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Confidence modulates the decodability of scene
prediction during partially-observable maze
exploration in humans
Risa Katayama 1✉, Wako Yoshida2,3,6 & Shin Ishii1,4,5,6

Prediction ability often involves some degree of uncertainty—a key determinant of con-

fidence. Here, we sought to assess whether predictions are decodable in partially-observable

environments where one’s state is uncertain, and whether this information is sensitive to

confidence produced by such uncertainty. We used functional magnetic resonance imaging-

based, partially-observable maze navigation tasks in which subjects predicted upcoming

scenes and reported their confidence regarding these predictions. Using a multi-voxel pattern

analysis, we successfully decoded both scene predictions and subjective confidence from

activities in the localized parietal and prefrontal regions. We also assessed confidence in their

beliefs about where they were in the maze. Importantly, prediction decodability varied

according to subjective scene confidence in the superior parietal lobule and state confidence

estimated by the behavioral model in the inferior parietal lobule. These results demonstrate

that prediction in uncertain environments depends on the prefrontal-parietal network within

which prediction and confidence interact.
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Animals, including humans, have difficulty in decision-
making due to past, present, and future uncertainties
related to their geographical surroundings. For instance,

when navigating a complex environment, knowing which way to
go is more challenging if you are uncertain about your initial
location, especially in a setting in which many places look similar.
Working out both where you are and where you are going
involves accepting assumptions and using them to make predic-
tions. These beliefs can then be updated based on whether your
predictions are correct or not. Over time, this leads to varying
levels of confidence about your whereabouts and ability to
accurately predict future conditions.

Predictions are considered high-order functions since they
incorporate varying degrees of uncertainty to facilitate effective
decision-making. Additionally, these predictions are considered
subjective because they may not be entirely rooted in objective
reality. In fully observable decision-making contexts in which
one’s current state is certain, it has been shown that explicit
predictions can be decoded from brain activity. This has been
demonstrated in the context of spatial navigation1,2 and percep-
tual decision-making tasks3–5 but has not yet been determined in
partially observable environments. Although previous studies of
Bayesian modeling reproduced subjective beliefs in predictions
during a human navigation task in a partially observable maze6,
no studies have specifically investigated the decodability of
explicit predictions.

Assuming that confidence is a measure of introspection to
neural representations, it would increase as the environment
becomes more predictable, to the point that the uncertainty of the
belief would be resolved. Likewise, the decodability of predictions
would also increase as the predictions become more confidently
refined7. Previous studies have consistently shown that anterior
prefrontal cortical activity correlates with subjective confidence
estimates8–11. It was also reported that information necessary for
decision-making, such as value difference9 and liking rating10, is
represented by brain activity in the same prefrontal region. In the
context of multi-voxel pattern analysis (MVPA), confidence has
been decoded from regions in the prefrontal and parietal
cortices12,13, and one parietal region was identified to encode
decisions12. Although these studies have suggested that internal
representations and their introspections are tightly coupled,
uncertainty stems directly from the experimental stimuli. In
reality, environmental uncertainty or unpredictability must be
dynamically resolved by continuously incorporating new infor-
mation into the decision-making process14. Therefore, confidence
changes are associated with uncertainty resolution. However, the
relationship between confidence and decodability for predictions
has never been assessed under dynamic, lifelike conditions
because of difficulties in monitoring and reproducing dynamically
changing internal representations. Thus, we used Bayesian
modeling, which was also used to assess neurophysiological
activities during a rodent goal-reaching task15, to study and
reproduce subjects’ predictions and confidence based on their
behaviors.

In this study, we sought to examine the following: (i) whether
explicit predictions of the upcoming scene can be decoded from
brain activity, and, if so, where this information is localized, and
(ii) whether subjective confidence in these predictions can be
decoded, and how confidence interacts with the predictions
themselves. Accordingly, we conducted functional magnetic
resonance imaging (fMRI) scanning during a virtual maze navi-
gation task in which subjects explored a previously learned maze
consisting of four-walled rooms with either an open or a closed
door on each wall (Fig. 1, Supplementary Fig. 1). Subjects were
initially placed in an unknown room with an unknown orienta-
tion (state) and provided only 3D scenes of the rooms. When

subjects explored the maze by selecting one of the open doors
leading to the next room, they were occasionally asked to predict
the 3D scene that would be seen in the next room and to report
their confidence for that prediction. This task involved decision-
making combined with uncertainty resolution stemming from the
partial observability of the environment, that is, the uncertainty in
our paradigm is a composite of the uncertainty about the
observed information in the context of standard perceptual tasks
and the uncertainty arising from memory limitations in pure
memory tasks. We hypothesized that scene prediction in a par-
tially observable environment would be encoded in the parietal
and prefrontal cortices, where activity is frequently observed in
spatial navigation and planning16–19, while its confidence would
be encoded in the anterior part of the prefrontal cortex8,9.
However, it remains unclear whether prediction and confidence
interact at the level of neural activity. We supposed that if the
confidence modulates the neural representation encoding scene
prediction, the decodability of the prediction would vary with the
confidence level.

Results
Thirty-three healthy subjects (aged 20–32 years; four females)
performed the maze navigation task (Fig. 1). Six subjects were
excluded from the analyses due to low scene prediction accuracies
(27.1–31.5%, see also Supplementary Fig. 2). Missed trials (mean
frequency ± standard deviation [SD]: 0.7 ± 1.1%), defined as trials
in which subjects did not complete the upcoming scene predic-
tion and confidence reporting within the allotted time (4.5 s),
were also excluded from the analyses of individuals.

Behavioral results. The average prediction accuracy was
54.6 ± 14.4% (mean ± SD) for 27 subjects who were included in
the behavioral analysis. Figure 2a represents an example of a
subject’s behavioral profile in the prediction trials of four con-
secutive games. The prediction accuracy was significantly higher
when the confidence was high (confidence levels 3 and 4) com-
pared to when it was low (confidence levels 1 and 2) (Fig. 2b, one-
sided Wilcoxon signed-rank test, p= 3.3 × 10−6). Subjects were
able to accurately assess their confidence even though they were
required to do so before they chose a predicted scene.

The initial states varied for each game and remained unknown
to the subjects. Therefore, to predict an upcoming scene, the
subjects were required to infer the hidden current state from the
history of actions and observed scenes (i.e., the task was a
partially observable Markov decision process [MDP]20). As such,
the uncertainty about the current state could be resolved as
subjects continued looking for the goal, and accordingly, the
scene prediction accuracy and confidence would have likely
increased. The scene prediction accuracy increased with every
successive prediction trial within a single game (Fig. 2c, r= 0.27,
p= 1.3 × 10−5), as did the confidence level (Fig. 2d, r= 0.29,
p= 2.6 × 10−6). Furthermore, the prediction accuracy was
significantly correlated with the number of recent consecutive
correct prediction trials (Fig. 2e, r= 0.34, p= 6.6 × 10−5);
however, prediction accuracy was not correlated with the number
of consecutive incorrect prediction trials (r=−0.08, p= 0.35).
These results lend support to our assumption that the subjects
resolved state uncertainty and were able to infer their state more
accurately with continued maze exploration.

We predicted that the subjects would make quicker choices
when their confidence levels regarding the upcoming scene
prediction were higher than when they were lower. Aligned rank
transformation analyses of variance revealed that scene choice
reaction times (RTs) were significantly shorter in the high-
confidence trials than in the low-confidence trials (Fig. 2f,
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F(1,5435)= 77.83, p= 1.5 × 10−18) across all subjects. Similarly,
scene choice RTs were shorter in the correct trials than in the
incorrect trials (F(1,5435)= 33.89, p= 6.2 × 10−9). There was no
interaction effect between the prediction correctness and
confidence level (F(1,5435)= 1.8 × 10−2, p= 0.89).

Neural correlates of scene prediction. First, we carried out a
univariate general linear model analysis during predicting the
upcoming scene (first 4 s of the delay period) and found sig-
nificantly higher brain (BOLD) responses in the bilateral superior
parietal lobules (SPL; Brodmann area [BA] 7), bilateral inferior
parietal lobule (IPL; BA40), left dorsal premotor cortex (PMd;

BA6), and left anterior prefrontal cortex (aPFC; BA10) (Fig. 3a;
the time-series of the brain activity in each ROI were shown in
Supplementary Fig. 3). The statistics are summarized in Supple-
mentary Table 1. One subject was excluded from the imaging and
decoding analyses due to his/her larger head motion; accordingly,
the following analyses included 26 subjects. We used voxel clus-
ters in the cortical regions above as regions of interest (ROIs) for
subsequent decoding analyses.

