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Deep Brain Stimulation (DBS) is an important tool in the treatment of pharmacologically

resistant neurological movement disorders such as essential tremor (ET) and Parkinson’s

disease (PD). However, the open-loop design of current systems may be holding back

the true potential of invasive neuromodulation. In the last decade we have seen an

explosion of activity in the use of feedback to “close the loop” on neuromodulation in

the form of adaptive DBS (aDBS) systems that can respond to the patient’s therapeutic

needs. In this paper we summarize the accomplishments of a 5-year study at the

University of Washington in the use of neural feedback from an electrocorticography strip

placed over the sensorimotor cortex. We document our progress from an initial proof

of hardware all the way to a fully implanted adaptive stimulation system that leverages

machine-learning approaches to simplify the programming process. In certain cases,

our systems out-performed current open-loop approaches in both power consumption

and symptom suppression. Throughout this effort, we collaborated with neuroethicists

to capture patient experiences and take them into account whilst developing ethical

aDBS approaches. Based on our results we identify several key areas for future

work. “Graded” aDBS will allow the system to smoothly tune the stimulation level

to symptom severity, and frequent automatic calibration of the algorithm will allow

aDBS to adapt to the time-varying dynamics of the disease without additional input

from a clinician. Additionally, robust computational models of the pathophysiology of

ET will allow stimulation to be optimized to the nuances of an individual patient’s

symptoms. We also outline the unique advantages of using cortical electrodes for

control and the remaining hardware limitations that need to be overcome to facilitate

further development in this field. Over the course of this study we have verified the

potential of fully-implanted, cortically driven aDBS as a feasibly translatable treatment

for pharmacologically resistant ET.
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1. INTRODUCTION

Essential Tremor (ET) is one of the most common neurological
movement disorders. By some estimates, it affects as much as
1% of the world’s adult population and up to 4.5% of the
senior population to some extent (Louis and Ferreira, 2010).
ET manifests itself primarily as a 2–8 Hz tremor during active
motion or holding of posture. Classically, the strongest tremor
is apparent in the extremities, especially the hands, but will
often also be accompanied by trunk tremor (Haubenberger and
Hallett, 2018). Despite its prevalence, the non-lethal nature of the
disorder means that it has been understudied for many years and
the pathophysiology is still poorly understood (Soto and Fasano,
2020). Once patients are diagnosed, initial treatment is usually
pharmacological, but for severe, pharmacologically refractive
cases DBS is a promising option (Lyons and Pahwa, 2004).

Deep brain stimulation (DBS) is a common therapy used
to treat neurological disorders. It has been approved by
the FDA to treat ET, Parkinson’s disease (PD), dystonia,
and epilepsy; and is under investigation for treatment of
depression, addiction, Tourette syndrome, and many others
(Lozano et al., 2019). In current clinical practice, conventional
or continuous DBS (cDBS) is used in an open-loop fashion.
Stimulation is configured manually by a clinician and the
applied stimulation pattern is fixed (Lyons and Pahwa, 2004).
Parameter tuning is a lengthy process that, even with the
expertise of a neurologist, may require several visits before
a satisfactory setting is found. Optimal stimulation settings
are those that significantly suppress tremor, without causing
intolerable side effects. The patient is provided a “patient
programmer” that they can use to turn the stimulator on or
off, but this control is rather coarse at best and used primarily
to conserve battery at night while patients sleep. As a result,
stimulation is often delivered even when it is not necessary,
which may unnecessarily increase exposure to side effects
(Meidahl et al., 2017).

Adaptive DBS (aDBS) offers to solve many of the limitations
of cDBS systems (Arlotti et al., 2016; Meidahl et al., 2017). In
this approach, stimulation is delivered in a closed-loop format
that allows the system to adapt to the patient’s state. Stimulation
can be applied only when necessary, thereby reducing side effects
while maintaining clinical efficacy. Since the stimulation could
adapt to the severity of symptoms, stimulation would always
be delivered at the optimal level. Moreover, recent evidence
suggests that intermittent stimulation may be more effective at
suppressing symptoms than cDBS (Little et al., 2014; Ferleger
et al., 2020). ET is a particularly attractive application for
this approach since the primary symptom, tremor, manifests
itself almost exclusively during movement. This clearly defines
the periods when stimulation would be the most beneficial,
greatly reducing the complexity of the control problem to be
solved. It is worth noting that naming several conventions
exist, with adaptive, closed-loop, and responsive DBS having
overlapping definitions. In this work we use adaptive DBS as an
umbrella term to describe the various ways in which we have
automatically adjusted stimulation based on biomarkers of the
patient’s state

At the start of our study, aDBS had been demonstrated
successfully in patients with PD. Several studies have even
shown that in some cases aDBS could be more effective than
traditional cDBS or randomly applied intermittent stimulation in
ameliorating certain symptoms of PD (Little et al., 2013, 2014).
However, at the start of our study, there was only one known
attempt at developing aDBS for ET. In that study, the authors
used motion detected through an EMG system on the patient’s
arm as a control variable for turning DBS on and off (Yamamoto
et al., 2013). This study and the encouraging results in the PD
space guided much of our early work.

In this paper we review the development process of aDBS in
ET patients carried out at the University of Washington. We
begin with an overview of both the hardware and software in
the research platform we developed around theMedtronic Activa
PC+S. We then outline how we reproduced earlier results and
developed a proof-of-concept aDBS system using cortical LFPs
as a control signal. We then improved this system by leveraging
machine learning and investigating volitional BCI-style control
of aDBS. By the end of the study, we had arrived at a clinically
translatable, fully implantable aDBS paradigm, accompanied by
a largely automated programming process. Consequently, aDBS
seems to have now reached the threshold where it could be
evaluated as a clinical therapy to improve patients’ lives. This
however brings with it a plethora of neuro-ethical and practical
consideration which we discuss. This review paper is intended
to provide a an overview of the development process and
preliminary clinical results from start to finish. We hope it will
provide a unique viewpoint and present practical context for the
ongoing development of aDBS for ET.

