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Summary 

Environmental mitigation strategies including ventilation, filtration, and humidification significantly 

reduce the concentration of virus in in a controlled human subject study. Smaller aerosol particles 

within the range of 0.3 µm -2.5 µm best characterize the variance of aerosol viral load. 

 

  



Acc
ep

ted
 M

an
us

cri
pt

 

 

Abstract  

Background 

Several studies indicate that COVID-19 is primarily transmitted within indoor spaces. Therefore, 

environmental characterization of SARS-CoV-2 viral load with respect to human activity, building 

parameters, and environmental mitigation strategies is critical to combat disease transmission.  

Methods 

We recruited 11 participants diagnosed with COVID-19 to individually occupy a controlled chamber 

and conduct specified physical activities under a range of environmental conditions; we collected 

human and environmental samples over a period of three days for each participant.  

Results 

Here we show that increased viral load, measured by lower RNA cycle threshold (CT) values, in nasal 

samples is associated with higher viral loads in environmental aerosols and on surfaces captured in 

both the near field (1.2 m) and far field (3.5 m). We also found that aerosol viral load in far field is 

correlated with the number of particles within the range of 1 µm -2.5 µm. Furthermore, we found 

that increased ventilation and filtration significantly reduced aerosol and surface viral loads, while 

higher relative humidity resulted in lower aerosol and higher surface viral load, consistent with an 

increased rate of particle deposition at higher relative humidity. Data from near field aerosol trials 

with high expiratory activities suggest that respiratory particles of smaller sizes (0.3 µm -1 µm) best 

characterize the variance of near field aerosol viral load.  

Conclusions 

Our findings indicate that building operation practices such as ventilation, filtration, and 

humidification substantially reduce the environmental aerosol viral load, and therefore inhalation 

dose, and should be prioritized to improve building health and safety.  
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Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus 

disease 2019 (COVID-19), has resulted in 274,472,724 confirmed cases with more than 5,012,337 

deaths globally, as of 03 November 2021[1]. There is substantial evidence that inhalation of aerosol 

particles containing viable SARS-CoV-2 virions is the primary route of human-to-human 

transmission[2–9] . Modeling of the impact of non-pharmaceutical interventions on the probability 

of COVID-19 infection and mortality rate [10–14] suggests that indoor congregation is the primary 

driver for COVID-19 disease transmission[15]. Moreover, recent comprehensive reviews highlight 

the importance of airborne transmission pathway via fine aerosols [16–18]. Therefore, better 

understanding and quantifying the relationship of human factors, design, and building operation 

practices on the abundance and dispersion of viral load in indoor spaces is necessary to combat 

disease transmission [19]. 

 

Breathing and talking are some of the human expiratory activities that have been studied to 

determine how these activities are associated with concentrations of viral pathogens[20,21]. These 

studies have contributed valuable information about the viral load of size fractionated 

aerosols[5,22]. In addition to human expiratory factors, indoor space design and engineering 

practices such as ventilation, filtration, and humidity control may influence the abundance and 

infectious fraction of the environmental viral load, and therefore reduce inhalation dose[22–28]. 

However, these indoor environmental interventions need to be studied independently through 

controlled experiments to quantify their impacts, while minimizing confounding variables, especially 

with regard to aerosols that may contain SARS-CoV-2. 

In this research, we sought to better understand viral abundance and dispersion associated with 

differing degrees of expiratory activity, ventilation, filtration, and humidification through controlled 

experiments in a quasi-field setting. We measure viral RNA of SARS-CoV-2 using quantitative reverse-

transcription polymerase chain reaction (qRT-PCR) techniques as a proxy of viral load in humans and 

environmental aerosols and surfaces. We studied 11 human participants that were diagnosed with 

COVID-19 in a controlled chamber measuring 4.3 m in length, 2.8 m in width, and 2.5 m in height 

(28.04 m3). Our research protocol comprised a 3-day study for each participant in which human 

activity and environmental factors (ventilation rate, in-room filtration, humidity control) were 

studied as independent variables.  

 

 Methodology 

A rapid deployment modular unit (RDM) was used as an environmentally controlled chamber (Figure 

1) for this human participant study during Winter and Spring 2021. The study population included 11 

participants between the age of 18 and 24 (Supplemental table 1).  Two high-flow (200 L/min) 

AerosolSense air samplers (Thermo Fisher Scientific) were placed approximately 1.2 and 3.5 meters 

from the participants. At the end of each study period, samples from the air samplers (near, far), 

high-touch surfaces (phone, computer, chair), settling plates (near, far), and human specimens 
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(shallow nasal) were collected and transported to a BSL-2 laboratory on the University of Oregon 

campus in Eugene, Oregon,for further molecular analysis.  