Decoding analysis of scene prediction and confidence. We
performed a multi-voxel pattern analysis using the voxel-wise
activity patterns of the SPL, IPL, PMd, and aPFC. For the SPL and

Fig. 1 Maze navigation task. Subjects explored the pre-learned grid maze from an unknown initial state and were intermittently asked to predict the
upcoming scene and estimate their confidence level for that prediction. To successfully perform the task, subjects needed to infer their current state based
on the history of actions and previously observed scenes. a A sample action trial sequence. At the beginning of each trial, subjects observed the scene from
their current state (i.e., the status of the doors to the left, forward, and right) and then chose an action allowing them to move in one of those three
directions. The doors were either open (passable; black) or closed (impassable; brown). Only open doors allowed the subjects to move to an adjacent state
in the grid and to see its scene. If a subject’s state inference (i.e., belief) was incorrect, the observed scene in the subsequent trial would differ from their
prediction. Subjects performed 1–5 consecutive action trials between prediction trials. The 3 × 3 maze in this figure is used to explain the task, and the maze
used in the actual experiment was of a 5 × 5 size (Supplementary Fig. S1a). b A sample prediction trial sequence. In the prediction trial, a fixation cross was
displayed for 4–6 s (delay period) during which time the subjects were asked to predict the upcoming scene. Next, the subjects reported their confidence
level for the upcoming scene prediction on a scale from 1 (low) and 4 (high). Then they were asked to select their prediction of the upcoming scene from
four options, consisting of the true scene and three distractor scenes. A green or red frame was presented around the selected scene to reflect a correct or
incorrect choice, respectively. c Occurrence probabilities for each scene selected by subjects as the predicted upcoming scene. There were seven types of
scenes based on combinations of door statuses in each scene within the maze (no dead-end, i.e., three closed doors). Center lines of the box plots indicate
the medians, boxes indicate the lower and upper quartiles, and the whiskers represent 1.5× interquartile range (IQR). Cross-markers indicate the outliers.
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IPL, the left and right ROIs were combined, as in the recent
decoding studies on navigation1,2. As the inputs for both the
scene prediction and the confidence decoders, we used brain
images of the delay period during which the subjects predicted an
upcoming scene in their mind without any visual information. To
probe the sensitivity of the decoders to pattern activation time
course, we constructed the decoders of the scene prediction and
the subject’s reported confidence level at nine different time
points, the 0th to the 8th decoding periods: the decoders at the t-
th period used four consecutive scans starting from t s after the
onset of the delay period (Supplementary Fig. 4a).

For each decoding period, we constructed six binary classifiers,
each of which corresponds to the probability associated with one
type of scene, and the scene with the maximum probability was
defined as the output of the decoder. In the following decoding
analyses, we used the scenes chosen by the subjects for the target
labels of the scene decoder regardless of whether they were
correct or not. Scene #3 was excluded due to its rarity (Fig. 1c,
13.9 ± 7.0 trials, 6.8 ± 3.2% of the whole). For the confidence
decoder, we used a binary classifier with high (confidence level 3

or 4) and low (confidence level 1 or 2) confidence categories. One
subject was excluded from the confidence decoding analysis
because he/she reported high confidence in three out of 233
prediction trials. Mean decoding accuracies in terms of leave-one-
session-out (LOSO) cross-validation (CV) were averaged across
all subjects, representing a total of 26 for scene prediction
decoding and 25 for confidence decoding.

The MVPA for scene prediction generated classification
accuracies that were significantly higher than chance in SPL,
IPL, and PMd using a one-sided Wilcoxon signed-rank test
(Fig. 3b). However, results from the aPFC were not significant
(Fig. 3b, SPL, 18.6 ± 2.3%, p= 3.3 × 10−4; IPL, 18.5 ± 2.0%,
p= 1.9 × 10−4; PMd, 17.9 ± 1.8%, p= 1.1 × 10−3; aPFC,
17.2 ± 1.8%, p= 9.8 × 10−2). In contrast, the confidence level
could be decoded from activity within all four ROIs (Fig. 3c, SPL,
63.4 ± 9.2%, p= 1.2 × 10−5; IPL, 63.9 ± 9.0%, p= 1.1 × 10−5;
PMd, 60.8 ± 8.1%, p= 2.2 × 10−5; aPFC, 59.4 ± 8.4%,
p= 3.4 × 10−5). The results of our time-series decoding analysis
are shown in Supplementary Fig. 4b–e. There was no significant
positive correlation between the number of samples (frequency)

Fig. 2 Behavioral results. a Representative example of a sequence of subject’s reported confidence levels for scene predictions during four consecutive
games. Each marker represents the confidence level chosen in the prediction trial; circle and cross markers denote whether the subject’s chosen prediction
was correct and incorrect, respectively. The prediction trials are visibly interspersed by action trials. b The prediction accuracy was significantly higher
when subjects’ confidence levels were high (level 3 or 4) on the same trial (one-sided Wilcoxon signed-rank test, ***: p < 0.001). The dashed line indicates
the chance level. Each box extends from the lower to upper quartiles, with a horizontal line at the median. The whiskers indicate 1.5 × IQR. c, d Scene
prediction accuracy (c) and scene prediction confidence level (d) represented as a function of the prediction trial number in each game. Both the prediction
accuracy (r= 0.27, p= 1.3 × 10−5) and the confidence level (r= 0.29, p= 2.6 × 10−6) increased as the number of prediction trials performed in a single
game increased. Each box extends from the lower to upper quartiles, with a horizontal line at the median. The whiskers indicate 1.5 × IQR, and cross
markers indicate the outliers. e Scene prediction accuracy as a function of the number of consecutive correct or incorrect choices in previous prediction
trials. The prediction accuracy increased as the number of consecutive correct prediction trials increased (dim gray boxplot, r= 0.34, p= 6.6 × 10−5). In
contrast, there was no correlation between prediction accuracy and the number of consecutive incorrect prediction trials (light gray boxplot, r=−0.08,
p= 0.35). Each box extends from the lower to upper quartiles, with a horizontal line at the median. The whiskers indicate 1.5 × IQR, and cross markers
indicate the outliers. Each data point represents the average accuracy for a single subject. f Distributions of the scene choice reaction times (RTs) for all
subjects. ART-ANOVA with confidence level (high and low) and prediction correctness (correct and incorrect) revealed that the RTs were shorter in high-
confidence trials than in low-confidence trials (p= 1.5 × 10−18) and shorter in the correct trials compared to incorrect trials (p= 6.2 × 10−9). There was no
interaction effect between prediction accuracy and confidence level (p = 0.89). Each RT was converted to a z-score, normalized within each session for
each subject. Vertical dotted lines indicate the median of each distribution. Note that the data shown in b–f was of 27 subjects included in the behavioral
analyses.
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and the decoding accuracy of each scene in all four ROIs at nine
decoding periods (i.e., 36 decoders in total; Supplementary
Table 2). Additionally, while the size of ROIs varied from 497 to
2686 voxels, the number of selected features was almost constant
between the different ROIs (Supplementary Fig. S4f, g). There-
fore, the unbalanced number of samples and dimensionalities of
ROIs were found not to distort the decoding results. We also
confirmed that there was no positive bias in the decoding
accuracy even though the data for decoder evaluation was also
used for the ROI selection21 (Supplementary Fig. S4h, i).

Based on the analysis of scene choice RTs, we expected that the
distinctiveness of scene prediction may be different when the
subjects had high confidence in the prediction compared to low
confidence, and when the subjects successfully predicted the true
upcoming scene compared to when they did not. We assessed the
accuracy of the scene prediction decoders in the high-confidence
versus low-confidence trials and in the correct versus incorrect
trials. Here, we constructed four independent decoders trained
and tested using different subsets of data: correct or incorrect

prediction trials (regardless of the confidence level), and high- or
low-confidence trials (regardless of the correctness) using a leave-
one-game-out (LOGO) CV procedure. For each decoder, subjects
who had fewer than three samples in the training subset for any
individual scene label were excluded from the analysis. Conse-
quently, we used data from 17 subjects for the decoders trained by
the high-confidence trials (high-scene-confidence-only decoder),
21 subjects for the low-scene-confidence-only decoder, 24 subjects
for the correct-only decoder, and 18 subjects for the incorrect-
only decoder. We examined the accuracies in the SPL, IPL, and
PMd, which corresponded to the ROIs with acceptable scene
prediction decodability.