2. SYSTEM INTEGRATION OF THE ACTIVA
PC+S AND NEXUS-D SYSTEMS

The research system we developed was an integration of multiple
independent components. As a result, the system required a
significant amount of software development. A full schematic of
the system is shown in Figure 1. All research was carried out
with the approval of the UW IRB and the FDA. Patients provided
informed consent before participating in the study.

2.1. The Medtronic Activa PC+S and
Nexus-D
The central component of the research system was the
investigational-use Medtronic Activa PC+S, used with FDA
permission under an investigational device exemption (IDE,
clinical trial number NCT02443181) (Stanslaski et al., 2012).
This device consists of a pulse generator implanted (IPG) in the
chest which controls both stimulation and sensing capability.
The IPG is connected via a subcutaneous clinical lead extension
to the stimulation and sensing electrodes. For this protocol,
stimulation was delivered using a clinical standard four-electrode
DBS stimulation lead, the Medtronic Model 3387, implanted
into the ventral intermediate nucleus of the thalamus (VIM).
Sensing was performed utilizing a Medtronic Resume-II four-
contact strip electrode placed on the surface of the cortex,
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FIGURE 1 | Overview of the research system used for the experiments we describe here. The computer functioned as the central hub that coordinated both the

distributed aDBS paradigms and provided a training platform for the fully implanted algorithm. The distributed systems, highlighted in green, used the computer to

integrate data from both the smartwatch and real-time cortical LFP streamed through the nexus to drive aDBS stimulation updates. Although the streamed cortical

data and IMU smartwatch were used in training the fully implanted classifiers, these classifiers were independent of the main computer once they were transferred to

the Activa PC+S using the Medtronic tablet.

spanning the central sulcus, roughly over the hand motor
area. This configuration allowed for standard tremor-mitigating
stimulation to be delivered to the VIM while also allowing
the sensing of cortical local field potentials (LFPs) related to
hand motor activity. The IPG supports both cDBS and aDBS.
cDBS can be configured using the Medtronic 8,840 clinical
programmer. aDBS can be performed either in a distributed
fashion with control decisions made outside the device, or in
a fully implanted fashion with stimulation decisions made on-
board after configuration using the Activa PC+S Sensing Tablet.
For distributed control of stimulation, the IPG can be paired
via a short-range inductive connection with the Medtronic
Nexus-D or Nexus-E telemetry bridges. The choice of sampling
frequency for the neural data was largely driven by the hardware
specifications. This setup can stream raw LFP data to a desktop
computer via a USB connection with a sampling rate of up to
422Hz if streaming from one electrode, or 200 Hz if streaming
from two simultaneously. In the work presented here, we used
the 422 Hz LFP data streams. We found that the benefit to
aDBS control of the addition of VIM data was not worth
the loss in sampling rate, since LFP data from the VIM was
heavily contaminated by stimulation artifacts. However, data is
transmitted in discreet packets every 400ms. In practice, the half-
duplex inductive link’s bandwidth limitations resulted in a small
window for stimulation updates to be transmitted to the PC+S
without resulting in streamed neural data loss, so stimulation
updates in a distributed algorithm needed to be performed with
400 ms resolution. All neural recordings consist of differential
voltage recordings between pairs of electrodes. In this use-case
we selected our cortical recordings to utilize pairs of electrodes

that lay on opposite sides of the central sulcus. These were
identified as the pair with the highest beta-band power while the
patient was at rest, determined through a standardized montage-
sweep provided by the Activa PC+S instruments. The Activa
PC+S can also stream analog estimates of power bands at a
sampling frequency of 5Hz, with frequency ranges configured on
the proprietary Medtronic Sensing Tablet. When not streaming,
the sampling rate of the IPG can be increased up to 800 Hz for
raw LFP data, and the resulting LFP or power band data can be
downloaded to a USB drive via the Medtronic tablet. In the fully
implanted aDBS configuration the IPG uses the analog power
band estimates from the attached electrodes in combination with
a simple linear classifier to control stimulation. Both the power
bands and the weights of the classifier are also configured via the
Medtronic Sensing Tablet.

2.2. Tremor Sensing and Measurement
To better evaluate the severity of the patient’s symptoms and
the efficacy of the aDBS paradigm, several modalities of data
were collected in parallel to those described above. An Android
smartwatch worn on the patient’s wrist capable of streaming 9
axis inertial measurement unit (IMU) data (3-axis accelerometer,
3-axis gyroscope, and 3-axis compass) at 100 Hz, was connected
to the PC via a Bluetooth connection. This IMU data served
as the basis of quantitative and automatic evaluation of tremor.
In addition, we asked the patients to perform the tasks from
the Fahn-Telosa-Marin tremor rating scale (FTM) (Fahn et al.,
1988). Spiral and line drawings were recorded either on paper
or through a custom application on a Microsoft Surface tablet
(Sonnet et al., 2020). These, along with videos of the patients,
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FIGURE 2 | Averaged gyroscope magnitude power spectra from all movement

periods during all experiments and calibration sessions with DBS turned off.

The first peak in each patient’s tremor spectrum above 1.5 Hz is considered to

be the patient’s peak tremor frequency. The resulting frequency ranges used to

estimate tremor severity for each patient are shown in the legend.

were then rated by a panel of three blinded neurologists to obtain
an objective, clinically translatable metric to evaluate the efficacy
of DBS. For some experiments, we also used the gTec Mobilab to
collect EMG from the study participant’s tremoring limb using
wet gel electrodes as both a trigger for stimulation and as a
method of evaluating the effect of aDBS.

2.3. Software Development and C# API
The distributed elements of the research platform described
above were integrated through the PC using an application
development framework written in C# (Herron et al., 2017).
This framework utilized a custom developed C# API for generic
Nexus-D/Activa PC+S control which enabled simultaneous
communication with all sensors and asynchronous dispatch of
commands to the Activa PC+S. This C# API was used to develop
protocol-specific applications responsible for the collecting and
processing data from additional sensors. Multi-threaded coding
techniques were used to ensure that sensing, processing, and
device communication would not impact the responsiveness of
the closed-loop algorithms being investigated. This was further
complicated by the fact that the Nexus D and E could not
concurrently send data and receive a command, leading to a
very narrow timeout window. The API therefore independently
maintained an internal model of the Nexus and IPG system states
to ensure that all command timings remained in sync. This had
additional battery power-saving benefits as the Activa IPG did
not need to be queried for its system state. Even with this precise
timing capability, the half-duplex nature of the communication
hardware and the narrow window for stimulation adjustments to
be made before the next data packet needed to be transmitted
resulted in a potential delay of 800 ms between the time a
biomarker appeared in the patients’ brain signals and the time
the system could respond by adjusting DBS.

