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Clara Pons1, Alfonso Jaramillo2, Santiago F. Elena1,4, Antonio Granell1*

1 Instituto de Biologa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-UPV, Valencia, Spain, 2 Synth-Bio Group, Institute of Systems and

Synthetic Biology, Universite d’Evry Val d’Essonne - Genopole - CNRS UPS3201, Evry, France, 3 Instituto de Hortofruticultura Subtropical y Mediterranea ‘‘La Mayora’’

(IHSM-UMA-CSIC), Algarrobo-Costa, Malaga, Spain, 4 The Santa Fe Institute, Santa Fe, New Mexico, United States of America

Abstract

Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that
large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational
methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed
lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of
a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic
properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model
was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits
with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered
for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites.
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Introduction

Considering a cell as a DNA-based molecular factory [1] and

applying principles drawn from industrial engineering provides

new approaches to optimize cellular performance (Figure S1). This

approach adopts the new philosophy implemented nowadays by

large industries that is known as Lean Manufacturing (LM). LM

consists in the implementation of standards based on elimination

of bottlenecks and processes without mark-up and minimization of

pathways and excessive costs. This approach can be applied to the

emerging fields of systems and synthetic biology, and allows

translating engineering concepts into biotechnology [2–4]. Our

main goal is to optimize the phenotypic response of a natural plant

biofactory, exemplified here by the edible tomato fruit, by using a

combined experimental and computational synthetic biology

approach. The approach involves re-designing the fruit factory

from within; i.e., by modeling and identifying the important genes

and intermediates for a given trait of agronomical interest.

Previous works have considered modeling the global metabo-

lism [5], transcription [6–11] or the integration of both in

microbial organisms [12–14] from the point of view of systems

biology. Many groups, using a re-designing strategy that is

characteristic of synthetic biology, have implemented genome-

scale re-designs and explorations of the gene knockout landscape

both in prokaryotes [15–17] and eukaryotes [18]. More recent

reports have tackled the prediction of phenotypes from metabolic

data based on statistical models for microbes [12] and plants [18–

20]. The next logical and desirable development should consist in

modeling phenotypes of interest in a complex organism from

metabolic and gene expression data. For that purpose we have

chosen tomato: a model plant for fleshy fruit -this being a natural

biofactory of nutrients and healthy compounds, and a plant of

agronomic interest with well-developed genetics and genomics

(http://solgenomics.net) and with extensive work on metadata

analysis [21–23]. We have assumed that at least in part the genetic

program of the fruit at the ripe stage should have an impact on the

metabolite content and also in other high order fruit traits. In this

study, we have used omic data that have been experimentally

obtained by means of transcriptomics, metabolomics and

phenomics for a large number of recombinant inbred lines (RILs)

derived from a cross of Solanum lycopersicum6S. pimpinellifolium.

Following the LM approach, we have developed here a novel in

silico optimization method that extensively explores single and

multiple genetic perturbations to render a series of desired tomato

phenotypes; i.e., show agronomical properties of biotechnological

interest. Recently, large efforts in genome-scale modeling have

been reported [24,25] (e.g., genome wide selection methods).

Herein, techniques based on reverse engineering were applied to a

large set of experimental omics data to obtain a kinetic model

based on ordinary differential equations (ODEs) that describe the

steady state concentration of mRNAs. This model has the

advantage of quantitatively characterizing the kinetic parameters
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describing molecular interactions that are essential for simulating

the genetic perturbations involved in redesigning genomes. Hence,

this model describes the fruit metabolic profile from gene

expression data for an autonomous subset of genes with potential

effect on transcription regulation. By capturing relationships

between metabolic profiles and high-throughput phenomic data,

our model was extended to predict changes in agronomic

properties that would be produced by specific changes in genetic

expression (Figure S2).

Finally, in order to close the design cycle imposed by LM, the

genetic modifications suggested by our computational approach

were experimentally verified. This was done by demonstrating the

predicted ability of the in silico modified fruit genomes to reproduce

the correlations between metabolites empirically found in the fruit.

We propose that the principles and practices learned from these

engineering success cases can help to formulate a model to guide

the design of new organisms with biotechnological applications.

Results

A genome-wide transcriptional model allows the
integration of tomato fruit metabolism

We have extended our recently developed inference method-

ology, InferGene [7], to obtain a gene regulatory model coupled to

metabolism that allows us analyzing optimality in terms of

specified agronomic and organoleptic properties of the tomato

fruit (Figure 1). For this, we have taken advantage of an

experimentally characterized subset of the metabolome of 169

tomato RILs, which includes the accumulation levels of 67

metabolites in the fruit and that contribute to the flavor (sugars,

acids and some volatiles), aroma (volatiles) and other quality traits

(such as color and healthy carotenoids and vitamins). Moreover,

we have also used the information on transcript levels from fruits

for a subset of the 50 RILs analyzed at the metabolic level, to select

5592 non-redundant genes that were consistently expressed in

those fruit samples (see Methods).

Transcriptomic and metabolomic data from these 50 RILs were

normalized by the LOWESS method [26] and used to construct a

model that predicts components of the fruit quality metabolome

from transcriptome data; i.e., level of a given metabolite is

effectively determined by the expression of a minimal set of genes.

The size of the space of possible gene-predictors was reduced in

one order of magnitude by using a CLR method (Dataset S1).

After that, LASSO method was used to find a minimal set of

potential predictor genes for each metabolite; subsequently,

multiple regressions were obtained to estimate the effective kinetic

parameters of a linear model based on ODEs that integrates

transcription and metabolism processes in steady state (Figure 2)

[7]. Values zw3 were used as optimal threshold in order to limit

the number of possible gene-metabolite interactions and minimize

the distance between the predicted and measured metabolic

profiles over the training set in terms of average Pearson

correlations (blue bars in Figure 2C; r = 0.85, 167 d.f.,

pv0:001). Hence, on average, each metabolite required 18 genes

for explaining its behavior, thus a total of 959 genes was required

to describe our tomato fruit metabolome. This subset of genes

constitutes the effective transcription network. We performed a 5-

fold cross-validation test to rule out dependence of the testing set,

this reducing the metabolite average prediction (red bars in

Figure 2C; r = 0.42, 167 d.f., p = 0.067 with a mean false positive

rate (FPR) of 14% and a 56% mean positive predictive value (PPV)

of predictors (bootstrap test, pv0:05 and pv10{5, respectively).

The next step was to construct an effective gene regulatory

model able to predict autonomously the transcriptional processes

that, by means of the model previously described, would generate

a quantitative metabolic response. In this way changes at the

transcriptional level resulting from the proposed genetic pertur-

bations could be translated and predicted effectively into metabolic

changes. For doing that, we used the microarray data obtained

from fruits of 50 of the RILs to infer a network of gene-gene

interactions. The CLR method provided the first sets (zw2) of

predictor genes for each gene considered. Afterwards, LASSO

method reduced the number of regulations per gene to a scale-free

space following a power-law with exponent c~5:47 (R2~0:91)

and an average of 26 interactions per gene. High values of

similarity between the predicted and measured gene expression

(blue bars in Figure 2D) were computed for the whole training set

(vrw~0:793, 48 d.f., pv0:001) while for a 5-fold cross

validation the average similarity (red bars in Figure 2D) was

r = 0.59 (48 d.f., pv0:1) with a mean FPR of the 25% and a

63%mean PPV of predictors (bootstrap test, pw0:365 and

pv10{5, respectively).