When comparing the decoding accuracies between the two
categories of prediction correctness (correct versus incorrect
trials), the three ROIs showed similar patterns of scene prediction
decoding accuracies; the decoders tended to exhibit significantly
higher accuracies than chance in the correct trials, but not in the
incorrect trials (Fig. 3d). However, the voxel activity patterns of
the SPL allowed us to decode the subjects’ predicted scenes, even

Fig. 3 Imaging analysis results and decoding accuracies. a Brain areas that were significantly activated when subjects were predicting an upcoming scene:
bilateral superior parietal lobule (SPL), bilateral inferior parietal lobule (IPL), left dorsal premotor cortex (PMd), and left anterior prefrontal cortex (aPFC).
The voxel activity patterns in these four areas were used to construct decoders for each region of interest (ROI) for scene prediction and confidence level.
Visualization was performed using xjView toolbox (https://www.alivelearn.net/xjview). b, c Decoding accuracies for scene prediction (b, six types of
scenes) and its confidence level (c, high or low) within each ROI evaluated using leave-one-session-out (LOSO) cross-validation (CV). Each box extends
from the lower to upper quartiles, with a horizontal line at the median. The whiskers represent 1.5 × IQR, and cross markers indicate the outliers.
Significance was tested using a one-sided Wilcoxon signed-rank test compared to chance (dashed line) (**: p < 0.01, ***: p < 0.001). These figures
represent the results of the scene prediction and confidence decoders using the 6th decoding period as representative data because of its increasing
decodability in our time-series analysis; the overall results of the time-series decoding analysis are shown in Supplementary Fig. 4b–e. d, e Time-series
scene prediction decoding results within each ROI when the data were categorized binarily according to the prediction correctness (d, correct vs. incorrect
trials) and the confidence level (e, high-confidence vs. low-confidence trials) of the prediction trial. For example, ‘correct’ indicates the accuracy of the
scene prediction decoder trained and tested with only the trials in which subjects’ upcoming scene selections were correct (correct-only decoder). The
decoding accuracies were evaluated using the leave-one-game-out (LOGO) CV. The solid lines reflect the median, the shaded areas indicate the range
between the upper and lower quartiles, and the dotted lines indicate the range of 1.5×IQR. The cross-markers indicate outliers. Significance was tested
using a one-sided Wilcoxon signed-rank test (unfilled circle: p < 0.05, unfilled square: p < 0.01, unfilled diamond: p < 0.001) compared to the chance level
(dashed line). The color of the horizontal line below the plots reflects a significant difference between the two categories of trials in each decoding period
(one-sided Wilcoxon rank-sum test, light gray: p < 0.05, dim gray: p < 0.01, black: p < 0.001).
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in the incorrect trials, especially in the relatively early stages of the
delay period. The differences between the accuracies of the
correct-only and the incorrect-only decoders were highly
significant for the 5th to the 8th decoding period with the SPL
responses, for the 4th and 8th period with the IPL responses, and
only for the 4th period with the PMd responses. We also
confirmed that the beta estimates and the percent signal changes
(PSCs) in the ROIs (SPL, IPL, and PMd) were not significantly
different between the compared conditions (Supplementary
Fig. 5a, c). Therefore, the differences in the scene prediction
decoding accuracy were not due to the activity differences that
were examined in the univariate analyses.

When separately decoding scene prediction between the high
and low confidence levels, the decodability in the time-series
analysis behaved differently between the ROIs (Fig. 3e). When
trained with the high-confidence trials, the decoders with the SPL
responses exhibited significantly higher accuracy than chance for
the 0th and the 3rd to 8th periods, while the accuracy of the low-
scene-confidence-only decoder did not differ from chance (except
for the 8th period). In addition, for the 6th to 8th periods, the
decoding accuracy in the high-scene-confidence trials was
significantly higher than that in the low-confidence trials (one-
sided Wilcoxon rank-sum test, for the 6th period, p= 6.8 × 10−5;
the 7th, p= 1.5 × 10−4; the 8th, p= 6.9 × 10−4). This difference
was more pronounced when comparing the trials with the highest
confidence level (confidence level 4) with those with the lowest
level (confidence level 1) (Supplementary Fig. 5e, for the 3rd
period, p= 2.7 × 10−2; for the 4th period, p= 1.6 × 10−2). To
assess the relationship between the confidence level and scene
prediction decodability, we also compared the decoding accuracy
for the 6th period on three scales: the highest (confidence level 4),
moderate (2 and 3), and lowest (1). We found that the decoding
accuracy significantly increased as the confidence level increased
(Supplementary Fig. 5f, r= 0.52, p= 3.8 × 10−4). Additionally,
we confirmed that there was no significant difference in the beta
estimates between the high-scene-confidence trials and the low-
scene-confidence trials (Supplementary Fig. 5d). When compar-
ing the PSCs between the high-confidence trials and the low-
confidence trials, there was a weakly significant difference from
t= 8 to 10 s since the onset of the delay period (Supplementary
Fig. 5b). These results indicate that the difference in decodability
depending on the confidence level in SPL, especially up to the 7th
period, is not due to the difference at the univariate level. On
assessing the voxel activity patterns in the IPL and PMd, the scene
prediction decoder outperformed chance in the later decoding
periods (for the 5th to the 8th period in the IPL; for the 4th to the
8th period in the PMd). However, the difference between the
accuracies of the high-scene-confidence-only and the low-scene-
confidence-only decoders was weakly significant only in the 6th
and 8th periods for IPL (the 6th period, p= 4.2 × 10−2; the 8th,
p= 2.6 × 10−2), and only in the 6th period for PMd
(p= 2.8 × 10−2). In summary, the correctness of the scene
prediction affects the scene prediction decodability with the
voxel activity patterns of SPL, IPL, and PMd, while the confidence
level of the scene prediction influenced the decodability with the
SPL responses only.

Computational model of maze navigation behavior. To predict
an upcoming scene, subjects must infer their hidden current state
and then mentally simulate the next state based on their chosen
action and the environmental model (maze structure). State
inference was inherently uncertain at the beginning of each game,
but prediction accuracy was improved as subjects explored the
maze more and completed more prediction trials (Fig. 2c). To
reproduce the subjects’ internal decision-making process, we

implemented a hidden Markov model (HMM) of the subjects’
maze exploration behaviors based on previous modeling
studies6,21 (Supplementary Fig. 6). We integrated the following
cognitive state variables into our HMM: i) a state inference, which
is the belief about one’s location and orientation in the maze, and
ii) the confidence level for the state inference (i.e., high or low
state confidence). We assumed that the subjects used a simple
switching mechanism between two strategies depending on their
state confidence;21–23 when they were uncertain about their state
inference (low state-confidence level), they moved forward if
possible to maximize information to identify the current state
(forward-dominant strategy), while when they were certain about
their state (high state-confidence level), they tended to move to
grid spaces that they had not previously visited (efficient-
exploration strategy). In terms of negative log evidence and AIC,
this model performed better than the other models with a single
strategy (Supplementary Tables 3 and 4).

Figure 4a represents two examples of subjects’ behaviors in the
maze (left panels) and the most probable paths produced by our
model (right panels). The upper and lower panels correspond to
subjects with representatively good and poor scene prediction
performances, respectively. Our model was good at predicting
subjects’ actions in the action trials (95.8 ± 3.0% overall, and
94.2 ± 6.6% or 84.7 ± 12.9% when a scene had two or three open
doors, respectively), as well as subjects’ scene choices in the
prediction trials (63.3 ± 15.0%). The HMM reproduced the
subjects’ scene choices in all correct trials (number of correct
trials per subject, 112.6 ± 30.9), while its reproducibility in
incorrect trials was significantly lower than that in correct trials
(21.0 ± 10.8%; number of incorrect trials per subject, 92.7 ± 32.7).

The model allowed us to estimate the progression of state-
confidence levels for each subject. If the model is reasonable, the
state confidence should increase as exploration progresses; if the
state-confidence level is high, subjects would be able to make
correct scene choices in the prediction trials. The proportion of
high-state confidence levels increased as the number of prediction
trials increased within a given game (Fig. 4b, r= 0.63,
p= 2.6 × 10−28), and the prediction accuracy was significantly
higher in the high-state-confidence trials than in the low-state-
confidence trials (Fig. 4c, one-sided Wilcoxon signed-rank test,
p= 5.8 × 10−6).

The state-confidence estimated by our model matched with the
scene-prediction-confidence levels reported by the subjects:
63.2 ± 10.5% for 27 subjects (see also “Discussion”). The state-
confidence was also decodable from the voxel activity patterns of
four ROIs in which the scene-confidence was found to be
decodable (Fig. 4d, one-sided Wilcoxon signed-rank test, SPL,
59.5 ± 6.0%, p= 7.8 × 10−6; IPL, 58.5 ± 5.9%, p= 5.6 × 10−6;
PMd, 56.0 ± 5.3%, p= 2.4 × 10−5; aPFC, 55.2 ± 6.1%,
p= 3.3 × 10−4). The time-series decoding analyses yielded the
same results, regardless of the decoding time points (Supplemen-
tary Fig. 7a).

We compared the scene prediction decoding accuracies between
the high- and low-state-confidence trials. Two decoders were
individually trained using high- and low-state-confidence trials
and evaluated using the LOGO CV procedure. Some subjects were
excluded from each of the two decoders given the small number of
samples (≤2) for at least one type of scene, resulting in a sample
size of 21 subjects for the high-state-confidence-only decoders and
20 subjects for the low-state-confidence-only decoders.