Using this framework, we constructed an experiment control
application that enabled rapid development and testing of novel

aDBS paradigms. This application, also written in C#, allowed
data from any subset of the potential signal sources (neural
or wearable) to be streamed simultaneously. Each sensor’s data
could be visualized in real time and used to control stimulation.
Under the hood, each new aDBS paradigm was implemented by
editing a single class within the application. This class managed
the buffers for all data streams and made the required most
recent data available. Once the decision about how to adjust
stimulation amplitude was made, the change was passed through
another buffer to the Nexus-D API which handled the changing
of stimulation. To minimize side effects, stimulation was slowly
ramped up, step wise to and from its maximum value. A
maximum ramp rate was set for each patient and the software
was configured to send individual simulation change commands
at the appropriate clock times to manage ramping. This setup
allowed development of each new aDBS approach to focus on
the meaningful interpretation of biomarkers and stimulation
patterns rather than control of individual sensors and timing of
stimulation updates.

2.4. Post-hoc Framework
To accurately compare the effectiveness of each of the aDBS
algorithms discussed here, we use an evaluation of tremor
based on the IMU gyroscope data. For this, we calculate the
total power in the frequency band that corresponds to each
patient’s maximum tremor amplitude. The power spectral density
along each of the three axes was calculated independently, and
then the magnitude was taken for each frequency using the
Euclidean distance. The results are plotted in Figure 2. The
components below 1.5 Hz are considered normal characteristics
of movement, power in this band indicates that the patient is
actively moving. The largest peak in the spectrum in the 1.5–
8.0 Hz band was determined to be the patient’s peak tremor
frequency. Power in this band quantifies the amount of tremor
the patient is experiencing.

Tremor algorithms were also evaluated based on total power
delivered. Since the onboard circuitry of the Activa PC+S uses
relatively little power, stimulation is the largest drain on battery
power. Since the Activa PC+S was not rechargeable, ensuring that
algorithms delivered stimulation effectively with respect to power
consumption was important. To calculate total electrical energy
delivered (TEED) we used the following metric:

TEED =
V2 · f · p

z · τ
· t (1)

where V is the voltage, f is the stimulation frequency, p is
the pulse width, z is the impedance, τ is the duration of the
experiment, and t is the duration that stimulation is applied at
this voltage (Moro et al., 2002; Koss et al., 2005). To make this
metric easier to understand, we give values for TEED as the
ratio between the TEED by aDBS, and TEED as if cDBS was
applied with the same stimulation parameters. For comparison
between algorithms, we use both TEED per second during
movement, and TEED per second during rest. Lower TEED during
movement with minimal tremor indicates that the stimulation
paradigm used was efficient in suppressing tremor. TEED during
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rest indicates that the algorithm delivered stimulation even
when it might not have been necessary. Since suppressing
tremor is the prime purpose of aDBS, minor over-stimulation
is not considered to be the primary concern. However, if over-
stimulation leads to excessive side-effects, or rapidly drains the
battery, then it quickly become unacceptable.

At the end of this multi-year study, we had amassed a large
collection of longitudinal data. Due to the iterative nature of
the development process, the data was not stored in consistent
formats and did not always have complete metadata. We
therefore developed a python analysis framework to standardize
the data formats and enable large-scale longitudinal analysis of all
the experiments and data modalities collected. This framework,
built around a flexible experiment object, can search a directory
tree to discover any sources of potential data and attempt to
interpret missing metadata. This resulting dataset can easily
be filtered by experiment type or data modalities available.
Additionally, any missing or corrupted data resulting from a loss
of connectivity or sensor saturation, respectively, was detected
and filtered out. This framework has been used to examine the
stability of biomarkers over the duration of the study period, as
presented in Fraczek et al. (2021), and discussed in Section 4.3. In
the context of this work, we used the framework to re-illustrate
previously published data.

3. DEVELOPMENT OF ADBS FOR TREMOR

Our effort to develop aDBS for ET proceeded from a technology
demonstration study in one patient to a clinically translatable,
fully implanted system. Here, we will outline the process by which
we developed each of these systems and the most important
outcomes that informed the next generation of the work.

3.1. Initial Demonstrator
Initial feasibility studies began with the implantation of our
first patient in 2015. The goal of this initial work was to
demonstrate that system integration was successful and could
be used to prototype aDBS paradigms, which had never been
done before (Herron et al., 2015, 2016). These initial experiments
would validate the system and allow us to correlate the
various modalities of data to the patient’s state. Using this
data, we began the development and verification of neural
biomarkers of movement and tremor to enable neural-driven
aDBS (Herron, 2016; Herron et al., 2017). To objectively evaluate
the effectiveness of any aDBS paradigm, we needed to develop
an IMU-based measurement of tremor that could track fast
changes in tremor severity. This would then be a test bed that
would enable the identification of biomarkers that would not only
reliably distinguish times when stimulation was needed but also
be robust to changes in stimulation.

Hardware validation experiments with our first patient began
before the post-operative lesion effect wore off, about 2 weeks
after the implantation surgery. During this time, we calibrated the
Activa PC+S recording capabilities and fine-tuned the research
setup. The lesion effect had disappeared by the third visit, and
the difference in tremor between the stim on and stim off states
was fully visible in spiral drawing tasks. Taking inspiration from