 

Trials were conducted in two different set-ups over three days. Trials with a S1 suffix indicate Setup-

1 where both air samplers were placed next to each other for short duration and higher expiratory 

tests (Figure 1a). During cough trials, participants were instructed to conduct 10 uncovered coughs 

into an area over the air samplers, particle counters (TSI AeroTrak 9306), and CO2 (Onset HOBO 

MX1102A) sensors. During speak tests, participants were instructed to conduct continuous 

vocalization using a standardized CDC defined passage[29] (Supplemental document, Appendix A) 

for 5 minutes with normal and higher amplitude at their discretion, respectively[30]. A S2 suffix 

indicates trials where air samplers were located at 4 ft (near field) and 11 ft (far field) of participant’s 

sitting position (Figure 1b). During S2 trials, participants conducted routine activities at a desk, 

including sitting and standing, sitting silently, sitting and participating in an online conference 

meeting, or were invited to walk on treadmill (physical activity day) (Figure 1b). Institutional 

approvals, data availability, and methods related to RDM layout, participant recruitment, sample 

collection, molecular analysis, and statistical analysis are described in Supplemental document, 

Appendix B.  

 

Results 

Near and far field aerosol samples and paired human specimens 

To quantify the relationship between viral loads (RNA copies) in human nasal and aerosol samples, 

we paired the outcome of each aerosol sample collected with its corresponding shallow nasal 

sample for both near and far AerosolSense samplers during trials when participants were sitting or 

standing for one hour at ~0 ACH under typical ambient conditions without environmental 

interventions. We defined routine trials according to following conditions: 1) participants conducted 

typical office activity while sitting or standing for 1-hour, 2) ambient environmental conditions were 

maintained using only electric resistance heaters without ventilation at ~0 ACH, and 3) participants 

could have spontaneously coughed because of their symptoms but were not instructed to conduct 

any expiratory activity during routine trials. Figure 2a shows the relationship between nasal viral 

load and near field and far field aerosol viral load for all routine trials. Note that negative samples 

are defined with a CT value of 40.  

 

The coefficients associated with significant regression models presented in Figure 2a indicate that an 

increase in viral load equivalent to -1 CT in human nasal samples is associated with increased near 

field viral load of -0.326 CT (R
2 = 0.2276, P = 0.001092) and increased far field viral load of -0.40 CT (R

2  

= 0.4026, P = 1.721e-06). The difference of means between the aerosol CT value of near field and far 

field aerosol samples was 1.058 CT, indicating lower viral load for far field samples; however, the 

paired t-test differentiating near field and far field samples was not significant (P = 0.05955) (Figure 

2b, note that black solid horizontal line represents median in all box plots). Therefore, we also report 
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the significant coefficient for all nasal and aerosol samples in routine trials which indicates that an 

increase in viral load equivalent to -1 CT in nasal samples is associated with an increase in room 

aerosol viral load of -0.362 CT (R
2 = 0.3119, P = 1.675e-08, Supplemental figure 1). Based upon qRT-

PCR theory, a -1 CT difference is approximately equivalent to double the viral load[31]; thus, a 

doubling of viral load in nasal samples corresponds to a ~35% increase in aerosol viral load for 

samples collected in the room. To our knowledge this is the first reported relationship between 

environmental aerosol viral load and human viral load in a controlled environment (28,040 L3 room, 

~0 ACH, one-hour trials, single COVID-19 positive individual). 

 

Furthermore, we found a statistically significant difference between the mean CO2 concentration 

recorded at near field and far field, where CO2 concentrations of near field was 80 PPM higher than 

in the far field (P = 0.0004009) (Figure 2c). Analysis of particles for routine trials indicates that there 

is a statistically significant difference between the number of particles collected in the range of 1 µm 

-5 µm within the near field versus the far field, as summarized in Figure 2d (expanded in 

Supplemental figure 2). As shown in Figure 2e, we identified a significant relationship between 

aerosol viral load and far field particle counts within the size bin 1 µm - 2.5 µm where increased 

number of particles within this size bin is associated with higher aerosol viral loads (R2 = 0.1112, P = 

0.04313).The relatively low reported R2 is likely due to the reality that there are many particles in the 

room that are not human-sourced bioaerosols, and therefore this regression should not be 

interpreted as an absolute prediction model We also report a statistically significant positive 

correlation between the average far field CO2 concentration and the number of particles of 0.3 µm -

3 µm in far field for routine trials (Supplemental figure 3) which lends more confidence in the 

interpretation that the observed correlation between aerosol viral load and the number of particles 

of 1 µm – 2.5 µm is related to bioaerosol emissions. These results provide further evidence of the 

importance of fine aerosols in the potential for COVID-19 disease transmission in both near and far 

fields.  