Specific metabolic combinations can reliably model
different aspects of the fruit phenotype

We addressed the question of whether the agronomic/

phenotypic properties of the tomato fruit could be determined

by their metabolite composition. For that, we studied the

relationship between agronomic properties and metabolic com-

position across 169 tomato RILs. We applied LASSO method to

select a set of metabolites that may act as predictors for each

agronomic property (Dataset S1). Our model included 47

metabolites observing considerably high Pearson correlations

between the measured and predicted phenotypic responses over

the 169 RILs for number of fruits per plant and fruit harvested

across two different seasons, (Figure 2A; r = 0.62 and r = 0.73

respectively, 167 d.f., pv0:001 in both cases). A reduction to

r = 0.46 (167 d.f., pv0:1) and r = 0.62 (167 d.f., pv0:05) in the

median correlation was computed in a 10-fold cross validation,

with 84% mean PPV in both cases (bootstrap test, pv0:001), and

mean FPR of 33% and 35% (bootstrap test, pv10{4 in both

cases), respectively. Average fruit weight and pH required as many

as 44 metabolites as potential predictors with high reliability levels.

Reliability was assessed by comparing the corresponding predicted

and measured values for the 169 RILs (Figure 2A; r = 0.85 and

r = 0.80, 167 d.f., pv0:001 in both cases). A 10-fold validation

only reduced those similarities to r = 0.73 and r = 0.63 (167 d.f.,

pv0:05 in both cases), with mean FPRs of 37% and 22%

Author Summary

Considering cells as biofactories, we aimed to optimize
their internal processes by using existing design principles
acquired from engineering. Herein, we present a synthetic
biology approach based on experimental and computa-
tional methodology that integrates genomic, transcrip-
tomic, metabolomic and phenomic data to formulate a
kinetic and constraint based model of tomato agronomic
and fruit quality characteristics. The model has been used
for exploring the landscape of all possible local transcrip-
tional changes with the aim of engineering tomato fruits
with improved biotechnological properties. The method-
ology was validated by the ability of the proposed
engineered genomes with modified desired agronomic
traits, to recapitulate correlations between associated
metabolites that are found experimentally in a number
of examples.

Fine-Tuning Tomato Agronomic Traits
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(bootstrap test, pv0:001 and pv10{5, respectively), and mean

PPVs of 81% and 88% (bootstrap test, pv0:001 and pv10{5),

respectively. Additionally, to test how the metabolome contributed

to an accurate prediction of tomato phenotype, we studied the

relationship between agronomic properties and gene expression of

the core of 959 genes across the 50 tomato RILs [27]. Note that

we select this reduced set of genes as a core of potential predictors

to avoid model over-fitting due to the low number of RILs with the

transcript levels measured. Imposing the same criteria that was

used to select metabolites as predictors, we observed that

similarities between predicted and measured values of number of

fruits per plant and harvested fruits increased (r = 0.80 and

r = 0.81, 48 d.f., pv0:001 in both cases) while average of fruit

weight and pH decreased (r = 0.79 and r = 0.73, 48 d.f., pv0:01 in

both cases) (see dashed line in Figure S3A–B). Moreover, relaxing

the threshold (zw3) to include possible interactions agronomic

variable-genes in the LASSO method, surprisingly similarities for

all agronomic variables highly decreased (r,0.65, 48 d.f., pv0:01;

see Figure S3C–D). Hence, we illustrated an alternative way to

described accurately phenotypic properties of tomato fruit by

using gene expression profile of the reduced set of RILs.

Next, to test the specificity of the inferred model parameters, we

perturbed the target phenotypic profile for each RIL adding

different levels of noise. Figure 2B shows the distance between

predicted and measured values (green points) and mean correla-

tions for different noise levels. A similar approach was performed

by using the metabolic and gene expression profiles (red and blue

points, respectively). Correlations with significance levels higher

than the indicated above were not considered in the cross-

validations. In addition, we estimated a very low mean error in

predicting the agronomic properties across the training set

(0:45vsAV
wRIL, see Methods).

Genome design based on single perturbations results in
discrete but consistent improvements in agronomic
properties

Here, our main goal is to redesign the genome of tomato to

generate an engineered surrogate that, if viable, would be easier to

study and of greater potential biotechnological interest. Our design

approach was inspired by the practice of in silico optimization over

a predictive global model. Our next step was to test the possibility

of improving agronomical properties of interest. We tested several

scoring functions that fall into two global types: on the one hand,

agronomical variables measured experimentally such as the

number of fruits harvested per plant, the average fruit weight or

its pH; and on the other hand, more complex fruit attributes that

could be defined according to some of the components of the

metabolic profile and are related to organoleptic properties of the

fruit. In this later case, we first evaluated as proof of concept: fruit

acceptability according to criteria based on acidity and sugars

Figure 1. Lean Manufacturing as a model applied in systems and synthetic biology. From omic data (transcriptomics, metabolomics and
phenomics), a quantitative global model was constructed using reverse engineering methods. The predictive model was used to propose genome
perturbations, to improve desired phenotypes with relevant biotechnological applications. The genome perturbations were guided by an in silico
optimization that imposed the desired selective pressure.
doi:10.1371/journal.pcbi.1002528.g001
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[28], quality as defined by the contribution of specific volatiles to

aroma and by a reported [28] panel assessments of the tomato

fruit and consequently on organoleptic acceptance. For this latter

case we assumed a strong influence of a set of metabolites to be

either maximized (b-ionone, b-damascenone, 2-phenylethanol and

benzaldehyde) or minimized (methyl salicylate, guaiacol, hexanal,

1-penten-3-one and (E)-2-hexenal) using balanced weighting

factors to account for their positive or negative contribution to

quality. Moreover, all single metabolites were also optimized in

single target analyses. Finally, a bi-objective function that included

a high trade-off was proposed to optimize fruit quality and its

production. As a first approach, we re-engineered tomato genome

by perturbing independently the 959 genes included in the model,

then we re-computed the scoring functions for all RILs enumer-

ating all single knockouts and finally, all gene over-expression

models were obtained.

Hence, mimicking the optimization patterns typical from LM,

the landscape of desired agronomic properties of tomato fruit was

exhaustively explored perturbing its effective transcriptional

regulatory network (TRN) with single-gene alterations. Figure 3A

shows the improvement of two of the agronomic properties

mentioned above (fruit acceptability and quality vs production) as

result of single gene perturbations according to our model. The

success of the approach is shown by the efficiency function

obtained for each transcriptional perturbation computed and

which is defined by the normalized ratio between the agronomic

property obtained for the re-engineered TRN and that for the

wild-type TRN. Both agronomic properties and efficiencies in the

case of single-perturbations were computed for each of the 169

RILs, resulting in a high variability between the lineages for all

knockouts and over-expressed gene re-engineered TRN cases. We

corroborated that there is a highly significant linear correlation

(R2
w0:99, pv0:001 for fruit acceptability and quality vs

production) between the average value of the improved agronomic

properties and the efficiencies reached across the set of RILs for all

transcriptional perturbations. Both gene knockout and over-

expression models resulted in similar linear regression slopes when

considering acceptability and quality vs production together (0.05

and 0.24, respectively, Figure 3A). In addition, we also explored

the possibility of tuning a given agronomic property towards a

Figure 2. Predictive power and statistical significance of the effective global model of tomato fruit. (A) Prediction of the agronomic
properties experimentally measured over the 169 RILs. The straight line represents the exact prediction. (B) Distance between distributions of Pearson
correlations for the fruit agronomic properties, metabolites and genes (green, red and blue points, respectively) over training sets and in random
permutations of them with different noise levels. (C, D) Histogram of Pearson correlations between the measured and predicted metabolite and gene
levels over their training sets (blue bars) and over sets with a 10- and 5-fold cross validation tests (red bars), respectively.
doi:10.1371/journal.pcbi.1002528.g002
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defined value, as it is desired for some biotechnological applica-

tions (see Text S1); achieving also in this case high efficiency values

(Figure S4 and Tables S1 and S2).