prior literature described in Yamamoto et al. (2013) where EMG
was used to drive a DBS system using a re-engineered patient
programmer, we first implemented prototype aDBS paradigms
driven by EMG and IMU signals. Each of these devices was used
to monitor the patient and detect whether they were actively
moving. When movement was detected, stimulation was rapidly
ramped up to the therapeutic threshold and maintained until the
patient returned to rest. A representative trial for the EMG system
is shown in Figure 3. These trials consisted of a comparison of
the relevant data during repeated rest, movement, and imagined
movement trials. During rest, the patient was asked to simply sit
in the chair, while all sensors recorded data to use as a baseline.
During movement, they were prompted to raise their hand (at
the time of the green vertical lines) and hold it out in front
of themselves, until prompted to return to rest (at the time of
the red vertical lines). This movement was found to reliably
elicit tremor for this patient. Prompt intervals of various lengths,
were interleaved so that multiple comparisons could be collected
quickly. A similar approach was used for imagined movements,
but instead of moving, the patient was asked to instead imagine
performing the same movement. This prompt paradigm was
used as a template for many of the later experiments through
the study. Data collected during these trials allowed us to verify
that data was correctly streaming to the central control desktop.
Analysis of the IMU data allowed us to develop a metric for
tremor severity, described below and shown in the second plot
below, which could be computed in near real time. We found
this metric correlated to the tremor observed in the patient,
based on the FTM scale, while reducing the movement onset and
offset artifacts (Herron et al., 2017). By comparing the neural
data obtained during these trials we tested whether our system
was able to detect beta band desynchronization both during
overt and imagined movement. Moreover, these changes were
apparent even during stimulation, despite the dramatic changes
in the frequency spectrum observed during DBS. Throughout
this initial process, we conducted interviews with the patients to
assess their level of comfort and gain a greater understanding of
the patient experience.

Tremor Severity =
(IMU Tremor Band Power)2

IMU Total Power
(2)

This system fulfilled its primary goal as a technology
demonstrator. aDBS triggered by movement, particularly in
the case of EMG, was successful in suppressing tremor while
delivering less total stimulation. With an average delay to max
level stimulation of 2.40 ± 0.33 s, this resulted in stimulation
delivered 76.6% of the time the patient was moving and 15.3%
of the time the patient was at rest. This resulted in tremor
severity (per Equation 2) during movement of 0.277 compared
to 1.296 during no stimulation and 0.6473 during cDBS trials
conducted with the same patient during the same session. aDBS
driven directly by tremor severity interpreted from IMU data
was less successful, due to feedback causing the stimulation to
fluctuate wildly. Beta band desynchronization was shown to be
reliably identifiable with the hardware available, and therefore
a potential control variable for future aDBS systems triggering
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FIGURE 3 | Excerpt from an experiment demonstrating aDBS driven by EMG on the moving arm with Patient 1. The top plot shows the power in the low frequency

IMU data, which corresponds to movement. The middle plot shows power in the band of IMU data that corresponds to the patient’s peak tremor frequency. The

bottom plot shows the amplitude of stimulation over time, with a constant 150 Hz frequency and 90 us pulse width. Note that tremor is very effectively suppressed in

this case, with only very short bursts of tremor at the very start and end of movement. This is a re-illustration of the results of Herron et al. (2015).

off of movement-related biomarkers. Although this initial work
showed the potential of our system as an investigational device
and the promise of aDBS for ET, it also highlighted many of the
challenges that would need to be resolved over the rest of the
study. Conversations with the patients exposed their reticence
to undergo battery replacement surgery, thereby highlighting
the importance of conserving battery power. Since streaming
neural data used approximately 10 times as much battery as
normal operation, experimental sessions were kept succinct and
avoided unnecessarily draining the patient’s battery. Moreover,
using aDBS to minimize the energy usage of stimulation would
be an important consideration throughout the rest of the project.
The delays inherent in the distributed Activa PC+S system made
the control scheme for distributed aDBS difficult to implement.
We often observed transient periods of significant tremor at
the onset of movement, before the aDBS control caught up and
turned-on stimulation. Solving this issue would be one of the
main targets we would pursue.

3.2. Distributed BCI Control
Informed by these initial results, we endeavored to build a neural
driven, BCI aDBS system (Herron et al., 2015, 2017; Houston
et al., 2017; Castaño-Candamil et al., 2020). A system like this,
driven by the well-documented beta band desynchronization
phenomenon, would allow stimulation to only be delivered
when necessary during movement (Pfurtscheller and Aranibar,
1977; Toro et al., 1994; Unterweger et al., 2020). Since the

Activa PC+S is capable of using cortical LFP power bands to
control stimulation, validating beta desynchronization driven
aDBS in a distributed fashion, would pave the way for fully
implanted aDBS systems. As a further extension to this cortically
driven aDBS, we also endeavored to build a volitional aDBS
system. This approach offered to make aDBS more flexible and
applicable to more diseases by handing control of the stimulation
directly back to the patient. The idea was that although
controlling stimulation would take conscious effort initially,
repeated training and daily use would allow the patient to develop
automatic, almost subconscious control of the stimulation. As
indicated by our conversations with the patients, this also
had the potential to greatly improve the patient experience
by increasing the sensation of agency and strengthening the
identification of the device as a part of themselves (Figure 4)
(Brown et al., 2016; Herron et al., 2017).

The method we chose to detect movement was the well
documented phenomenon of event-related-desynchronization in
the beta band (12–30 Hz). This approach consisted of training
linear discriminant classifiers to detect significant drops in power
in the beta band that corresponded tomovement for each patient.
Since the application of high-frequency DBS significantly altered
the power spectra visible on cortical recordings, two classifiers
were trained in parallel, one with DBS off and one with DBS on.
Classifier training used the prompted movement task described
above. Average power spectra were computed in each of the
four states for that patient on that day. A weight was assigned
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FIGURE 4 | Summary of the power spectral differences observed in cortical LFP recordings between the four states of primary interest for each of the four patients

who participated in our study. Only single source recordings, performed at the hardware-specified 422 Hz, were used in this visualization, and movement periods were

identified by manual inspection of the IMU data. Note the difference in spectral characteristics between the stim off (solid lines) and stim on (dotted lines) cases, as well

as the drop in 12–30 Hz band power during movement (orange) compared to rest (blue). These spectra vary significantly between patients, necessitating training of

classifiers for each patient individually.

to each frequency bin, based on how much the power in that
bin changed between the rest and prompted movement states
for each stimulation state. Once the classifiers were trained, the
adaptive DBS algorithm proceeded as follows. Starting in the
stim off state, the off classifier listened to the neural data stream,
calculated power spectra using Welch’s method with a Hann
window and normalized by the average and standard deviation
of the classifier training data. We then took the dot product
of this power spectrum with the classifier weights and fed it
into a logistic regression function. When this result crossed a
pre-set threshold, indicating the onset of volitional movement,
stimulation was ramped up to its maximum clinically permitted
value over the course of a few seconds, and the system switched
to using the stim-on classifier. Since the ramping of stimulation
is known to lead to the greatest number of side effects, the
ramp rate was carefully tuned to be the fastest pre-set possible
ramp rate that was tolerable for the patient. When the stim-on
classifier detected that the beta band power had risen back up
to levels indicating rest, stim was ramped back down and the
system switched back to the stim-off classifier. The progression
of cortical beta is shown in the third row of Figure 5. The
thresholds were tuned for stimulation sensitivity, as reliably
delivering stimulation during movement was considered more
important than reliably turning stimulation off when at rest.