Figure 4e represents the results of the SPL, IPL, and PMd. As
an overall trend, the time-series decoding analysis revealed that
the scene prediction decoders’ accuracy was significantly higher
than chance in the high-state-confidence trials within all three
ROIs, but not in the low-state-confidence trials, except for the
latter decoding period (the 4th to the 8th). The difference in the
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decoding accuracies between the high- and low-state-confidence
trials was highly significant when using the voxel activity patterns
of IPL for the 5th period (one-sided Wilcoxon rank-sum test,
p= 4.7 × 10−3). We also confirmed that the beta estimate in IPL
was not different between the high- and the low-state-confidence
trials and that the PSCs did not consistently show a significant
difference at the time points corresponding to the 5th decoding
period (Supplementary Fig. 7a, b). When the decoders were
trained with the SPL or PMd responses, there were decoding
periods for which the scene prediction decoders exhibited a
weaker significant difference in accuracy between the two state-
confidence levels.

Discussion
This study demonstrated that future scenes predicted by human
subjects during maze navigation, as well as their corresponding
prediction confidence, can be decoded from fMRI activity pat-
terns in localized regions of the prefrontal and parietal cortices.
To successfully predict an upcoming scene in the task, subjects
needed to infer their current state about which uncertainty was
intrinsic due to the partial-observability of the maze. Our
decoding target was subjective prediction, which had to be
mentally simulated by incorporating subjective inference, given
that neither the visual information given by the environment nor
the memorized map information was sufficient to independently
guide maze exploration behaviors. This highlights the major

Fig. 4 Results of behavioral and decoding analyses based on the computational model of human navigation. a Examples of subjects’ actual behaviors in
the maze (left panels) and estimated behaviors using a hidden Markov model (HMM) with the maximum a posteriori probability estimate (right panels).
Subject 1 and Subject 2 are representative examples of good and poor performances, respectively. The arrows represent the actual (black) and estimated
paths (blue), starting from unknown initial positions (filled circles). The dashed lines on the estimated path indicate the subject’s position before and after
the HMM inferred that the subject had re-estimated their position due to a discrepancy between the expected and observed scenes. The circle or square
markers signify the positions in which the subject made a correct or incorrect scene prediction, respectively, and the color corresponds to the subject’s
reported confidence level about the scene prediction in that position (green: low, orange: high). The color of the cross-markers in the right panels
represents the confidence level about the current state estimated by the HMM (green: low, orange: high). b Proportion of trials with a high state-
confidence level as a function of the prediction trial number in each game. The proportion of the trials in which the HMM estimated the subjects’
confidence level as high increased as the number of prediction trials performed in a single game increased (r= 0.63, p= 2.6 × 10−28). Each box extends
from the lower to upper quartiles with a horizontal line at the median. The whiskers represent 1.5 × IQR. The cross-markers indicate the outliers. c Scene
prediction accuracies compared between trials with high and low state-confidence levels estimated by the HMM. The prediction accuracy was significantly
higher when the HMM estimated the confidence level is high compared to low (one-sided Wilcoxon signed-rank test, ***: p < 0.001). The dashed line
indicates chance level. d Decoding accuracy of the HMM estimated state confidence. The decoding accuracy was evaluated using LOSO CV (one-sided
Wilcoxon signed-rank test, ***: p < 0.001). The dashed line indicates the chance level. Here we plotted the result for the 6th decoding period
representatively; the results of our time-series decoding analysis are shown in Supplementary Fig. 7c. e Time-series decoding accuracies of scene
prediction for different state-confidence levels. Each decoder for each period was trained with the trials of high (or low) state confidence estimated by the
HMM, and the accuracy was evaluated by LOGO CV. The solid lines represent the median, shaded areas indicate the range between the upper and lower
quartiles, and the dotted lines indicate the range of 1.5 × IQR. Cross-markers indicate the outliers. Significance was tested using a one-sided Wilcoxon
signed-rank test (unfilled circle: p < 0.05, unfilled square: p < 0.01, unfilled diamond: p < 0.001) compared to the chance level (dashed line). The colors of
the horizontal line below the plots reflect the significant differences between the two categories of the trials in each decoding period (one-sided Wilcoxon
rank-sum test, light gray: p < 0.05, dim gray: p < 0.01).
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contribution of our study: decoding subjective prediction adds to
the scope of most previous studies that have focused on decoding
aspects of the information provided to the subjects directly,
including visual24,25, tactile26, and pain27, or distinctly main-
tained in the brain, such as memory28–33, imagination34–37 and
dreaming38. Although some recent decoding studies have
revealed that predicted visual events are also decodable using
fMRI1,2,5 and electroencephalography3, they did not take into
consideration the prediction uncertainty or confidence. The
current study uses ongoing mental simulation in the context of
uncertainty and allows us to specifically investigate the neural
basis of prediction uncertainty.

Using a decoding analysis for four ROIs that were identified by
univariate analysis, we showed that both scene prediction and
confidence level were decodable from the voxel activity patterns
in the SPL, IPL, and PMd. The time-series analysis also showed
that the scene prediction decoding accuracy gradually increased
from the 5th to 7th periods, which included the BOLD signals
after 4–6 s from the delay onset in the SPL and IPL. Although
there was no clear peak or a sharp drop in accuracy following the
delay period, this could be due to the wide range of time during
which the upcoming scene was predicted, or to the need to
maintain the predicted scene throughout the prediction trial to
report it in the subsequent scene choice period. Meanwhile, our
decoding analysis demonstrated that only confidence could be
decoded from the aPFC activity. These results suggest that the
aPFC may be involved in encoding subjective confidence, but not
the associated prediction. Recent studies have shown that the
aPFC is a key brain area involved in the metacognitive assess-
ment. In addition, human fMRI experiments have revealed that
this region shows significant activation during self-confidence
reporting in perceptual9 and value-based decision-making tasks8.
It was also demonstrated that metacognitive accuracy in per-
ceptual decision-making is significantly correlated with the
strength of functional connectivity arising from the lateral
aPFC39. Neuroanatomically, the gray matter volume40, white
matter microstructure40 and gray matter microstructure41 in the
aPFC are correlated with individual introspective ability. Fur-
thermore, some studies have also reported that perceptual con-
fidence can be decoded from the lateral PFC subregions using
MVPA12,13. Our results are therefore consistent with those of
previous studies, supporting the theory that the aPFC may be an
important center for metacognitive processing.

Behaviorally, when a subject’s confidence in the scene predic-
tion was high, they tended to make a correct scene choice more
quickly than when their confidence was low, which is consistent
with previous findings in perceptual judgment tasks, such as
motion detection42,43 and two-choice discrimination tasks44.
Neurophysiologically, short RTs have been associated with
decreased variability of neural activities, such as reproducible
activity patterns in rodents45 and firing rates in nonhuman
primates46. Furthermore, a human transcranial magnetic stimu-
lation study showed analogous results in which the variability in
corticospinal excitability was suppressed in fast-response trials in
a bandit task47. Based on these findings, we expected that the
variability of fMRI voxel activity patterns representing a predicted
scene would decrease when the subjects’ confidence level was high
compared to low, enabling the decoder to distinguish the voxel
patterns more accurately.

When we assessed the effects of confidence on the decodability
of scene prediction, we found that the scene prediction decoders
trained with the SPL activities in the high-scene-confidence trials
performed significantly better than those with the low-scene-
confidence trials, especially in the 6th to the 8th decoding period.
An additional decoding analysis was performed by excluding one
multiplicative condition ([correct, incorrect]×[high, low]) out of

2 × 2, and it was suggested that the neural representation of scene
prediction in SPL was affected by both the confidence level
(Supplementary Fig. 5g, ART-ANOVA, 6th period,
F(1,96)= 9.37, p= 2.9 × 10−3; 7th period, F(1,96)= 4.25,
p= 4.2 × 10−2) and the prediction correctness in the 6th and 7th
decoding periods (6th period, F(1,96)= 4.10, p= 4.6 × 10−2; 7th
period, F(1,96)= 4.42, p= 3.8 × 10−2). Previous studies have
demonstrated that MVPA decoding accuracy is influenced by
some behavioral and perceptual performance measures, such as
tactile discrimination ability26, spatial memory accuracy48, reac-
tion time49, and familiarity with auditory stimuli, both intra-50

and inter-individually26,48,49. Moreover, MVPA has shown that
the neural distance, which is the distance from a classifier
hyperplane in the activation space, is robustly correlated with RT
in the context of categorization tasks51,52. Thus, this study adds to
the existing literature by uncovering a clear relationship between
decoding accuracy and subjective reporting of metacognition.