After this, we ranked the list of knockout/over-expressed genes

of the TRN according to two criteria directed to maximize: (i) the

mean efficiency across all lineages in the case of goals such as

acceptability and quality vs production; and (ii) the average of the

maximum agronomic property reached by all possible TRN

reconfigurations in the case of fruit quality (Dataset S2).

Specifically, Table 1 shows the top 5 genes proposed for knockouts

or over-expressed depending on the fitness evaluated. Fruit

acceptability could be improved to 2.91% or 8.84% using gene

knockout (i.e., LE24K20) or over-expression (i.e., LE13M10) in all

lineages, respectively. By contrast, quality was highly increased

achieving improvement ratios of 43.34% by gene knockout (i.e.,

LE24K20) and 227.31% by over-expression of LE15D07. Finally,

taking into account not only the quality but also fruit production,

ratios decreased to 15.32% (i.e., LE13F23) and 35.94% (i.e.,

Figure 3. Exploration and statistical significance of the landscape of multiple agronomic properties of interest for tomato fruit
applying local perturbations in its effective TRN. (A) Agronomic properties improved by perturbing a single gene as function of efficiency
reached by that transcriptional perturbation with respect to the wild-type scenario; only perturbations causing positive mean efficiencies are plotted.
Both agronomic properties and efficiencies of a single perturbation are tested on the 169 RILs and error bars represent their minimum and maximum
values in both axis. (B) Relationship between agronomic properties in the wild-type genome and the average of the agronomic properties resulting of
all single perturbations in the wild-type TRN for each RIL; vertical error bars represent the best and worst optimized re-engineered TRN for a given RIL.
(C) Average number of single gene perturbations that overcome a given efficiency threshold in the 169 RILs (light bars; error bars represent standard
deviation for the 169 RILs) and average probability of selecting the same gene-perturbation in a set of RILs (dark bars; error bars show standard
deviation for all genes of the TRN). Left and right columns represent perturbations of single gene in case of knockout or over-expression, respectively.
(A, B) show fitness as related to the acceptability of tomato fruit (blue) and production vs. quality (red); (C) and fitness values associated to maximize
only fruit quality (green). Agronomic properties are plotted in arbitrary units.
doi:10.1371/journal.pcbi.1002528.g003
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Table 1. The top 5 single-gene knockouts and over-expressions that maximize the agronomic properties of the tomato fruit
resulting of optimize several objectives.

Gene Gene Annotation Efficiency (%)1 RIL Probability2

Acceptability

LE24K20 Eukaryotic translation initiation factor 2 gamma
subunit, putative

2.91 103 1

LE18G02 Heat shock protein, putative 1.81 103 1

LE30E17 Amino acid binding protein, putative 1.79 103 1

LE21B20 Chaperone GrpE type 2 1.68 103 1

LE11F03 GATA transcription factor, putative 1.45 103 1

LE13M10 Ribosomal protein L30e 8.84 103 1

LE32K06 LEXYL2 5.87 103 1

LE14B20 Clathrin adaptor complexes medium subunit
family protein

1.08 103 0.98

LE33M04 Splicing factor 3B subunit, putative 3.46 103 1

LE3H15 Non-cell-autonomous protein pathway1,
plasmodesmal receptor

0.48 103 0.95

Quality (aroma and taste)

LE24K20 Eukaryotic translation initiation factor 2
gamma subunit, putative

43.34 142 0.30

LE18G02 Heat shock protein, putative 39.06 142 0.31

LE25A03 Ribosomal protein S27-like protein 11.98 142 0.13

LE14J12 40S ribosomal protein S3a-like 11.82 142 0.13

LE33G09 Predicted protein from Populus trichocarpa 11.75 142 0.31

LE15D07 Polynucleotide kinase- 39-phosphatase, putative 227.31 142 0.31

LE27C02 Phytoene dehydrogenase, chloroplastic/chromoplastic 186.12 142 0.31

LE8A19 Putative glycerophosphoryl diester
phosphodiesterase family protein

169.35 142 0.31

LE3H15 Non-cell-autonomous protein pathway1,
plasmodesmal receptor

143.53 142 0.31

LE14B20 Clathrin adaptor complexes medium subunit
family protein

135.47 142 0.31

Quality vs production

LE13F23 Chloroplast phosphate transporter precursor 15.32 135 0.63

LE15L08 Putative rac protein 12.32 135 1

LE1P20 Glycyl-tRNA synthetase 2, chloroplast/mitochondrial
precursor, putative

12.00 135 1

LE22K20 Ubiquitin-conjugating enzyme E2, putative 11.27 135 0.93

LE26N09 6-phosphogluconolactonase-like protein 10.23 135 0.99

LE14B20 Clathrin adaptor complexes medium subunit family protein 35.94 135 1

LE16L04 Ureide permease, putative 28.05 135 0.98

LE3H15 Non-cell-autonomous protein pathway1,
plasmodesmal receptor

23.04 135 1

LE15D07 Polynucleotide kinase-39-phosphatase, putative 20.22 135 1

LE8A19 Putative glycerophosphoryl diester phosphodiesterase family
protein

16.59 135 0.63

Notice that the first five genes is the top 5 of single-gene knockouts and the following five is the top 5 in over-expression.
1Efficiencies were selected in the RIL where the perturbation maximizes the fitness.
2Probability of selecting the given perturbation across the set of RILs at the maximum level of efficiencies.
doi:10.1371/journal.pcbi.1002528.t001
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LE14B20) using the two types of perturbations, respectively.

Notice that all these rates of improvement were achieved in the

lineages that provided maximum fitness in the wild-type TRN.

Lineages exhibited variability in their resistance to be optimized

and this resistance changed with each target agronomic property.

Figure 3B shows a strong linear dependence between the level of

the agronomic property in the wild-type TRN and the average

level of the agronomic properties resulting from all single

perturbations in the TRN for each RIL (linear regression slope

in the range 0.99–1.12 and R2
w0:99, pv0:001). Interestingly, we

observed that the effect of predicting agronomic properties under

genetic perturbations was not dependent on the lineage selected.

This provided a high level of robustness when we selected the

lineages to implement experimentally re-designed TRN.

We computed the average number of single-gene perturbations

to overcome an efficiency threshold given in the 169 RILs and the

average probability of selecting the same gene-perturbation

commonly for the whole set of RILs. The right panel in

Figure 3C shows that only a few gene knockouts were able to

improve fruit acceptability with a high probability in all lineages

whereas, on the other hand, tens of gene knockouts could be

proposed for increasing fruit quality and for the quality and

production. On the other hand, the left panel in Figure 3C allowed

re-asserting that re-engineering the TRN by gene over-expression

could result in higher increments in the agronomic properties and

with a higher density of suggested perturbations across the RILs.