The neural BCI approach resulted in a system that could
control the delivery of stimulation with a sensitivity of 90 and
100% for the prompted movement and FTM drawing tasks,
respectively (Houston et al., 2018). For this trial, stimulation
was delivered 64.8% of the time the patient was moving and
29.0% of the time the patient was at rest. Tremor severity (per
Equation 2) during movement was 3.750 compared to 0.4338
during no stimulation and 8.271 during cDBS trials conducted
with the same patient during the same session. However, over all
patients and all sessions, we found a 46.0% average improvement
in clinical FTM scores over the no stimulation condition,
compared to a 42% average improvement during cDBS. Although
the difference between each of these and the stimulation off
state was statistically significant, the difference between the two
stimulation paradigms was not. A representative trial of this
aDBS paradigm is shown in Figure 5. Although the system was

always able to identify movement periods in this excerpt, the
identification was often delayed and noisy. This was in large part
due to the comparatively low spatial and temporal resolution
of the cortical strips. Only four electrodes were available, and
only a single pair could be used at a time to provide the
differential recordings required for the system. The strip was
placed during the implantation surgery and could not be adjusted
afterwards. This meant that any imperfections in the initial
placement and shifts over time left the electrode not in position
to optimally observe beta band desynchronization. Moreover,
the delay between the onset of movement and the onset of
stimulation was 1.5 s on average. For the trial shown above,
we observed an average delay to the clinically effective level of
stimulation of 3.35±1.50 s. In certain cases, this delay time could
reach up to 5 s. This was due to the transmission delays inherent
in the system architecture, the extra time required to compute
power spectra, and the limitations of the ramp rate. These
confounding effects can be clearly seen in Figure 5 as stimulation
starts well into the gray prompted movement periods (bottom
row), leading to a large burst of tremor before stimulation
becomes effective (second row). However, once stimulation did
ramp up to clinical levels, the tremor was effectively suppressed.

In a similar vein, we conducted a study in collaboration with
the University of Freiburg to investigate distributed aDBS in
a way that could more smoothly adapt stimulation and better
adapt to the patient state (Castaño-Candamil et al., 2020). This
approach used bollinger bands to perform local estimates of high
and low tremor states to dynamically drive stimulation, which
allowed the system to more robustly respond to movement and
non-movement states in a variety of tasks without the need
for re-training. Although this work provided a more robust
method of driving aDBS that led to greater power savings
than the simpler method presented above, the more advanced
calculations required meant it could not be implemented in a
fully implantable state. However, it remains a promising avenue
to explore as the hardware available improves.

3.3. Fully Implanted Adaptive DBS
The fully implanted system was the culmination of all the work
performed and the first potentially clinically translatable system
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FIGURE 5 | Representative example of cortical LFP driven aDBS using the beta desynchronization classifier approach with Patient 1. The inclusion of a separate

classifier for the on and off states allows stimulation to stay on through the duration of prompted movements, shown in gray. However, large delays in this distributed

system still led to large burst of tremor near the start of movement. Limited resolution of the LFP recordings occasionally lead to the classifier incorrectly switching on

or off, as seen at 15 s and during the prompted movement at 100 s. This is a re-illustration of the results in Houston et al. (2017).

(Ferleger et al., 2020). As identified in previous work, the time
delays inherent in the distributed architecture were a major
source of aDBS paradigm design difficulties. Since the aDBS
algorithm implemented in this case would function entirely
within the IPG, these communication delays would be massively
reduced. Additionally, there would be no constraints placed on
the patient in terms of additional wearable hardware. As a result,
IMU data from the android smartwatch and the computational
power of a desktop PC could only be used in the training process.
The real time updating of stimulation would have to rely entirely
on the capabilities of the IPG. Moreover, the resultant system
should be easily adaptable to new patients to reduce the large
time commitment from both patient and clinician required to
tune stimulation parameters. By automating the programming
methods used to develop the initial aDBS system, patients could
benefit from aDBS without requiring the prolonged manual
tuning of the classifier necessary in previous versions (Figure 6).

Classifier training proceeded in a semi-automated fashion
leveraging the convenience of a desktop PC to determine a
classifier that could be used entirely within the capabilities of
the implanted device. Due to hardware limitations, there was
no explicit way to pass stimulation state as a parameter to the
onboard mechanism. To overcome this, classifiers were trained
for each of the four possible states the patient and stimulation
system could find themselves in: Stim off, rest; stim on, rest;
stim off, movement; and stim on, movement. Thirty seconds

of data were collected for each state, with optional repetition
of selected tasks. For each of the patients, data from these
individual classifiers was combined, which resulted in a classifier
that used the power in the band near the stimulation frequency to
determine the stimulation state, and the power in the beta band
(usually 12.0–28) to distinguish whether the patient was moving
or not. Again, since unnecessary stimulation was considered less
of an issue that missed stimulation, the classifier was strongly
biased towards favoring the stimulated state. This classifier was
then uploaded to the IPG and used to switch stimulation on and
off. Total time to train this system was under 20 min for each
patient. Evaluation of this system was performed in a manner
similar to previous experiments, using both tremor suppression
calculated from IMU data and total electrical energy delivered.