The prediction confidence level affected the scene prediction
decoding accuracy in the SPL, whereas there was no effect on the
decodability in the IPL. These results suggest that SPL represents
the predicted scene itself and that IPL could be involved in other
processes related to scene prediction. Based on the state-
confidence level estimated by our HMM, the IPL scene predic-
tion decoder was found to perform better in high-state-
confidence trials, while the SPL decoder did not differ between
high and low state-confidence levels (Fig. 4e). We also determined
that only the IPL scene prediction decoder, excluding the correct
and high-state-confidence trials, failed to show higher accuracy
than chance (Supplementary Fig. 7d). These results support that
state confidence partly affects the decoding accuracy of scene
prediction with IPL responses. In addition, when we looked at the
time-series of decodability, the IPL scene prediction decodability
in the high-state-confidence trials reached a peak slightly earlier
(the 6th period) than the SPL scene prediction decodability in the
high-scene-confidence trials (the 7th period). These results sug-
gest that IPL may be related to the neural representation of state
inference, which functions as upstream information processing
when predicting the upcoming scene.

The decoding accuracies of scene prediction in the IPL and SPL
were thus influenced by the confidence level for state inference
and scene prediction, respectively. The parietal cortex is known to
be involved in spatial information processing, including
navigation16–19 and there is abundant evidence from human
fMRI53–58, nonhuman primate59–62, and rodent physiological
studies63 that the posterior parietal cortex is crucial in egocentric
forms of spatial information processing. In contrast, IPL has been
shown to be associated with allocentric spatial information pro-
cessing, such as viewer-independent spatial memory64, object-
based spatial judgement65,66, and object-based attention67. Posi-
tron emission tomography studies have also shown that the IPL
may be involved in the conversion of allocentric-to-egocentric
spatial representation in navigation tasks68. Our decoding results
could be interpreted to suggest that IPL represents the allocentric
state inference based on a memorized map, possibly encoded in
the hippocampus, while the predicted scene is encoded in SPL as
egocentric spatial information for navigation. Although this is
speculative and our current data are not suitable for further
detailed analysis, the decoding of subjects’ state inference, that is,
subjects’ belief of the position in the maze, may possibly support
our interpretation.

In contrast to the SPL and IPL, the PMd decoding accuracy of
scene prediction was affected by neither scene-prediction-confidence
nor state confidence, although it was significantly higher than chance
in the correct trials. Previous studies have reported that the PMd
showed significant activation related to action selection69 and sig-
nificant decodability of movement-related information such as
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hand70 and target positions71. Based on these studies, we speculated
that PMd might specifically be involved in action planning in our
maze exploration task because a scene is defined by a set of open
(passable) or closed (impassable) doors in our experimental design.
Unfortunately, we found no further support for this speculation in
this study.

Our HMM-based behavioral model allowed us to successfully
estimate subjects’ state confidence, although it was not explicitly
reported by the subjects in the experiment. According to our view
of an incremental Bayesian filtering process, scene prediction
should incorporate a mental simulation process utilizing the
memory of the maze structure after inferring the current state in
the maze. Since the scene prediction follows the state inference, it
includes additional uncertainties that vary from subject to subject,
such as the degree of the imperfectness of the maze structure
memory. The subject-reported scene-prediction-confidence may
not necessarily match the estimated (but objectively reconstructed
by our model) state confidence, as represented in the subjects’
brain. In fact, the agreement between the scene-prediction con-
fidence (subject-reported, high or low) and the state confidence
(model-estimated, high or low) was 63.2 ± 10.5% for all predic-
tion trials, suggesting that there may be a difference between these
two types of confidence. The difference in the time-course
decodability between the SPL and IPL corresponded to this dif-
ference between the confidence types.

This study demonstrated that the localized neural representa-
tions of predictions during maze exploration differed depending
on the confidence level of prediction. In addition, we noted that
SPL and IPL appear to have different involvements in scene
prediction. However, there are some limitations that should be
addressed. Considering the assumed decision-making process
underlying maze exploration, it is plausible that confidence or
uncertainty about scene prediction could be affected by prior
knowledge (i.e., the memory of the maze structure), which may
not be perfect. Accordingly, future studies should probe and
verify the effects of imperfect prior knowledge on confidence.
Moreover, the detailed process of generating confidence from
state inference and scene prediction has yet to be explored. It
would be an interesting avenue for future studies to consider and
verify how the parietal-prefrontal downstream circuit, which
includes the IPL, SPL, and aPFC that would hierarchically encode
prediction during maze exploration, decodes uncertainty and
subjective confidence, to better enhance our understanding of the
neural substrates involved in the decision-making process in
uncertain environments.

Methods
Subjects. Thirty-three healthy subjects were recruited to participate in the
experiment and provided written informed consent. This study was approved by
the ethical committees of the Advanced Telecommunications Research Institute
International, Japan, and the Graduate School of Informatics, Kyoto University,
Japan. Six subjects whose scene prediction accuracy in the experimental task was
not significantly higher than chance (one-sided z-test, p ≥ 0.01, see also Supple-
mentary Fig. 2) were excluded from analyses. Another subject was also excluded
from imaging and decoding analyses due to his/her large head motion (more than
5% of TRs at Framewise Displacement threshold 0.5 mm). No statistical method
was used to predetermine the sample size, but the sample size for our analyses was
comparable to those generally employed in the field.

Maze exploratory navigation task. The experiment consisted of two tasks: a
training task outside the fMRI scanner to learn the structure of the maze (see
“Training task”), followed by a maze scene prediction task inside the fMRI scanner.
We used a single 5 × 5 grid maze for all subjects, in which each grid had either an
open (passable) or closed (impassable) door on all four sides (Supplementary
Fig. 1)72. We used the same maze for all subjects so that there would be no
difference in the level of task difficulty between individuals. The maze was partially
observable such that at each state (position and orientation), subjects could only
observe the current scene (i.e., the status of the doors to the left, right, and
forward)2,6,21. We created a maze to satisfy partial observability, that is, at least two

consecutive observations from the initial state are required to identify the current
state. The experimental and training tasks were programmed using Psychopy373.

In the scene prediction task, subjects freely explored the maze and were
intermittently asked to predict the upcoming scene and to rate their level of
confidence about the prediction (Fig. 1). Each game started in an unknown initial
state (i.e., a combination of position and orientation), with the current 3D scene
(i.e., the status of the doors to the left, forward, and right) displayed on a screen.
Subjects were requested to choose an action to move to the left, forward, or right
grid space by pressing a button within 2.5 s, and subsequently, the 3D scene at the
next state was presented in the next trial (Fig. 1a). If subjects chose an impassable
door, they remained in the same state and the same scene was presented again in
the subsequent trial (2.7 ± 3.1 trials for 27 subjects, 0.6 ± 0.7%). If an action was not
taken within the allotted time, one of the passable doors was chosen by the
computer (12.7 ± 9.8 trials, 2.8 ± 2.0%). After repeating an action trial 1–5 times, a
prediction trial was performed (Fig. 1b). In a prediction trial, a fixation cross was
displayed for 4–6 s (delay period) instead of the next scene presentation, and
subjects were requested to predict the upcoming scene. In principle, although the
upcoming scene was determined by the state and action in the previous trial, the
intrinsic uncertainty of each state in the partial-observable maze required subjects
to make inferences about their current state based on the history of actions and
observed scenes. After the delay period, subjects were first asked to evaluate their
level of confidence about their upcoming prediction on a four-point scale (1: lowest
confidence; 4: highest confidence). The display positions of the four options were
randomized for each prediction trial, and a white frame appeared around the
selected option as feedback (1.5 s). After the confidence report, four out of seven
possible scenes were displayed, and the subjects were requested to select the scene
corresponding to their prediction of the upcoming scene. The scene options always
included the correct upcoming scene and three other scenes, and their display
positions on the screen were randomized. Distracters were selected from the set of
possible scenes in which the local structure was consistent with the true state (i.e.,
states that could be reached from scenes similar to the scene presented in the
previous trial using the selected action). Here, the design included four out of seven
existing scenes as the predicted scene options, rather than the complete set of
existing scenes, to make it easier for subjects to report their prediction by choosing
one option within the time limit. Importantly, subjects were asked to report their
confidence level prior to the presentation of the scene options, because there is a
possibility that the limited options induce a large change in their prediction
confidence. After selecting a scene option, a green or red frame appeared around
the chosen scene, indicating that the choice was correct or incorrect, respectively.
In the next action trial, the scene of the true subsequent state was presented,
irrespective of the correctness of the subject in scene prediction. The allotted time
for both reporting confidence level and selecting an upcoming scene option was
limited to 4.5 s in order for subjects to make each choice as soon as possible.

Once a subject reached the termination condition, a yellow star was displayed
on the door, leading to the final state. A termination condition was reached if the
subjects were experiencing the state for the first time and had performed at least
five prediction trials. Subjects were not provided details regarding the termination
condition, but they were informed that both the initial and final states varied
between games. Each game consisted of 5–20 blocks (5.5 ± 1.2), with each block
consisting of 1–5 action trials and one prediction trial. The number of action trials
was randomized for each block. Each subject performed up to 40 total games
(38.2 ± 4.2 games, 208.5 ± 19.5 prediction trials), which were divided into three or
four sessions.