A sub-optimal design landscape can be proposed using
multiple genetic perturbations

The next step in our study was to propose new genome re-

designs including multiple perturbations. To do this, we sampled

widely the landscape of the acceptability, quality and quality vs

production of tomato fruits by introducing two-gene perturbations

either by knockouts and over-expressions (Dataset S3). Figure 4A

shows the median efficiencies reached by two-gene transcriptional

perturbations based on knockouts and over-expression in order to

improve the agronomic properties defined as multiple-objective.

As expected, we corroborated that multiple perturbations, located

in different pathways (Table 2), could improve the agronomic

properties significantly better than single perturbations. Table 2

lists the best gene-pairs to be used in perturbations that maximize

such agronomic properties of the fruit. Figure 4B shows the

average number of single gene perturbations that are able to

overcome a given efficiency threshold for the top 5 RILs when

ranked for single perturbations as well as the average probability of

selecting the same multiple-perturbation commonly in a set of

RILs.

Model validation: the proposed genetic perturbations in
re-engineered fruits with modified aroma reconstruct the
correlation matrix found experimentally between aroma
volatile compounds

After generating our predictive model for the TRN and

metabolism of tomato fruit, we use it to automatically design

tomato genomes with extreme alterations for each of the 56

volatile compounds by introducing a set of genetic perturbations.

We compared sets of genetic perturbations for all pairs of volatile

compounds and then inferred their levels of correlations (see

Methods). Hence, these predicted correlations were compared to

the levels of correlations obtained from the experimental values for

each volatile pair that often reflects their belonging or not to the

same metabolic/regulatory pathway or to be or not structurally

related. Figure 4C–4F shows the predictive power of our model to

determine correlations between all the volatile compounds.

Interestingly, selecting a correlation cut-off between 0.5 and 0.8

we obtained high performance F -scores (see Methods section)

ranging between 0.32 and 0.91 (Figure 4D) for gene knockouts and

between 0.31 and 0.80 when model selected genes by over-

expression (Figure 4F). Notice that only pairs of experimental

volatile compounds with rw0:5 were considered. Predictions

decreased when we incorporated all pairs of compounds

(Figure 4E–4F) indicating that our model captured high correla-

tions observed experimentally with more precision. Figure S5

shows the dendograms of the volatile compound obtained from the

correlation of experimentally obtained volatiles levels and the

dendograms obtained using as distance between volatile com-

pounds the number of common genetic perturbations proposed by

the model. We observed that perturbations proposed by gene

over-expression were pivotal to predict computationally significant

distances between volatile compounds (Mantel test: r = 0.54, 1540

d.f., pv10{5) thus providing high support to our model. By

contrast, predicted perturbations based on gene knockout could

only identify a small fraction of the entire dendogram (Mantel test:

r = 0.38, 1540 d.f., pv10{5).

To give further support to our model we constructed

experimentally two inbred lines (ILs) derived from another

interspecific cross whose transcriptome and metabolome were

also experimentally measured. Parents of these ILs are a different

cultivar of tomato M82 and a S. pennelli accession and therefore

represent a completely different set of gene alleles from those in

RILs used to construct the model. These ILs can be used as

independent and useful test case to evaluate the validity of the

model. We corroborated that a significant set of genetic

perturbations suggested by computational design to optimize the

phenotype observed were identified as genes differentially altered

in the target phenotype (Text S1 and, Figure S6).

Discussion

LM is a methodology that is being implemented by large

industries to optimize their production. In the process of decision

making applied to the redesign of production systems, firstly,

engineers evaluate systematically the addition or elimination of

resources in each of the participating single processes; afterwards,

multiple changes are considered trying to achieve maximum

quality and production [29]. Translating this engineering

approach to a cellular molecular factory and identifying the basic

functional elements has allowed us to develop a design method-

ology that optimizes the genome, resulting in a more desirable

phenotypic properties. In addition, by mimicking the methodology

from LM we have provided a first robust optimization to redesign

an optimal genetic network based on the systemic exploration of

the effects of a large number of single gene knockout and over-

expression genotypes; then, a second multiple-optimization of

random paths allowed improving substantially the desired

agronomical properties. The success of this approach indicates

that despite the existence of molecular interactions, the model is

able to overcome this limitation and results in a good predictor.

We have proposed several re-engineered genomes that improve

desired agronomic properties of the fruit by targeting single or

multiple genetic modifications. It has been previously reported that

single under-/over-expressed of certain genes may affect fruit

quality traits, being these key genes involved in the biosynthesis of

a product of fruit metabolism or to a general ripening regulators

(i.e., carotenoids [30]). We have explored single perturbations by

gene knockout or over-expression and our results indicated that a

significantly better fine-tuning could be obtained by using over-
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expression approaches. We observed that improvement ratios

could reach even more than 4-fold the wild-type value of most of

phenotypes desired by designing genomes with only two genetic

perturbations (Figure 4A and Table 2). The magnitude of the

predicted change sometimes may appear low but an improvement

in a quantitative trait, if consistent and predictable, maybe

economically important. Indeed, a good combination of high

yield with even slightly increased solid solids content is a major

breeding goal for processing tomatoes that it is difficult to be

achieved [31] because of polygenic nature and pleiotropic

relationships of both traits [32].

Although it is not the objective of this paper, it does not escape

our attention that some of the perturbations proposed are

consistent with the biological processes associated to the trait

and therefore the model could be used to reveal the molecular

underpinnings of quality traits (see experimental evidences of each

gene perturbation proposed by the model in the Dataset S4). For

instance the role of YABBY (a gene proposed by our model to affect

quality) in controlling fruit size probably through the auxin

pathway and the effect of auxin in altering fruit growth and

ripening has been previously reported [33,34]. Similarly the

importance of phytoene desaturase to affect carotenoids and

Figure 4. Experimental validation of the landscape of tomato agronomic properties by using genetic perturbations. Heuristic
exploration (A) and statistical significance (B) of the landscape of multiple desired agronomic properties of tomato fruit perturbing its effective TRN
adding multiple genetic changes and, predictive power (C–F) for optimizing the levels of volatile compounds and identifying compounds in closed
metabolic pathways. (A) Median efficiencies reached by transcriptional perturbation based in gene knockouts or over-expression to improve
agronomic properties. (B) Average number of single gene perturbations that overcome an efficiency threshold in the top 5 RILs scored by single
perturbation (light bars; error bars represent standard deviation for the selected RILs) and average probability of selecting the same multiple-
perturbation commonly in a set of RILs (dark bars; error bars show standard deviation for all genes of the TRN). Precision, recall and F-score (green,
red and blue lines, respectively) compare observed experimentally volatile compound correlations vs inferred set of potential genetic perturbations
(gene knockout (C, D) or over-expression (E, F)) shared to optimize each compound independently. Note that experimental metabolite correlations
r,0.5 were not considered in (D, F).
doi:10.1371/journal.pcbi.1002528.g004

Fine-Tuning Tomato Agronomic Traits

PLoS Computational Biology | www.ploscompbiol.org 8 June 2012 | Volume 8 | Issue 6 | e1002528



Table 2. The top 10 pairs-gene knockouts or over-expressions that maximize the agronomic properties of the tomato fruit.