This system demonstrated the advantages of a fully embedded
aDBS system. Although classification had to be performed on
simpler hardware, it maintained high levels of effectiveness. The
system had a sensitivity of 91.8%, and a false positive rate of
28.7% (Ferleger et al., 2020). Due to classifier bias, and the limited
resolution available in this implanted configuration, the classifier
often interpreted temporary drops in beta power as movement.
Tremor was suppressed as well or even better than cDBS. Overall,
the dramatic reduction in control delays seem to outweigh
limitation on the complexity of the classifier. Additionally, the
ability of this system to be deployed to patients without the
need for a tether to external hardware cannot be overstated. This
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FIGURE 6 | Representative trial of the fully implanted aDBS system with Patient 2. Since the classifier is strongly biased towards having stimulation on, the stimulator

turns on even during rest. Unlike the previous examples, the cortical beta shown here is the power band estimate computed online by the Activa PC+S during the

experiment. Although this is more noisy than the offline spectra, the system was able to respond very quickly to the onset of movement and turn on stimulation. This is

a re-illustration of the results in Ferleger et al. (2020).

is the first reported, full-translatable, aDBS system for ET. In
related work published by our the group at the University of
Florida, the value of embedded closed-loop for the treatment
of ET has been further demonstrated upon in an expanded
group of patients over a time period of several months (Opri
et al., 2020). This study used similar cortical biomarkers, but
achieved much higher specificity, potentially due to a more
sophisticated paradigm for training their neural classifiers. Our
approach for the classifier was based on a large block structure.
We collected data during movement and rest, with stimulation
both on and off. The classifier was then trained by comparing
the power spectra between these four conditions. Conversely, the
UF team used data from a prompted movement task to train
their classifiers. It seems that these repeated small samples were
better able to generalize to the tested behavior, potentially by
capturing the transitions between states. Additionally, motivated
by clinical considerations, we biased our classifiers towards
avoiding false negatives. This resulted in our system having
a higher sensitivity than it would otherwise by compromising
specificity, although the prioritization of therapy over power
savings resulted in stimulation turning on when not needed.
There is still much that future studies could do to improve
performance with newer hardware. However, this system showed
better performance in TEED and greater tremor suppression
than cDBS. Although more study is necessary to understand the
source of this improved performance, it is an encouraging sign

that aDBS systems could improve the lives of patients even more
than cDBS systems when deployed in clinical practice.

4. DISCUSSION

Over the course of this study, we made several important
advancements. We demonstrated the feasibility of aDBS for
ET using cortical LFPs as a control signal. We then developed
preliminary machine-learning driven BCI and volitional control
systems. These elements were then put together to create a fully
implantable, clinically translatable aDBS system for ET. Over the
course of this process, we came tomany conclusions that we hope
will be helpful to future generations of aDBS for ET. Here we
outline some of the most important conclusions that we came to
over the course of this study, both practical and theoretical. We
also provide our outlook on what the key hardware and ethical
challenges that need to be solved in aDBS for ET.

4.1. Remaining Work
One of the most prevalent issues that we ran into was the
control delay inherent in the distributed system. A large part of
this delay can be attributed to the hardware limitations of the
Activa PC+S. However, any distributed system will necessarily
have larger delays due to the increased communication distance
over a fully implanted one. Conversely, a distributed system
will have much higher computational power and flexibility than
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a fully implanted one. As we demonstrated in our embedded
aDBS experiments, the tradeoffs between these two types of
systems can be minimized by utilizing a hybrid approach. By
training the system in a distributed fashion, we can utilize the
full computational power that larger hardware offers to adapt
stimulation in a high dimensional parameter space. By using
this system to set the parameters on a simpler, fully-embedded
classifier, we can retain the fast response times of a fully
embedded system. Future studies will endeavor to further tighten
and automate this two-stage control loop. It is likely that the
classifier used in the implanted system will not remain effective
for long periods of time as the patient’s state and medications
change. Multi-modal monitoring of the patient’s symptoms, with
simultaneous streaming of neural, IMU, and even video data,
would detect when these changes occur. The system would then
either prompt the patient to re-train the classifier or substitute in
a previously trained classifier that would better suit the patient’s
current state.

As has been well documented; side effects of stimulation,
especially paresthesia, are often exacerbated while stimulation
is being ramped up. To ensure the comfort of our patients,
we always set a maximum ramp rate for each patient that did
not induce intolerable side effects. Several studies have noted
the nuances of stimulation ramp rates but to our knowledge
no conclusive best practices have been established (Petrucci
et al., 2021). In our patients, we noticed that the maximum
tolerable ramp rate differed drastically. Further studies will be
required to better understand this phenomenon. With a better
understanding of the nuances of ramp rates, stimulation could be
applied in a way to circumvent paresthesia while still allowing for
fast control of DBS.

Due to the communication delays discussed above, we often
observed large bursts of transient tremor at the onset of
movement. Limitations on the ramp rate necessary for patient
comfort mean that the delay between the need for stimulation
and when stimulation reached clinically effective levels was even
longer. Future studies should therefore investigate aDBS systems
with different levels of minimal andmaximal stimulation. Instead
of switching stimulation between the on and off states, we would
instead switch between high and low amplitude stimulation
states. The low voltage state would be set low enough to not
be noticeable for the patient, and the high level would be at
the clinically effective threshold. Since the difference in voltage
between states would be smaller, this would enable the system to
respond faster without inducing ramping side effects.

All our work has focused on changing the amplitude of the
delivered stimulation. There is evidence showing that stimulation
amplitude offers the most control of any single parameter
adjustment (Cooper et al., 2008). However, DBS efficacy is highly
dependent on the other two tunable parameters: pulse width
and stimulation frequency. Stimulation frequency is of particular
importance according to theories that tremor may be caused
by excessive coupling between oscillatory activity in different
regions of the brain (Raethjen and Deuschl, 2012; Helmich
et al., 2013; Filip et al., 2016). If this is the case, adjusting
stimulation frequency could reveal stimulation frequencies that
both improve and worsen tremor. The existence of multiple

harmonic stimulation frequencies that have similar therapeutic
effects would be a strong confirmation of this phenomenon. As
a result, the effect of stimulation frequency on DBS should be
investigated both for the sake of improving clinical effectiveness
and for the potential of a greater understanding of the pathology
of ET.