In our experimental design, the subjects judged their decision confidence before
indicating their predicted scene. One may note the effect of this prospective
confidence evaluation, since, in many previous studies, confidence was reported
retrospectively. A previous study suggested that prospective confidence is more
discrepant from objective performance than retrospective confidence74, but
another study reported that there was no significant difference in the confidence
rating when decision making was not communicated but performed before the
confidence judgement75. In our current study, subjects performed the confidence
report followed by the predicted scene choice to prevent their scene prediction and
confidence judgment from being modified after the presented scene options.

Training task. Subjects performed multiple training sessions to sufficiently learn
the structure of the maze outside of the fMRI scanner on the day before or the same
day as the scanning experiment. If the subjects performed the training sessions on
the previous day of the scanning experiment, they received re-training on a short
version of the training task (one or two training sessions) to avoid the confounding
effects of forgetting. One training session consisted of five games in two parts: the
first three games were in the practice part in which subjects explored the maze
while referring to a printed 2D map, and the latter two were in the test part where
they explored the maze without the map and were occasionally asked to predict the
upcoming scene.

In the practice games, a printed 2D map of the maze was given to each subject,
and they were free to refer to it at any time. At the beginning of each game, the 2D
maze map showing the initial state was displayed on a computer screen for 5 s; the
initial state, comprised of both position and orientation, was depicted as a red
arrow on one of the grid squares. The initial state varied between games. Subjects
were then given unlimited time to select a movement action from the initial state
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by pressing a button, after which the 3D scene corresponding to the next state was
presented. When the subjects reached a termination condition, a yellow star
appeared on a door leading to the final grid. A game was terminated if subjects
visited a grid for the first time in the game after they performed twenty action
selections. Subjects were not instructed about the termination condition but were
informed that the final state varied between games. In the practice part, subjects
thus performed only the action trials in the maze navigation task.

The test games were similar to the maze navigation task but without confidence
ratings. Here, subjects performed the scene prediction task from an unknown
initial state and were not able to refer to the printed map. Each trial began with the
3D scene corresponding to the current state displayed on the screen and subjects
were given 2.5 s to select an action. After several action trials, subjects were
required to perform a prediction: a fixation point was displayed for 4 s (delay
period) and then were given 4.5 s to choose the option corresponding to their
prediction of the upcoming scene from four options. Like the experimental task,
the options consisted of the true upcoming scene and three distractor scenes
randomly selected from the set of scenes with a similar local structure to the correct
option, and then a green (correct) or red (incorrect) frame was presented around
the selected scene as the choice feedback. The subsequent action trial displayed the
true upcoming scene, irrespective of the subject’s scene prediction correctness. We
refer to a set of 1–5 action trials followed by a prediction trial as a block, and
subjects repeated these blocks until they reached a termination condition. The first
block included ten action trials, allowing the subjects to explore the maze to gather
more information about their position in the maze before the first prediction trial.
The termination conditions were identical to those used in the scanning
experiment. The subjects performed two games in the test part, each of which
consisted of 5–48 blocks (7.0 ± 4.2).

All subjects performed at least seven training task sessions, up to a maximum of
1.5 h in total. If a subject’s scene prediction accuracy averaged across two test
games exceeded 80%, he/she was allowed to end the training task. The best
prediction accuracy was 79.2 ± 19.9% for all 33 subjects, 85.3 ± 16.2% for
27 subjects who were included in the behavioral analysis, and 85.0 ± 16.5% for
26 subjects who were included in the imaging and decoding analyses. Here, the best
prediction accuracy means the best accuracy for each subject across all sessions,
while session accuracy was averaged over two test games.

Image acquisition and analysis. A 3.0-Tesla Siemens MAGNETOM Prisma fit
scanner (Siemens Healthineers, Erlangen, Germany) with a standard 64 channel
phased array head coil was used for image acquisition. We acquired interleaved
T2*-weighted echo-planar images (EPIs) (TR, 1000 ms; TE, 30 ms; flip angle, 50°;
matrix size, 100 × 100; field of view, 200 × 200; voxel size, 2 × 2 × 2.5 mm; number
of slices, 66). Volume acquisition was synchronized with the onset of the fixation
cross-presentation during each prediction trial. We also acquired whole-brain
high-resolution T1-weighted structural images using a standard MPRAGE
sequence (TR, 2250 ms; TE, 3.06 ms; flip angle, 9°; field of view, 256 × 256; voxel
size, 1 × 1 × 1mm).

Imaging data were analyzed using SPM12 (Wellcome Department of Cognitive
Neurology, London, UK). For each subject, all functional images were aligned to
the first image as a reference, coregistered to the individual high-resolution
anatomical image, normalized into an MNI template, and spatially smoothed with
a Gaussian kernel filter (FWHM, 8 mm).

Our univariate analysis was based on the generalized linear model (GLM)
approach. Our GLM included seven regressors coding for onsets and durations of
events in each session: action selection and moving scenery in the action trials,
delay period, confidence evaluation, feedback for confidence evaluation, predicted
scene choice, and scene choice feedback in the prediction trials. The durations of
choice-related events (action selection, confidence evaluation, and predicted scene
choice) were defined as the time between the option presentation and the subject’s
response. The durations of moving and choice feedback were fixed to 1.5 s. For the
delay period (regressor-of-interest), although the time length varied trial-by-trial,
we modeled it as a boxcar function for 4 s (the minimum duration of the delay
period). These regressors were convolved with a hemodynamic response function
(HRF). Additionally, motion correction parameters produced during realignment
were included as nuisance variables for the GLM. The first-level GLM analysis was
performed using the contrast vector whose element was 1 for the regressor-of-
interests, and 0 otherwise. We then performed a group random effect analysis using
anatomically localized cerebral cortex to find cortical voxels that were significantly
and commonly activated during prediction across all subjects. We established
statistical thresholds at the voxel level of p < 0.001 (uncorrected) and at the cluster
level of p < 0.05 (FWE-corrected). We extracted regions of interest (ROIs) from the
identified voxels, and the BOLD signal patterns in each ROI were used for the
decoding analysis.

To complement the univariate ROI analysis, we also performed whole-brain
searchlight analyses (see “Searchlight analysis for the scene prediction and
confidence”). For scene prediction, we confirmed that there were no clusters other
than the four ROIs extracted by the univariate analysis that showed significantly
higher decoding accuracy than chance (voxel level, p < 0.001; cluster level, FWE-
corrected p < 0.05). For confidence level, we found that the regions where the
confidence can be decoded were widely distributed over the cerebrum, which may

be attributed to the task design in which subjects were instructed to predict the
upcoming scene during the delay period.

Decoding analysis. Voxel activity patterns during the delay period were used to
decode both scene prediction and confidence. All fMRI data were spatially rea-
ligned, normalized, and smoothed with a Gaussian kernel (8 mm FWHM), and
preprocessed with linear trend removal and z-score normalization for each voxel in
every run over the time series but not convolved with HRF.

In the time-series decoding analysis, the decoder at each time t in the time
course (t-th decoding period) used as its input the voxel-wise BOLD signal
intensities averaged over four volumes corresponding to t s to t+ 3 s (i.e., (t+ 1)-th
to (t+ 4)-th scan volumes) after the onset of the delay period (Supplementary
Fig. 4a). We limited the time-series decoding analysis up to the 8th period in order
to cover 4–6 s after the delay onset, which exhibited the peak brain activity evoked
by the delay cue, and to ensure that the scene prediction decoder was as unaffected
as possible by information provided in the scene choice period (average 7.5 s after
the delay onset), during which the subjects’ predicted (chosen) scene was displayed.

For the scene prediction decoder, there were seven possible scenes. Each scene
was labeled with a 3-bit binary number in which each bit corresponded to the
status (open: 1; closed: 0) of the left, forward, and right door, respectively. We used
the scenes chosen by the subjects for the target labels of the scene decoder
regardless of whether they were correct or not. Label 3 (011 in binary code) was
excluded from the analysis because of its rare occurrence (Fig. 1c); thus, we used six
labels for the decoding analysis. The label for the confidence decoder was either low
(confidence level 1 or 2) or high (confidence level 3 or 4). One subject was excluded
from the confidence decoding analysis because he/she reported high confidence in
only three trials (1.3%).

We used a sparse logistic regression (SLR)76 as a supervised learning algorithm
because it incorporates Bayesian automatic selection of relevant features (voxels),
which prevents overfitting problems in high-dimensional neuroimaging data. This
method has been used for MVPA in the previous studies2,12,24. Scene prediction
decoders included six scene labels, and we used six one-versus-the-rest classifiers
with SLR as the decoder, where a classifier for scene k outputs the probability that
the input brain activity pattern x represents scene k, P(scene= k; x), and scene k’
with the maximum probability among six classifiers, k’=argmax P(scene= k; x), is
defined as the integrated decoder output.