Gene Gene Annotation Efficiency (%)1

Acceptability

LE33G22; LE28J07 Adenylate kinase, putative; vesicle-associated membrane
protein, putative

16.54

LE15D09; LE33G22 Vesicle-associated membrane protein, putative; adenylate
kinase, putative

16.54

LE17M21; LE33G22 Selenoprotein O, putative; adenylate kinase, putative 16.40

LE17D17; LE33G22 F-box family protein; adenylate kinase, putative 16.37

LE15E19; LE33G22 Ribosomal protein; adenylate kinase, putative 16.07

LE7I21; LE33G22 Proline-rich cell wall protein-like; adenylate kinase, putative 15.90

LE33G22; LE23K21 Adenylate kinase, putative; amino acid transporter, putative 15.87

LE33G22; LE2C08 Adenylate kinase, putative; chloroplast lumen
common family protein

15.85

LE33G22; LE25J09 Adenylate kinase, putative; AT-HSFA6B, DNA
binding/transcription factor

15.84

LE33G22; LE24D10 Adenylate kinase, putative; not found 15.78

Quality (aroma and taste)

LE27F15; LE29L05 Protein kinase family protein; branched-chain amino acid aminotransferase 422.60

LE16D08; LE6G08 Similar to 60S ribosomal protein L35; sucrose phosphate synthase 360.63

LE9A08; LE15E23 GRAM domain-containing protein/ABA-responsive protein-related;
putative threonyl-tRNA synthetase

303.04

LE18E13; LE8A19 MYB transcription factor; putative glycerophosphoryl diester
phosphodiesterase family protein

263.91

LE32B05; LE4D06 YABBY2-like transcription factor YAB2; tRNA-dihydrouridine
synthase A, putative

253.33

LE15L08; LE4J06 Putative rac protein; 50S ribosomal protein L27, chloroplastic 244.32

LE29E13; LE13F06 Fyve finger-containing phosphoinositide kinase, fyv1,
putative; transmembrane protein, putative

242.56

LE13F06; LE15J03 Transmembrane protein, putative; ankyrin-like protein 240.19

LE17G02; LE15D07 Pantothenate kinase, putative; polynucleotide kinase-
39-phosphatase, putative

239.10

LE15D07; LE20I03 Polynucleotide kinase- 39-phosphatase, putative; DEX1,
calcium ion binding

239.03

Quality vs production

LE13F06; LE15J03 Transmembrane protein, putative; ankyrin-like protein 49.79

LE12O13; LE33G22 Prefoldin subunit, putative; adenylate kinase, putative 49.16

LE2C24; LE29J02 ATAB2; RNA binding; GTP-binding protein LepA homolog 49.15

LE12P11; LE2C24 Not found; ATAB2; RNA binding 48.81

LE2C24; LE21J01 ATAB2; RNA binding; Dolichyl-phosphate beta-
glucosyltransferase, putative

48.28

LE12O13; LE25M06 Prefoldin subunit, putative; Pre-mRNA-processing
protein prp39, putative

46.63

LE12O13; LE14B20 Prefoldin subunit, putative; clathrin adaptor complexes medium subunit
family protein

46.18

LE14B20; LE21J01 Clathrin adaptor complexes medium subunit family protein; dolichyl-
phosphate beta-glucosyltransferase, putative

44.86

LE33B09; LE2C24 Not found; ATAB2; RNA binding 44.64

LE18M21; LE14B20 Cysteine protease; clathrin adaptor complexes medium subunit
family protein

44.05

1Efficiencies were selected in the RIL where the perturbation maximizes the fruit acceptability, quality and, quality vs production (RILs 103, 142, and 135, respectively).
Knockout genes were showed in bold type and the others were gene over-expressed.
doi:10.1371/journal.pcbi.1002528.t002
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carotenoid derived volatiles has been reported [35]. Most of the

genes proposed by the models however are new, therefore opening

new avenues of research either by targeting in transgenic plants,

identification of mutants in those genes by TILLING [36] or by

TAL engineering [37], as well as to be used as an additional guide

during plant breeding. In principle these modifications are to be

implemented in red fruit or around red fruit stage either

genetically or by the use of external elicitors (physical or chemical)

and our model provides roadmap for those approaches. Our

methodology takes advantage of our ability to predict variations in

fruit cell phenotype based on changes in the transcriptome. The

linear relationships shown in Figure 3 (A, C, and D) guarantees

that by optimizing our effective transcriptomic, metabolic or

phenotypic fitness we are also optimizing the phenotype measured

experimentally of the tomato fruits. While it is true that complex

multi-organ organism such as tomato rely on the coordination and

transport of multiple signals and nutrients from different parts of

the plants to achieve the final phenotype, and this is especially true

for the fruit [19,38], it not less true that the most important part of

the fruit characteristics at ripening depends basically on the fruit

program before around the ripening stage [39,40].

The ability to target redesign crops for enhanced content of

metabolites of interest has been experimentally achieved in a

number of cases (for instance vitamins C [41] and E [42]) using

transgenic approaches and the information of bottlenecks or

limiting steps for the biochemical pathways of the compounds of

interest. The most dramatic examples of this have been

introducing the new trait in a genetic background with very low

value for it (i.e., golden rice [43]) using ectopic expression of one or

several foreign genes. The use of natural genetic variability in

combination with our nonbiased (hypothesis-free) modeling

approach allows us to identify new candidate genes as potential

targets to engineer the plant (although the biotechnological use of

more active orthologs from other organisms is not discarded in our

approach). The existence of regulatory networks connecting

primary and secondary metabolism in plants should also be taken

into consideration in future attempts to metabolically engineer the

various classes of plant secondary metabolites [44]. It is interesting

that known genes in the biosynthesis path often do not co-localize

with quantitative trait locus for the metabolites in the path [35]

indicating that there is ample of opportunities to be explored for

metabolite and quality improvement, and our model fits nicely in

this gap.

Materials and Methods

Plant material, transcriptomic, metabolomic and
phenomic data

The construction of the tomato RILs used in this study has been

described elsewhere [45]. Triplicate samples of red ripe fruits (each

representing at least 5 fruit) from each of 169 RILs were harvested

and analyzed for volatile compounds as described in [46]. For

method validation, red ripe fruits from five ILs with a different

genetic background [47] were used. Transcript profile datasets

(1187663650 data points) were obtained from triplicate fruit

samples of 50 selected RILs using TOM2 microarray, as

previously reported [48]. Data sets corresponding to the rest of

metabolites and phenomic data were obtained as in [46] from

triplicate samples of the 169 RILs. To decrease experimental

variability, the same fruits representing each RIL were homoge-

nized and divided in different aliquot samples for the different

metabolite or transcript profiling techniques. Before use all

transcriptomic, metabolomic and phenomic data were normalized

and transformed to log-scale. The ILs used for model validation

have been described previously [21].

Mathematical model
An effective linear model based on ODEs each providing the

steady states of tomato fruit mRNA was used to describe

transcriptional gene regulations [7]. Thus, the mRNA steady

state from the ith gene, gi, is given by
dgi

dt
~
X

j
qijgj{dggizDi,

where qij represents the regulatory effect that gene j has on gene i.

Each gene expression value is contained (jgmin
i ƒgiƒj{1gmax

i ) in

a range interval defined by the minimum (gmin
i ) and maximum

(gmax
i ) value of all its experimental measurements obtained from

the subset of 50 RILs used for transcript profiling. j§1 is a

tunable parameter that decreases the gene expression range to

improve the predictive capacity of the presented model under

genetic predictions. The dynamics of metabolic profile was

computed by
dmi

dt
~
X

j
cijgj{dmmizCi, where mi is the

steady-state concentration from the ith metabolite, cij is the

regulatory strength that gene j has on metabolite i. Hence,

agronomic variables (AV ) were predicted by means of a linear

combination of the metabolic profile, AVi~
P

j bijmjzVi, where

bij is the regulatory effect that metabolite j has on agronomic

variable i. D, C and V are the perturbation terms that allow to

calibrate gene expression, metabolic profiles and predicted

agronomic properties, respectively, for all RILs. Notice that

degradation coefficients of genes and metabolites (dg~dm~1,

respectively) scaled time conveniently and that we assumed the

model in steady state (gi~
P

j qijgjzDi and mi~
P

j cijgjzCi).