Another aspect of aDBS that has been shown to be important
is the exact methodology of training the neural data classifier.
This is highlighted by the comparison between our results
and those recently published from the University of Florida
(Opri et al., 2020). It is clear that the training data and
paradigm must be designed with the ability to translate into a
more naturalistic context in mind. Their study achieved higher
sensitivity, specificity, and overall accuracy.When classifiers such
as these are designed, we believe it is important to take the patient
experience and clinical practice into account. False negatives,
lack of stimulation when it is needed, are more detrimental
to the patient than false positives, stimulation even when it
is not needed. For this reason, it is important that classifiers
are optimized primarily for sensitivity instead of just overall
accuracy. These considerations will help ensure that aDBS is best
optimized for the needs of the patient.

4.2. Alternative Approaches
A potential direction of research that we did not fully explore
in our study is the potential to smoothly adapt the levels of
stimulation to the severity of symptoms. Systems like this could
follow a similar approach to the beta thermostat approach
demonstrated in the PD literature (Qasim et al., 2016; Swann
et al., 2018), adjusting stimulation to even out therapy when
provided in conjunction with medication. We performed proof-
of-concept distributed studies using bollinger bands to drive
’graded-DBS’ (Castaño-Candamil et al., 2020). This work showed
promise in handling the non-stationary dynamics and adapting
the stimulation algorithms in a patient-specific way. However,
hardware limitations prevented us from implementing this
approach in a fully implanted context. This approach would allow
the aDBS system to adapt stimulation levels more precisely to the
changes in patient.

One of the great remaining hurdles in the development of
aDBS for ET and treatments for ET in general is the limited
understanding of the pathology of the disease. Although progress
has been made recently suggesting the involvement of multiple
network components and the central role of the cerebellummany
unanswered questions remain (Raethjen and Deuschl, 2012; Filip
et al., 2016; Ibrahim et al., 2020; Pan et al., 2020). With this
growing evidence for the role of the cerebellum, it will be
important to identify whether the cerebellum is the sole generator
of pathological oscillations, or do further changes need to happen
for resonant frequencies to arise. Moreover, it is unclear whether
pathological changes occur in other brain region that facilitate the
propagation of tremor oscillations. An improved understanding
of the pathology of ET could lead to new stimulation targets
and stimulation paradigms that better counteract the symptoms
of ET, or even pharmacological treatments that directly target
the underlying pathological changes. Due to the acute control
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possible in aDBS systems, this research will be able to help answer
many of these important questions.

aDBS for ET lacks the sort of robust neural biomarkers that are
directly correlated to symptoms. In PD, for example, abnormally
long bursts of STN beta activity has been shown to be directly
correlated to symptoms, while a sharp peak in the gamma band
has been shown to be directly correlated to stimulation-induced
dyskinesia, resulting in a perfect control signal for ramping DBS
amplitude up and down (Whitmer et al., 2012; Little et al., 2013;
Swann et al., 2018). The ET DBS systems described here must
rely on proxy biomarkers such as beta band desynchronization
as a measure of movement, which is correlated with symptoms.
Since this biomarker imperfectly follows symptoms, there is a
hard cap on how close to optimal performance our systems
can come. Thankfully future aDBS research is well positioned
to begin unraveling these questions. Recent work has shown
evidence that there may be alternative biomarkers of movement
visible in VIM LFPs (Opri et al., 2016). The potential of this VIM
approach was further demonstrated by the researchers at Oxford,
who developed a VIM based aDBS paradigm using extremely
detailed neural recordings (He et al., 2021). We look forward
to seeing how this work develops the field, as VIM aDBS would
remove the need to implant the additional cortical strip required
for our approach. If a direct biomarker of tremor severity,
identifiable both during and off stimulation, could be found, the
aDBS could be driven exactly as needed. Further verification and
development of both these and cortical biomarkers of tremor
is essential for robust aDBS systems for ET. The presence of
multiple simultaneously computable biomarkers would allow for
cross-validation and increased robustness.

Future studies of aDBS with larger numbers of patients will
also be capable of investigating the variations observed between
patients. Recent work is increasingly suggesting that ET is not a
single disorder, but rather a family of related disorders that need
to be treated slightly differently (Soto and Fasano, 2020). This
is also supported by the wide variation in effective stimulation
settings observed even in our relatively small cohort of patients.
For most ET patients, the recommended stimulation frequency
is close to 140 Hz, but for one of our patients we found the
most effective stimulation occurred near frequencies of about 90
Hz. A survey of optimal stimulation parameters determined in
an automated way, matched with neural recordings on and off
stimulation would be a promising avenue to investigate these
differences. In this context, aDBS is firmly in the regime of
personalized medicine. Future aDBS applications should retain
the focus on tuning stimulation individually to the needs of
each specific patient. Broad generalization is useful only in
so far as it simplifies the training process of each patients
individualized aDBS paradigm and highlights the nuances of each
patient’s needs.

One of the developments that could most dramatically push
aDBS for ET forward is a well-verified, explanatory model of
ET. Specifically, such a model should explain at a high level the
interactions between brain areas that give rise to pathological
ET tremor oscillations. Though one such promising model has
recently been proposed, more work is needed to verify this
model and determine how it can be fit to patient data (Yousif

et al., 2017; Duchet et al., 2020). This modeling effort should
proceed in conjunction with the imaging-based modeling efforts
(Dembek et al., 2017; Al-Fatly et al., 2019; Middlebrooks et al.,
2021b). As these models move towards more predictive power,
they will would allow for more insight during the process of
selecting the implant site and tuning aDBS parameters for new
patients (Middlebrooks et al., 2021a). Neural and biophysical
recordings of patient state could be used to cluster the patient
with other patients that display similar symptoms, with the
expectation that similar stimulation would be similarly effective
for patients within a cluster. This could dramatically reduce the
number of parameters sets that need to be tested to find an
effective stimulation paradigm. When repeated with multiple
patients this would result in a map of ET disease states and
related diseases. Even once DBS parameters are set, it is likely
that over the course of the patient’s daily life, optimal stimulation
parameters will change. As the patient takes medicine, for
example, the stimulation amplitude and frequency change. A
reliable model could then be used to help inform automatic
switching of stimulation parameters as the patient’s state changes.
Fundamentally, a good enough model could provide insight into
the pathology of the disease and aid the search for ET treatments
that target the underlying cause rather than just treat symptoms.