To deal with unbalanced training data sets (Fig. 1c), we used an undersampling
method to assign an equal number of samples to each label. Although the trial
numbers were actually unbalanced between the compared conditions when
training the classifiers in the conditional decoding analyses, there were no
significant differences in the number of samples: between correct (51.3 ± 18.1 trials)
and incorrect trials (47.7 ± 17.9 trials, one-sided Wilcoxon rank-sum test, p= 0.29),
between high-confidence (45.9 ± 17.9 trials) and low-confidence trials (61.0 ± 32.6
trials, p= 6.7 × 10−2), between high-state-confidence (55.9 ± 25.8 trials) and low-
state-confidence trials (53.4 ± 15.8 trials, p= 0.51).

To assess decoder accuracies, we used LOSO CV in which each decoder was
trained using a training data set from three out of four sessions, and the remaining
session was used as test data for validation. When evaluating the decoders with the
trials divided into two categories according to confidence or correctness, we used
LOGO CV. In each fold of the LOSO and LOGO validations, we repeated the
following procedure 100 times to account for fluctuations in accuracy due to
selected samples in the undersampling phase: random under-sampling from the
training data set, training the decoder, and evaluating the decoder’s accuracy. The
decoding analysis method was implemented using Brain Decoder Toolbox77.

Searchlight analysis for the scene prediction and confidence. To complement
the univariate ROI analysis, we conducted whole-brain searchlight analyses with
10mm radius spheres centered around a given voxel for the session-wise unsmoothed
beta estimates. In the scene prediction searchlight analysis, the seven different scenes
predicted by the subjects were modeled in the GLM as seven individual regressors
during the delay period. Other than the delay period, we used the same regressors as in
the original GLM. For the confidence level, we used the GLM with two regressors
according to the subject’s confidence level (high or low) in the delay period. To create a
subject-level whole-brain accuracy map, we used a linear support vector machine78

and the accuracy of each voxel was evaluated using leave-one-session-out (LOSO)
cross-validation (CV). The individual accuracy maps were normalized and smoothed
using a Gaussian kernel (8mm FWHM)11,79 and then applied to the group random
effect analysis using anatomically localized cerebral cortex.

Permutation test for the scene prediction and confidence decoding analyses.
We also performed a two-step permutation test to test the null hypothesis that
the decoding accuracy of scene prediction and confidence was not different from
the chance level, and confirmed that the decoding accuracies in our analyses do
not exceed the theoretical chance level merely by chance80. Within each ROI for
each decoding period, first (i) we performed intra-subject permutation, i.e.,
repeated each decoding analysis Nsbj times in each of which labels to be the
decoding targets were randomly permuted within sessions for each subject. We
used Nsbj= 150. Then (ii) we drew for each subject one result randomly from the
pool of these permutation results including the original decoding accuracy, and

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03314-y

10 COMMUNICATIONS BIOLOGY |           (2022) 5:367 | https://doi.org/10.1038/s42003-022-03314-y | www.nature.com/commsbio

www.nature.com/commsbio


averaged among the subjects to calculate the group-level permutation result. (iii)
Step (ii) was repeated Ngroup times to acquire the null distribution for group
statistical analysis. We used Ngroup= 1000. The significance of the difference
between the group-level null distribution and the original decoding accuracies
was tested using a one-sided Wilcoxon rank-sum test. We did not perform the
permutation tests to inspect the significance of the conditional decoding analysis
results because they were found to require too long a computation time. Note,
however, that our under-sampling technique has made the prior of labels for
each of the conditional decoders uniform. We also assessed the significance of
the decoding accuracies of scene prediction and confidence through group-level
permutation testing and confirmed that our decoding results were not disturb-
ingly high (Supplementary Fig. 4d, e).

Behavioral model based on a HMM. We constructed a behavioral model for each
subject based on an HMM with a latent variable denoting confidence level. The
model simulates a generative process of a subject’s actions (a*) based on the
sequence of observed 3D scenes (o*) and internal cognitive states. A subject’s
cognitive state was modeled as the state inference (location and orientation) within
the maze (h), the operant state (m), and the confidence level about the state
inference (or state confidence, ch). In action trial t during the maze navigation task,
subjects were assumed to probabilistically alter their state confidence (ch,t), sub-
jectively infer the hidden true state (h�t ) as its estimate from the history of
observations (ht), and then select an action (a�t ) based on a decision strategy
determined by the state confidence. To efficiently reach an unspecified goal (i.e.,
with as few actions as possible), it is essential to estimate the hidden true state and
visit previously unexplored areas of the maze. We hypothesized that subjects
switched between two action selection strategies depending on the cognitive state,
based on a previous study:21–23 one is a forward-dominant strategy and the other is
an efficient-exploration strategy. Throughout the behavioral model, a variable with
an asterisk (*) is real (physical), observable, and objective, and a variable without
an asterisk is internal (cognitive), unobservable, and subjective. A variable with a
hat (^) explicitly denotes a prediction.

We developed the subject behavioral model as follows (Supplementary Fig. 6):
at t= 1, all possible states that are consistent with the first scene (o�1) were extracted
as candidates of the hidden true state, where H1 is the set of those states. One of the
sets was chosen as an initial state estimate (h1), for which the posterior probability
was expressed as P h1

� � ¼ 1= H1

�� ��. Here, H1

�� �� is the number of elements in H1. At
the start of a game, subjects were assumed to have low confidence level about their
state inference, so the state confidence was set at 0 with a probability one: Pðch;1 ¼
0Þ ¼ 1 (Step 1). At t ≥ 1, the action selection strategy (πt) was determined using the
current state confidence (ch,t). If the state confidence was low (ch,t= 0), πt was set as
the forward-dominant strategy; if the state confidence was high (ch,t= 1), πt was set
as the efficient-exploration strategy (Step 2). According to πt, an action (a�t ) was
probabilistically selected based on ht. The action strategy is described in further
detail below (Step 3). A new state estimate was calculated as ĥtþ1, based on ht and
a�t , accounting for the maze structure. Then, the upcoming scene was predicted as

ôtþ1, based on ĥtþ1 (Step 4). After the subjects moved to the true next state (h�tþ1)—
based on the previous state (h�t ) and action (a�t )—the true next scene (o�tþ1) was

observed. Note that the real state (h�tþ1) may differ from its estimate (ĥtþ1) (Step 5).
If ôtþ1 matched o�tþ1, the subjects were assumed to consider their previous
inference to be confirmed. This was called an update mode, represented by mtþ1 ¼
0: In this case, ĥtþ1 was subjectively confirmed as the new state inference,

htþ1 ¼ ĥtþ1. Concurrently, the state confidence ch,t was updated to ch;tþ1

stochastically with the transition probability (PUD). The transition of the state
confidence is described in further detail below (Step 5a). If ôtþ1 did not match o�tþ1,

the subjects were assumed to dispose their previous inference ĥtþ1: This was called
a backtrack mode, represented by mtþ1 ¼ 1. In this case, a new set of states (Htþ1)
was constructed to account for the current observation (o�tþ1) and the history of
past observations. A new state estimate was randomly chosen from Htþ1 as htþ1,
for which the posterior probability was expressed as P htþ1

� � ¼ 1= Htþ1

�� ��. The new
state confidence (ch;tþ1) was stochastically determined, depending on ch,t and
according to the transition probability (PBT) (Step 5b). The procedure then backs to
step 2 with t ← t+1.

Subjects were considered to have low state confidence (ch;t ¼ 0) when they
were uncertain about their state in the maze (Supplementary Fig. 6, Step 3). In
this case, the subjects were assumed to take “info-max” behaviors to efficiently
identify the state; in other words, they moved forward or chose an action at
random if a forward move was not possible. This forward-dominant strategy was
defined as follows: if the door in front of the subject was open, the forward
movement was considered the optimal action. If the door in front of the subject
was closed and both the left and right doors were open, the right move was
considered the optimal action (based on retrospective reports from all subjects).
If there was only one open door, the action in the passable direction was
considered optimal.

We assumed that the subjects’ action selection was probabilistic and that they
chose an optimal action with probability α as follows:

P at jht ; ch;t ¼ 0
� �

¼
α if at is optimal

ð1� αÞ=Nnopt otherwise

(
ð1Þ

Nnopt denotes the number of allowable (i.e., passable doors) but non-optimal
actions.

On the other hand, when the state confidence was high (ch;t ¼ 1), subjects were
considered to be certain about their state in the maze (Supplementary Fig. 6, Step
3). In this case, subjects preferentially moved to grid spaces that they had not yet
explored. This efficient-exploration strategy was defined as follows: if there was only
one open door, the optimal action was in the single passable direction. If there were
two or three open doors, the subjects preferentially chose the door leading to an
unexplored grid space: if there were one or more accessible adjacent grid spaces
that the subjects had yet to visit, all actions leading to the unexplored grids were
considered optimal. If all of the accessible grid spaces had been visited, the optimal
action was considered to be choosing the shortest path to the nearest unexplored
grid space.

