes when searching peptide 

MS/MS spectra.   

Reference libraries for studies of specific organisms in controlled laboratory settings  

Different organisms can have profoundly different metabolic needs and metabolic capabilities. 

For instance, plants have very different metabolomes than animals.124 Furthermore, the regular 

consumption of processed foods, supplements, and drugs by humans means that people will 

have a very different metabolome than lab rats raised on strict chow diet. Indeed, direct 

comparison of plasma metabolomes showed that less than half the LC-MS signals were common 

to seven different mammalian species.125 These results argue for the need for appropriately 

specialized reference libraries for metabolomics studies to ensure the reliability of metabolite 
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identification.126 For studies of specific organisms in controlled laboratory settings, we recommend 

starting with reference libraries that are populated based upon either genome-enabled metabolic 

reconstructions (e.g., genome-scale metabolic models)127 or comprehensive review and curation 

of the literature in respect to metabolomics and other studies of metabolisms of specific 

organisms. There are a number of existing genome-scale metabolic models for certain organisms, 

such as E. coli,128 S. cerevisiae,129 M. musculus, D. rerio and D. melanogaster,130 as well as 

methods and resources for the scientific community to continue to expand these models or apply 

them to new organisms.131, 132 Of note, some of these models overly depend on genomic inference 

and have rather sparse metabolite information, for which metabolomics can contribute 

significantly to their expansion.23 Similarly, there are a number of reference libraries for specific 

organisms and derived from comprehensive review and curation of the literature, such as the 

Yeast Metabolome Database133, the E. coli Metabolome Database134, and the Pseudomonas 

aeruginosa Metabolome Database.135 PathBank contains literature-derived metabolome 

reference libraries from several other model organisms.136 When studying specific organisms in 

controlled laboratory settings, our recommendation is to use a reference library derived from 

comprehensive review and curation of the literature. If one is not available, then use an 

appropriate genome-scale metabolic model. Selecting a library from another organism that is the 

closest taxonomical relative can also be useful in supplementing a suspect library for an organism 

that has not been well studied. Finally, the organism-specific metabolite reference libraries should 

be supplemented with additional inputs from the experiment (e.g., growth media components), 

including common contaminants present in the chosen analytical method and that are likely to be 

identified in the experimental data (e.g., plasticizers). 

Reference libraries for studies of free-living organisms or environmental systems 

As mentioned above, additional considerations are necessary when developing reference 

libraries for free-living (e.g., humans) or environmental (e.g., soils, forests) systems. Such 

organisms or systems are not constrained to controlled settings and experience various and 

diverse inputs to their metabolomes on routine if not daily bases. Further, even within a given 

free-living system, a human subject for example, the metabolome of one organ or organ system 

can be very different than that of another. For example, the human blood metabolome is very 

different from the human urine metabolome.137, 138 Likewise, the plant leaf metabolome is very 

different from the associated plant rhizosphere.139 A number of reference libraries have been 

developed for free-living organisms. These include the previously mentioned HMDB,44 the 

Livestock Metabolome Database,140 and the Bovine Metabolome Database.141 Similarly, a variety 

of matrix-specific or biofluid-specific resources such as the Fecal Metabolome Database,142 the 

Saliva Metabolome Database,143 the Serum Metabolome Database,137 and the Urine Metabolome 

Database138 have also been publicly released. Such databases, or metabolome atlases, may also 

include aspects of the impact of disease or other factors. As an example, recently the Metabolome 

Atlas of the Aging Mouse Brain was published.144  As with laboratory-controlled systems, 

reference libraries for free-living organisms and environmental systems should be supplemented 

with other molecules that might be expected to be present in the organism or sample of interest, 

based on typical behaviors or environmental exposures. Examples of such molecules are 

contained within the Blood Exposome Database,145 which covers compounds identified in human 

blood; DrugBank,146 which covers approved drugs found in humans; the Toxic Exposome 
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Database,147 which covers toxic compounds found in humans; the Norman Suspect List 

Exchange,148 which covers common environmental or water contaminants and FooDB 

(https://foodb.ca), which covers food compounds and food additives found in foods consumed by 

humans.  Further, and as described above, researchers should supplement reference libraries for 

free-living organisms or environmental systems with information and properties for molecules that 

are generated via in silico predictions of relevant biotransformations or from in vitro or cellular 

incubations.24 Finally, the comprehensive reference libraries for free-living organisms and 

environmental systems should be supplemented with additional inputs from the experiment, 

including common contaminants present in the chosen analytical method and that are likely to be 

identified in the experimental data. 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE IMPLEMENTATION OF 

METABOLITE IDENTIFICATION PROBABILITY  

In this perspective, we have introduced a new concept of metabolite identification probability and 

have demonstrated its utility in mock identifications using reference libraries constructed from 

subsets of HMDB and computationally generated RT, CCS, m/z, and MS/MS data. The method 

is computationally simple, automatable, and transferable among analytical platforms. It requires 

only processed metabolomics data, appropriately defined tolerances allowed in the associated 

measurement precisions, and reference libraries that are comprehensive and appropriate for the 

system being queried. We recommend that the metabolomics and related communities (e.g., the 

non-target analysis community) join us in further exploring the metabolite identification probability 

approach to more fully reveal its potential and limitations, using real data from real studies and in 

parallel with their current preferred methods for assessing metabolite identification confidence 

(e.g., MSI levels), in order to accumulate data on method performance relevant to state-of-the-

art. Further extension of these concepts to unidentified features will be required to fully address 

e.g., unknown chemical hazards of the exposome.64, 149 

Metabolite identification probability is heavily dependent on the richness of the experimental data 

being matched to the reference library, the dimensionality and therefore overall resolution of the 

analytical measurement, the overall measurement precision(s), and the composition and size of 

the reference library itself. A key requirement for successful implementation of the metabolite 

identification probability concept is thus the availability of comprehensive and system-appropriate 

reference libraries. Further research and discussion within the community are needed to 

determine the repertoire of metabolites and related molecules that should comprise a reference 

library for a given system, such that metabolite identification probabilities are neither over- nor 

underestimated. Related, because of the limitation of commercial availability of reference 

compounds for all system-relevant small molecules, we recommend that the community begin 

adopting computational approaches for calculating or predicting the associated observable 

properties, such as spectra, such that reference libraries can be made complete. The accuracy 

of computationally predicted data should improve with time as methods and technology improve. 
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Finally, in order that reported metabolite identification probabilities can be transparent, we 

recommend that individual laboratories version their in-house reference libraries and make them 

available to the rest of the community as e.g., open mass spectral libraries (OMSL). Besides 

increasing transparency in calculations of identification probabilities, versioned OMSL and other 

libraries will be a tremendous resource to the metabolomics research community, as has already 

been demonstrated by resources such as GNPS79 and enabled through workflows such as 

FragHub.150 As inspiration for how such sharing might be implemented, the metabolomics 

community can look to the Universal Protein Knowledgebase (UniProtKB)151 as an example. 

UniProtKB is a freely accessible database of curated protein sequences that are used, among 

other purposes, as “reference libraries” for proteomics data searches. 
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