Construction of an effective transcriptional regulatory
network connected with metabolism to explain
agronomic properties

Our global model consists of three blocks of algebraic equations

covering respectively from gene expression, through metabolic

profile until agronomic properties, and in all three cases the same

methodology was applied. The inference procedure consisted of

two nested steps. Firstly, the network connectivity was inferred by

using the InferGene algorithm [7]. This method uses mutual

information with a local significance value (z-score computation) to

obtain the effective regulations. Hence, the potential interaction

between a predictor and a target is z-scored, constituting an

estimator of the likelihood of mutual information. Subsequently,

we selected a z-score threshold for a predictor cutoff. In a second

step, LASSO method was used to avoid over-fitting and to

estimate the kinetic parameters of each effective model. Notice

that the 8.7% of the selected genes in the TRN were annotated as

TFs and 16.2% as encoding enzymatic activities and, in neither

case, they were over-represented since both the tomato genome

and the whole array contain similar fractions of TFs (8.8%) and

enzymes (17.1%).

For the construction of the effective TRN model and its later

integration with the metabolism, we used steady-state mRNA

expression profiles derived from RILs transcriptionally and

metabolically characterized. The dataset contains pre-processed

expression data from 5063 = 150 hybridization experiments using

an array with 11876 probe sets spotted, and data for levels of 67

metabolites that were quantified over the same sample set. For this

study, we only considered the 5592 genes whose expression values

could be consistently found in more than 80% of the microarrays.

We found 1057 TFs and 1962 genes with enzymatic activity after

searching for the motifs transcription regulator and enzyme
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activity respectively in the functionally annotated tomato genome

(Tom2). Moreover, all 169 RILs (including the previous 50 ones)

for which we had metabolite and phenotype data were used to

train a linear model able to predict agronomic properties of the

fruit from potentially predictor metabolites. In all cases transcrip-

tomic and metabolomic data were first normalized using the

LOWESS procedure [26] and subsequently converted into z-

scores across the RILs. In order to calibrate gene expression and

metabolite concentration, both models included a perturbation

term (DRIL
i and CRIL

i , respectively) to fit all their i-genes and j-
metabolites for a given RIL. We assumed a constant perturbation

in the gene expression prediction because of its low variation

across the training set (standard deviation of v

D

g
wi for all RILs is

0.072-fold the standard deviation of gene expression, vsg
wRIL)

with respect to the mean value, 0:22vsg
wRIL. Similarly, the

average error to predict the metabolic profile across the training

set was increased to 0:99vsg
wRIL.

Three plain text files containing the transcriptional, metabolic

and phenotypic model for tomato were constructed and are

available in Dataset S1. A directed network was constructed which

places genes and metabolites as nodes and effective transcriptional

and gene-metabolite interactions as edges. For the transcriptional

interactions, edges link genes (including TFs, enzymes and genes

without ability to regulate) to other genes or to a metabolite, in the

case of metabolism.

Genome-wide multiple-optimization
Our algorithm searches possible reconfigurations of the global

effective transcription regulatory network of tomato such as that

the specified agronomic properties are improved (maximized or

minimized) with respect to the properties of interest obtained in a

given RIL. Different properties of interest have been optimized,

ranging from single metabolites defining the sweetness or sourness

of the fruit, to linear combinations of a set of metabolites

determining the quality in terms of flavor and taste and even

further to include objective functions that try to integrate two of

those goals with a trade-off and balanced weighting factors such as

fruit quality and yield.

We have addressed this optimization problem using two

approaches. Firstly, we exhaustively enumerated all possible single

gene knockouts and over-expression for each case to be optimized

under a given selective pressure of interest. Second, we ranked all

possible perturbations according to the new agronomic properties

they would generate. The third step was to suggest genome

reconfigurations that include multiple actions: gene knockouts,

over-expressed genes, or both, in order to enlarge the combina-

torial space of perturbed genomes. To do that, we have used an

exhaustive method aimed at finding the global optimum in the

space of all possible synthetic TRN. We started from the inferred

model (see Mathematical model above) and applied an optimiza-

tion scheme. At each step of the optimization process, we selected

each gene among the ones involved in the transcriptomic model to

evaluate the effect of three possible approaches (knockout, over-

expression or wild-type scenario); we updated the model with the

genetic perturbation that provided the best score. Note that to

simulate knockout or over-expression in the gene i, we substituted

its ODE by the minimum (jgmin
i ) or maximum (j{1gmax

i ) values

respectively observed in the range of diversity of the 50 RILs.

Experimental and computational metabolite correlation
We computed the sets of single-gene perturbations, ?, by gene

knockout or over-expression that alter significantly the levels of the

56 volatile metabolites representing the volatile compounds taking

into account the global model. For the sake of the model we

considered only those gene perturbations that would cause

significant changes in the metabolite concentration higher than

1% (pv0:01). L can be divided into genetic modifications that

increase (H) or decrease (J) the metabolite concentrations,

respectively. Hence, correlations between metabolite pairs i and

j (Cij ) were calculated as the difference between Cz
ij and C{

ij by

using the set of single-gene perturbations proposed by the model

Cz
ij ~max(

Hi\Hj

Hi|Hj

,
Ji\Jj

Ji|Jj

)

Cz
ij ~max(

Hi\Jj

Hi|Jj

,
Ji\Hj

Ji|Hj

),

where Cz
ij and C{

ij is the maximum normalized intersection

predicted between the set of gene perturbations proposed by

altering positively or/and negatively, respectively. We used these

correlations to compute dendograms of all volatile compounds by

using the distance inferred by the model (1{Cij ) depending on the

L selected by gene knockout or over-expression.

The performance of the inferred metabolite correlations was

evaluated using as a reference a set of empirical correlations

previously obtained among these metabolites. We used different

cut-offs, k, to identify metabolite correlations (Cijwk). The

fraction of metabolite pairs that were correctly predicted by the

model (precision, P) and the fraction of all known correlations that

were discovered by the model (sensitivity, S) were used to compute

a performance statistic defined as F~
2PS

PzS
.

Robustness of statistical inferences in the model
construction

To estimate the range of FPR and PPV statistics computed in

the different cross-validations of the model, a bootstrap method

was used. To this end, we generated 10000 random lists (with

replacement) of metabolites/genes of size equal than the set of

metabolites/genes proposed by the model as predictors of

agronomic properties/metabolites/genes. Each of these random

lists was then compared to the actual list of predictors proposed by

the model and the corresponding FPR and PPV values computed

to construct their expected null distributions. The observed FPR
and PPV values were contrasted against these distributions and

their significance assessed.

Supporting Information

Dataset S1 Transcriptional, metabolic and phenotypic models

of tomato fruit.