The action selection probability in the efficient-exploration strategy is defined as
follows:

P at jht ; ch;t ¼ 1
� �

¼
β=Nopt if at is optimal

ð1� βÞ=Nnopt otherwise

(
ð2Þ

where β is the probability of optimal action selection, and Nopt and Nnopt denote the
numbers of optimal actions and allowable but non-optimal actions, respectively.

We assumed that the subjects stochastically changed their state confidence
levels (high or low) based on whether or not their scene prediction matched the
observed scene. If the observation (o�tþ1) agreed with the scene prediction (ôtþ1),
the subjects were assumed to become more confident about their state estimate,
whereas if o�tþ1 disagreed with ôtþ1, they were assumed to become less confident.

More concretely, when the subjects had low confidence levels about their state
estimate (ch,t= 0) but there was no discrepancy between the predicted scene and
the observed scene (update mode; Supplementary Fig. 6, Step 5a), their confidence
level was switched to high with a probability of pL→H. If the state confidence was
already high (ch;t ¼ 1), it stayed high. In contrast, when the subjects were confident
about their state estimate (ch;t ¼ 1) but the predicted scene differed from the
observed scene (backtrack mode; Supplementary Fig. 6, Step 5b), the confidence
level was switched to low with a probability of pH→L. If the state confidence was
already low (ch;t ¼ 0), it stayed low.

In summary, the dynamics of the confidence level were defined by a Markov
process depending on the operant state:

In the update mode (mtþ1 ¼ 0),

Pðch;tþ1 ¼ 0Þ Pðch;tþ1 ¼ 1Þ
� �

¼ Pðch;t ¼ 0Þ Pðch;t ¼ 1Þ
� �

PUD

where PUD ¼ 1� pL!H pL!H

0 1

� � ð3Þ

In the backtrack mode (mtþ1 ¼ 1),

Pðch;tþ1 ¼ 0Þ Pðch;tþ1 ¼ 1Þ
� �

¼ Pðch;t ¼ 0Þ Pðch;t ¼ 1Þ
� �

PBT

where PBT ¼ 1 0

pH!L 1� pH!L

� � ð4Þ

The two parameters in this Markov process (pL!H and pH!L) were determined
using type-II maximum likelihood estimation (MLE).

According to the Bayesian filtering method, the sequence of the subject’s
cognitive states was estimated based on the sequence of actions (a�1:T�1) and the
observed scenes (o�1:T ). The posterior probability of the cognitive state at time t+ 1
was obtained from the previous one at time t using the following incremental
Bayesian equation:

P ch;1:tþ1; h1:tþ1;m1:tþ1ja�1:t ; o�1:tþ1

� �

¼
P ch;tþ1; htþ1;mtþ1jch;1:t ; h1:t ;m1:t ; a

�
1:t
; o�1:tþ1

� �
Pða�t jch;1:t ; h1:t ;m1:t ; a

�
1:t�1ÞP ch;1:t ; h1:t ;m1:t ja�1:t�1; o

�
1:t

� �

Pða�t ja�1:t�1Þ
ð5Þ

where we used simplified time-series representations like a�1:t ¼ a�1 ; a
�
2 ; ¼ ; a�t

	 

.

By repeating this calculation from first time step, 0, to the terminal time step, T, we
obtained the posterior probability of the sequence of cognitive states. One
likelihood term (the second term in the numerator of Eq. (5)) corresponded to
steps 2 and 3 above. Another likelihood term (the first term in the numerator of Eq.
(5)) was calculated as follows, based on the subject’s behavioral model and
corresponding to steps 4 and 5:

P ch;tþ1; htþ1;mtþ1jch;1:t ; h1:t ;m1:t ; a
�
1:t;o

�
1:tþ1

� �

¼ Pðch;tþ1jch;t ;mtþ1ÞP htþ1jh1:t ;m1:tþ1; a
�
1:t ; o

�
1:tþ1

� �
Pðmtþ1jht ; a�t ; o�tþ1Þ

ð6Þ
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When the operant state was update mode (mtþ1 ¼ 0), the second term in Eq.
(6) was equal to the previous term:

P htþ1jh1:t ;mtþ1 ¼ 0;m1:t ; a
�
1:t ; o

�
1:tþ1

� � ¼ Pðht jh1:t�1;m1:t ; a
�
1:t�1; o

�
1:tÞ ð7Þ

because htþ1 was determined by ht and a�t , without any ambiguity, given mtþ1 ¼ 0:
When the operant state was backtrack mode (mtþ1 ¼ 1), a new state inference
(htþ1) was selected from the re-estimated set of states (Htþ1) with equal probability
(see step 5(b)). Htþ1 was constructed so that each element was consistent with the
history of past n-step observed scenes (o�t�nþ1:t) and actions (a�t�n:t), and n was
subject-wisely estimated by MLE.

There were some exceptional cases that applied to step 5. When the subjects
moved to a grid space that had been visited before, but their predicted scene
matched the observed scene, ô ¼ o� , the operant state was set as backtrack mode
(action-backtrack mode) because they were considered to have performed
inefficient or erroneous exploration. If all the passable doors led to grids that had
been explored in such an action-backtrack mode, it resulted in another exceptional
case that was regarded as update mode. Note that these exceptional cases were
addressed for logical consistency but rarely occurred.

When validating our HMM-based behavioral model, we used the agreement
between the model’s predicted action (ât) and the actual action (a�t ) taken by the
subjects. The action was predicted by

ât ¼ argmax
a

P aja�1:t�1; o
�
1:t

� � ¼ argmax
a

∑
ch;t

∑
ht

∑
m1:t

Pðajch;t ; ht ;m1:t ; a
�
1:t�1Þ

P ch;t ; ht ;m1:t ja�1:t�1; o
�
1:t

� � ð8Þ

which can be calculated as a by-product of Eq. (5). When Eq. (8) provided multiple
equally probable actions, we regarded the set of those actions as predicted actions.

When performing model-based analysis, we also used the state confidence,
objectively estimated as

ĉh;t ¼
0 if max

ht
P ch;t ¼ 1; ht
� �

≤ ∑
ht
P ch;t ¼ 0; ht
� �

for ht 2 H

1 otherwise

8<
: ð9Þ

where P ch;t ; ht
� �

can be obtained by marginalizing Eq. (6) at time step t with

respect to mt, where H is the subset of Ht consisting of ht for which the P ht
� �

is
maximal in ht 2 Ht . The number of elements in H was sometimes greater
than one.

We estimated the model parameters for each subject by minimizing the negative
log evidence (Supplementary Table 3):

Negative log evidence ¼ �log
YG
g¼1

pðA�
g jθÞ ð10Þ

p A�
g jθ

� �
¼ pða�1 jθÞ

YT�1

t¼1

pða�tþ1ja�t ; θÞ ð11Þ

Here, G is the number of games, A�
g is the sequence of actions a�1:T�1, where

T− 1 is the number of action trials in the game g and T is the number of
observations. The set of model parameters is denoted by θ. Note that Eq. (11) is the
product of the denominator of Eq. (5) and was obtained by repeating the
incremental Bayesian estimation (Eq. (5)). The minimized negative log evidence
was also used for the Bayesian model selection (see Supplementary Table 3).

Statistics and reproducibility. Imaging data were analyzed using SPM12 (Well-
come Department of Cognitive Neurology, London, UK). The decoding analysis
method was implemented using Brain Decoder Toolbox77, and the searchlight
analysis method was implemented using the Decoding Toolbox78. Statistical ana-
lyses were performed using MATLAB R2017a (Mathworks, Natick, Massachusetts,
US). We analyzed the effects of the prediction correctness and the confidence level
on the scene choice reaction time with the R package “ARTool”81,82. For the
behavioral analyses, we used the data of 27 subjects whose scene prediction
accuracy in the experimental task was significantly higher than chance (one-sided
z-test, p < 0.01, see also Supplementary Fig. 2). The imaging and decoding analyses
included 26 subjects because one subject was excluded due to his/her larger head
motion. The decoding accuracies were validated using LOSO or LOGO CV pro-
cedures and compared to the theoretical chance level using Wilcoxon signed-rank
test. The permutation tests were also applied for the scene prediction and con-
fidence decoding analyses (Supplementary Fig. 4d, e). In the conditional decoding
analyses, we applied Wilcoxon rank-sum test to evaluate the difference in the scene
prediction decodability between the subsets of data (correct vs incorrect, high vs
low scene-prediction-confidence, or high vs low state confidence). Note that, as we
simply compared two groups of data, no multiple comparison correction was
necessary. Values are expressed as the mean ± SD.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data underlying the main figures are provided as Supplementary Data 1. All
data supporting the main findings are also available via the open-source repository
Zenodo83.

Code availability
Codes for the computational model of subjects’ exploration behavior are available via the
open-source repository Zenodo83.
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