4.3. Challenges of Clinical Translatability
As has been noted in several reviews in this field, there is a
large gap between the experimental demonstration of aDBS and
a clinically translatable treatment (Arlotti et al., 2016; Meidahl
et al., 2017). We took part in collaborations to address some of
these challenges with our development of automated tools for
optimization of DBS and aDBS paradigms (Haddock et al., 2018).
However, several challenges remain.

One of the largest challenges to the clinical translatability of
the neural-driven aDBS systems we developed over the course of
this study is the availability of on-label cortical strips. These are
a required component for the implementation of aDBS systems
with that use movement intention sensed from cortex as a
control parameter. As implied by our BCI control work, these
could also be used in a volitional fashion to seamlessly offer the
patient a greater degree of control over stimulation. Recent work
along with our own analysis have shown that cortical electrodes
such as these retain a high signal to noise ratio for years after
implantation (Nurse et al., 2017; Fraczek et al., 2021). This has
been further confirmed by the group at UF, who have shown that
aDBS driven by cortical strips is robust over several months (Opri
et al., 2020).Moreover, in the context of our study we observed no
adverse effects as a result of the implantation of the cortical strips,
which may motivate work pursuing their clinical validation as a
safe extension to existing DBS systems.

In the fully implanted aDBS system we describe above,
training of the implanted algorithm proceeds in a distributed
fashion. In our experiments, we train and test the classifiers
within a reasonably short time scale of less than a few hours.
However, this begs the question of how often these sorts of
classifiers will need to be updated. If training need only be
repeated once every few months, then a system like this could
be tuned during routine clinical visits. Thanks to the automated
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nature of the system, this could be carried out by a trained
technician instead of a neurologist. However, if the algorithm
requires updating on a near daily basis, then any clinically
translatable approach would need to be deployable to the patient’s
home. Both the algorithm update itself and detection of the
ineffectiveness of the current algorithm would have to be fully
automated. It is also not clear how well the control variables used
in our experiments would translate to daily activities. In either
case, more work will be required to evaluate the robustness of
aDBS paradigms developed in this way.

Finally, there are a number of ethical considerations that arise
as aDBS systems are translated into common clinical practice.
We have discussed a number of these elsewhere, but we provide
a short review here (Brown et al., 2016). Concerns have been
raised about the potential for stimulation to cause shifts in the
user’s perception of selfhood and agency e.g., in cases where
stimulation causes behavioral changes as a side effect (Klein
et al., 2015). aDBS might 1 day mitigate and manage these side
effects. Questions remain, however, about how users will interact
with more robust aDBS systems; how those interactions impact
clinical outcomes and quality of life (Brown, 2020). It is not clear,
for example, how much control users will want over stimulation
parameters, or how involved they want to be in aDBS algorithm
training, or how different algorithms will impact user experience.
To investigate these questions, a neuroethicist on our team (TB)
lead a series of longitudinal, semi-structured phenomenological
interviews with each patient the goal of which were to give
patients the opportunity to describe using the experimental aDBS
platform (Brown et al., 2016). A final analysis of these interviews
is underway.

4.4. Hardware and Future Systems Outlook
Next generation systems which have been developed and are
on the horizon offer significant improvements over the Activa
PC+S system.

The Medtronic Summit RC+S offers many of the same
capabilities as the Activa PC+S but with greatly improved
specifications (Stanslaski et al., 2018). The Summit system
can record at 1 kHz, which enables use of gamma band
activity (50–100 Hz) to inform aDBS decisions without excessive
contamination from Nyquist noise. This is coupled with more
advanced, onboard digital spectral power estimation hardware
that will provide better accuracy and resolution than the analog
system available in the Activa system. The Summit also supports
a much more intricate state table for switching stimulation
parameters in a fully embedded fashion. This device is already
being used to perform aDBS research at several locations
(Petrucci et al., 2020; Johnson et al., 2021). The increased
capabilities of the Summit RC+S will allow the embedded system
to detect biomarkers more reliably and respond with stimulation
changes faster and more precisely. Since the device is also
re-chargeable the worry about battery conservation is greatly
reduced. Battery intensive experiments and streaming of neural
data can now be done in the patient’s home without excessively
accelerating the need for a battery replacement surgery. Such day-
to-day monitoring will allow for a more nuanced understanding
of both DBS and the disease being treated.

Another upcoming system is the Medtronic Percept (Goyal
et al., 2021). This system does not include cortical electrodes,
but still offers the ability to record from the implantation target.
Raw LFP data can be streamed out to a programming tablet
in a manner similar to the Activa PC+S. Alternatively, chronic
average band powers on pre-set power bands can be recorded to
the on-board memory of the device, and then later downloaded
for analysis. Although this device offers lower resolution data
than the Summit, it is labeled for clinical treatment. This means
that chronic sensing during stimulation could soon enter more
regular clinical practice as a diagnostic tool that can aid clinicians
in adjusting stimulation parameters. As a side effect, future
studies could leverage this chronic data to better understand the
pathology of ET and as a jumping-off point for next generation
aDBS paradigms. When combined with wearable sensors to
monitor the patient’s activity, this could prove an invaluable tool
for adapting aDBS into daily life.

5. CONCLUSIONS

aDBS for ET remains a growing area of investigation. Since
the start of this study, the field has developed from a single
demonstrative case study to a clinically translatable approach.
We have developed aDBS for ET from its initial state to a fully
implantable system that could be adapted to clinical practice.
This fully implantable system is able to suppress tremor more
effectively than cDBS while delivering less total stimulation.
Despite this, numerous avenues for advancement remain. The
longitudinal efficacy of fully-implanted aDBS algorithms have
not been tested in a chronic, at-home environment. All work
to date has trained and tested the classifiers within the space of
a day, so it is likely that transitioning to a chronic setup will
require the development of automated tools that would allow the
patient to re-train the aDBS algorithm on a regular basis with
minimal input from a clinician. Any clinical translation of this
work will depend on the availability of safe, reliable, on-label
cortical electrodes. We look forward to the life-changing work
that will be done in this space as new hardware, techniques, and
understanding becomes available.
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