(XLS)

Dataset S2 Single knockout and over-expressed genes to

improve desired agronomic properties (acceptability, quality and

quality vs production of tomato fruits; four volatile compounds;

vitamin C, and different types of sugars and acids) and functional

categorization of genes that induced high degree of improvement

in those agronomic properties; notice that functional enrichment

of all genes involved in the TRN was included. Gene ontology

enrichment analyses were performed using the TFGD tool

[TFGD]. It is also showed the functional categories significantly

represented among those genes that were selected to describe the

TRN of tomato fruit. A total of 19 cellular processes and 45
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biological components were represented. Among these, genes

related to cellular metabolic processes were the most abundant

(p,0.0001), what makes sense since they were selected to predict

cellular metabolism; whereas genes related to response to nutrient

stimulus were present but the least common (p,0.1).

(XLS)

Dataset S3 Multiple combinations of knockout and over-

expressed gene sets to improve desired agronomic properties

(acceptability, quality and quality vs production of tomato fruits).

(XLS)

Dataset S4 Experimental evidences of each gene perturbation

proposed by the model to optimize the different scoring function

used.

(XLS)

Figure S1 Synthetic biology of tomato fruit vs computer science.

(PDF)

Figure S2 From data to global models to redesign using an

approach based on synthetic biology.

(PDF)

Figure S3 Phenotype prediction (number of fruits per plant,

fruit harvested, average fruit weight and pH) by using the

genotype described in the 50 RILs in which transcript levels were

measured. Pearson coefficient correlation (A,C) between the

predicted and measured phenotypic profile and number of genes

(B,D) selected by LASSO method as predictors for different

thresholds of the fitting parameter (tLASSO). Note that we used

two different z-score levels (z = 2, (A,B); and z = 3 (C,D)) to

included genes as possible predictors to be selected by LASSO.

The dashed line plotted in (A,B) shows the parameter, tLASSO,

and the level of z-score used to constructed the relationship

between phenotype and metabolome.

(PDF)

Figure S4 Exhaustive exploration and statistical significance of

the landscape of single desired agronomic properties of tomato

fruit (vitamin C, blue; fructose and glucose, red; and citric and

malic acids, green) perturbing its effective TRN locally. (A)

Agronomic properties improved by perturbing a single gene as

function of efficiency reached by that transcriptional perturbation

with respect to the wild-type scenario; notice that only perturba-

tions with positive mean efficiencies are plotted. Both agronomic

properties and efficiencies of a single perturbation are average

variables tested on the 169 RILs and error bars represent their

minimum and maximum values in both axis. (B) Dependence

between agronomic properties in the wild-type genome and the

average of the agronomic properties resulting of all single

perturbations in the wild-type TRN for each RIL; vertical error

bars represent the best and worst optimized re-engineered TRN

for a given RIL. (C–D) Average number of single gene

perturbations that overcome an efficiency threshold in the 169

RILS (light bars; error bars represent standard deviation for the

169 RILs) and average probability of selecting the same gene-

perturbation commonly in a set of RILs (dark bars; error bars

show standard deviation for all genes of the TRN). Left and right

columns represent perturbations in terms of single gene knockout

or overexpression, respectively.

(PDF)

Figure S5 (A) Dendogram of the volatile compound correlations

observed experimentally. (B, C) Dendograms inferred by the

model defining the distance between volatile compound as the

number of common genetic perturbations predicted to optimize

the levels of each volatile compound.

(PDF)

Figure S6 Percentage of altered genes (via gene knockout or

over-expression; blue bars) proposed by the model to minimize the

levels of volatile compounds (linalool (A) or, 1-nitro-2-pheny-

lethane, 2-isobutylthiazole and benzylnitrile (B)) that were found

significantly over-/under-expressed in the transcriptome of two

ILs characterized experimentally with extremely low levels of those

volatile compounds. The cut-off of the coefficient of variation

between replicates was 75%. The Mann-Withney’s U-test

significance using random selection of gene perturbations (red

bars) is shown (***statistically significant). Error bars represent the

standard deviations of scores obtained from three ILs. 16.7% of

the over-expressed genes proposed by the model to minimize the

level of linalool were significantly recovered in gene expression

(Figure S4A). In addition, 1.89% and 3.33% of genes candidates to

be knockout or over-expressed (Figure S4B), respectively, also were

identified significantly altered in the gene expression of the IL in

which the three volatile compounds were found in minimum

amount indicating this part of the transcriptome is relevant and

associated to this volatile sub-phenotype among the other

differential traits in these ILs.

(PDF)

Figure S7 Correlations observed between agronomic variables

and metabolites of different fruit genotypes generated by

simulating all possible single gene knockout (A–E) or over-

expression (F–J) in the wild-type genome model of the tomato

fruit. Standard deviations of all metabolites or agronomic variables

show the diversity generated by implementing each genetic

perturbation in the 169 RILs. Note that we only plotted re-

engineered genomes whose transcriptome predicted showed errors

lower than 1% (241 d.f. and 25 d.f. for knockout and over-

expressed genes, respectively).

(PDF)

Table S1 The top 5 single-gene knockouts and over-expressions

that maximize the agronomic properties of the tomato fruit based

on improve only one objective.

(PDF)

Table S2 The top 5 single-gene knockouts and over-expressions

that minimize the agronomic properties of the tomato fruit based

on improve only one objective.

(PDF)

Text S1 Genome design based on single perturbations to fine-

tuning phenotypes with biotechnological interests. Model valida-

tion: fine-tuning tomato phenotype of two experimental inbred

lines by computational genome design. Prediction of phenotypic

correlations in re-engineered tomato fruits.

(PDF)

Acknowledgments

We thank Sophie Mirabel for excellent technical skills in microarray

hybridization, J. Forment for help with computer resources and, G.

Rodrigo and F. Heras for his fruitful comments.

Author Contributions

Conceived and designed the experiments: JC SFE AG. Performed the

experiments: JC. Analyzed the data: JC AJ. Wrote the paper: JC SFE AG.

Generated and phenotyped the RILs: RFM. Generated the volatile

dataset: AFdC JLR. Generated the transcript dataset: CP.

Fine-Tuning Tomato Agronomic Traits

PLoS Computational Biology | www.ploscompbiol.org 12 June 2012 | Volume 8 | Issue 6 | e1002528



References

1. Baker D, Church G, Collins JJ, Endy D, Jacobson J, et al. (2006) Engineering

life: building a fab for biology. Nature 296: 44–51.
2. Endy D (2005) Foundations for engineering biology. Nature 438: 449–453.

3. Knight TF (2005) Engineering novel life. Mol Syst Biol 1: 20.
4. Andrianantoandro E, Basu S, Karig D, Weiss R (2006) Synthetic biology: new

engineering rules for an emerging discipline. Mol Syst Biol 2: 28.

5. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson B (2008) Reconstruction of
biochemical networks in microorganisms. Nat Rev Microbiol 7: 129–143.

6. Bernardo DD, Thompson MJ, Eastwood TSGSECEL, et al (2005) Chemoge-
nomic profiling on a genome-wide scale using reverse-engineered gene networks.

Nat Biotech 23: 377–383.

7. Carrera J, Rodrigo G, Jaramillo A (2009) Model-based redesign of global
transcription regulation. Nucleic Acids Res 37: e38.

8. Carrera J, Rodrigo G, Jaramillo A, Elena SF (2009) Reverse-engineering the
arabidopsis thaliana transcriptional network under changing environmental

conditions. Genome Biol 10: R96.
9. Faith J, Hayete B, Thaden J, Mogno I, Wierzbowski J, et al. (2007) Large-scale

mapping and validation of escherichia coli transcriptional regulation from a

compendium of expression proles. PLoS Biol 5: e8.
10. Bonneau R (2007) A predictive model for transcriptional control of physiology in

a free living cell. Cell 131: 1354–1365.
11. Tagkopoulos I, Liu Y, Tavazoie S (2008) Predictive behavior within microbial

genetic networks. Science 320: 1313–1317.

12. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating
high-throughput and computational data elucidates bacterial networks. Nature

429: 92–96.
13. Endy D, Brent R (2001) Modelling cellular behaviour. Nature 409: 391–395.

14. Joyce AR, Palsson BO (2006) The model organism as a system: integrating
‘omics’ data sets. Nat Rev Mol Cell Biol 7: 198–210.

15. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: A bilevel programming

framework for identifying gene knockout strategies for microbial strain
optimization. Biotechnol Bioeng 84: 647–657.

16. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and
perturbed metabolic networks. Proc Natl Acad Sci U S A 99: 15112–15117.

17. Rocha M, Maia P, Mendes R, Pinto JP, Ferreira EC, et al. (2008) Natural

computation metaheuristics for the in silico optimization of microbial strains.
BMC Bioinfo 9: 499.

18. Meyer RC, Steinfat M, Lisec J, Becher M, Witucka-Wall H, et al. (2007) The
metabolic signature related to high plant growth rate in arabidopsis thaliana. Proc

Natl Acad Sci U S A 104: 4759–4764.
19. Mounet F, Moing A, Garca V, Petit J, Maucourt M, et al. (2009) Gene and

metabolite regulatory network analysis of early developing fruit tissues highlights

new candidate genes for the control of tomato fruit composition and
development. Plant Physiol 149: 1505–1528.

20. Garca V, Stevens R, Gil L, Gilbert L, Gest N, et al. (2009) An integrative
genomics approach for deciphering the complex interactions between ascorbate

metabolism and fruit growth and composition in tomato. C R Biol 32: 1007–

1021.
21. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, et al. (2006) Comprehensive

metabolic profiling and phenotyping of interspecific introgression lines for
tomato improvement. Nat Biotech 24: 447–454.

22. Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, et al. (2011)
Systems biology of tomato fruit development: combined transcript, protein, and

metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor

(nr) mutants reveals novel regulatory interactions. Plant Physiol 157: 405–425.
23. Rohrmann J, Tohge T, Alba R, Osorio S, Caldana C, et al. (2011) Combined

transcription factor profiling, microarray analysis and metabolite profiling
reveals the transcriptional control of metabolic shifts occurring during tomato

fruit development. Plant J 68: 999–1013.

24. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, et al. (2007) Genome-
wide detection and characterization of positive selection in human populations.

Nature 449: 913–918.
25. Daetwyler HD, Villanueva B, Bijma P, Woolliams JA (2007) Inbreeding in

genome-wide selection. J Anim Breed Genet 124: 369–376.

26. Magniette F, Renou JP, Daudin JJ (2008) Normalization for triple-target
microarray experiments. BMC Bioinf 9: 216.

27. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, et al.

(2012) Genomic and metabolic prediction of complex heterotic traits in hybrid

maize. Nat Genet 44: 217–220.

28. Buttery RG, Teranishi R, Flath RA, Ling LC (1989) Fresh tomato volatiles:

Composition and sensory studies. in: Teranishi r, buttery rg, shahidi f, editors.

favor chemistry: Trends and developments. Washington DC: American

Chemical Society: 213–222.

29. Shaha R, Ward PT (2003) Lean manufacturing: context, practice bundles, and

performance. J Oper Manag 21: 129–149.

30. Rosati C, Diretto G, Giuliano G (2010) Biosynthesis and engineering of

carotenoids and apocarotenoids in plants: state of the art and future prospects.

Biotechnol Genet Eng Rev 26: 139–162.

31. EF EFF, Liu YL, Carmel-Goren L, Gur A, Shoresh M, et al. (2002) Two tightly

linked qtls modify tomato sugar content via different physiological pathways.

Mol Genet Genom 266: 821–826.

32. Emery GC, Munger HM (1970) Effects of inherited differences in growth habit

on fruit size and soluble solids in tomato. J Amer Soc Hort Sci 95: 410–412.

33. Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in yabby-like

transcription factor led to evolution of extreme fruit size during tomato

domestication. Nat Genet 40: 800–804.

34. Wang H, Schauer N, Usadel B, Frasse P, Zouine M, et al. (2009) Regulatory

features underlying pollination-dependent and -independent tomato fruit set

revealed by transcript and primary metabolite profiling. Plant Cell 21: 428–452.

35. Klee HJ (2010) Improving the avor of fresh fruits: genomics, biochemistry, and

biotechnology. New Phytol 187: 44–56.

36. Minoia S, Petrozza A, DOnofrio O, Piron F, Mosca G, et al. (2010) A new

mutant genetic resource for tomato crop improvement by tilling techonology.

BMC Res Notes 12: 69.

37. Bogdanove AJ, Voytas DF (2011) Tal effectors: customizable proteins for dna

targeting. Science 333: 1843–1846.

38. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, et al. (2006) Comprehensive

metabolic profiling and phenotyping of interspecific introgression lines for

tomato improvement. Nat Biotech 24: 447–454.

39. Hetherington S, Smillie R, Davies W (1998) Photosynthetic activities of

vegetative and fruiting tissues of tomato. J Exp Bot 49: 1173.

40. Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a

quantitative trait for tomato yield using interspecific introgressions. Science 305:

1786–1789.

41. Agius F, Gonzalez-Lamothe R, Caballero JL, noz Blanco JM, Botella MA, et al.

(2003) Engineering increased vitamin c levels in plants by overexpression of a d-

galacturonic acid reductase. Nat Biotech 21: 177–181.

42. BCahoon E, Hall SE, Ripp KG, Ganzke TS, Hitz WD, et al. (2003) Metabolic

redesign of vitamin e biosynthesis in plants for tocotrienol production and

increased antioxidant content. Nat Biotech 21: 1082–1087.

43. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, et al. (2000) Engineering the

provitamin a (betacarotene) biosynthetic pathway into (carotenoid-free) rice

endosperm. Science 87: 303–305.

44. Aharoni A, Galili G (2011) Metabolic engineering of the plant primary-

secondary metabolism interface. Curr Op Biotechnol 22: 239–244.

45. Alba JM, Montserrat M, noz RFM (2009) Resistance to the two-spotted spider

mite (tetranychus urticae) by acylsucroses of wild tomato (solanum pimpinelli-

folium) trichomes studied in a recombinant inbred line population. Exp App

Acar 47: 35–47.

46. Zanor MI, Rambla JL, Chaib J, Steppa A, Medina A, et al. (2009) Metabolic

characterization of loci affecting sensory attributes in tomato allows an

assessment of the inuence of the levels of primary metabolites and volatile

organic contents. J Exp Bot 60: 2139–2154.

47. Eshed Y, Zamir D (1995) An introgression line population of lycopersicon

pennellii in the cultivated tomato enables the identification and fine mapping of

yield-associated qtl. Genetics 141: 1147–1162.

48. Lytovchenko A, Eickmeier I, Pons C, Szecowka M, Lehmberg K, et al. (2011)

Tomato fruit photosynthesis is seemingly unimportant in primary metabolism

and ripening but plays a considerable role in seed development. Plant Physiol

157: 1650–1663.

Fine-Tuning Tomato Agronomic Traits

PLoS Computational Biology | www.ploscompbiol.org 13 June 2012 | Volume 8 | Issue 6 | e1002528