 

High-touch surfaces, settling plates, and paired human specimens 

Human specimens were compared to paired samples collected from the participants’ phone 

(screen), computer (adjacent to keyboard), and chair (described as high-touch surfaces), and from 

near field settling plates (on participant’s desk) and far field plates (adjacent to far field air sampler). 

Figure 3a illustrates the significant linear regressions for the viral load (RNA) on each high-touch 

surface relative to paired nasal samples. Figure 3b illustrates the significant linear regressions for 

viral load in settling plates (near and far) relative to paired nasal samples. There are no significant 

differences between the viral loads found in near field and far field setting plates, nor are there 

significant differences between any of the high-touch surfaces (Supplemental figures 4 & 5). Figure 

3c illustrates the significant regressions for all sampling types relative to human nasal samples within 

a single figure and indicate that high-touch surfaces and aerosol samples have stronger correlations 

to human viral loads than settling plate surfaces. This lends more evidence that emitted virions are 

present in indoor spaces within smaller particles that remain as aerosols for long time periods.  
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High expiratory activity, particles, and aerosol viral load  

We find a significant correlation between aerosol viral load associated with high expiratory activities 

and paired nasal samples where an increase in viral load equivalent to -1 CT in human nasal samples 

is associated with increased immediate field (<1m, Figure 1a)  aerosol viral loads as follows: -0.189 CT 

(R2 = 0.09058, P = 0.0225) for 1-minute cough tests, -0.271 CT (R
2 = 0.1979, P = 0.00115) for 5-minute 

speaking tests, and -0.229 CT (R
2 = 0.1796, P = 0.00141) for 5-minute speaking loudly tests 

(Supplemental figure 6). Furthermore, we find a significant positive relationship between the mean 

number of immediate field particles during high expiratory activities (Setup 1) in the size ranges 0.3 

µm -1 µm (Figure 4a), 1 µm -2.5 µm (Figure 4b), and 10 µm -25 µm (Figure 4e) and the viral load in 

the immediate field aerosols, while the other particle size bins are not significant (Figure 4). We 

provided further analysis of the relationship between different respiratory activities and viral loads 

in Supplemental figures 7 & 8. Further discussion about the relationship between aerosol viral loads 

and particles of different size bins are provided in the Supplemental document, Appendix C. 

 

The impact of ventilation and filtration on aerosol and surface viral load 

Indoor air exchange rate, measured in Air Changes per Hour (ACH), has previously been 

demonstrated to reduce indoor particles and therefore hypothesized to reduce the concentration of 

viral aerosols, corresponding inhalation dose, and consequently the probability of indoor occupants 

acquiring infection[16,32–34]. Few studies have measured the relationship between ventilation, 

filtration and aerosol viral load[35]. Therefore, we investigated the impact of alternate air exchange 

rates, using 100% outside air (OSA) and filtration levels during removal mechanism trials. As shown 

in Table 1, each removal mechanism day began with a baseline ~0 ACH trial, followed by four 100% 

OSA ventilation trials (two at ~9 ACH and two at ~3 - 4.5 ACH) provided by an exhaust fan (fitted with 

HEPA filter for infection control). Thereafter, a single trial with two in-room HEPA filters (without 

OSA) was conducted. All removal mechanism trials and the ~0 ACH control trials were conducted for 

a duration of one hour. We found a significant difference between control trials and all removal 

mechanism trials (P = 0.029, Figure 5a). In Figure 5a we show a significant difference between 

control trials and paired removal mechanism trials, while in Figure 5b we show a significant 

correlation for all control trials at ~0 ACH and all ventilation trials with 100% OA organized by mean 

CO2 concentration. Trials with less than ~4.5 ACH (including ~0 ACH trials) were associated with 

significantly higher aerosol viral loads in the near field when compared with trials greater than ~9 

ACH, with a mean difference of -3.6 CT (P = 0.037, unpaired t-test, Figure 5c). Even though the mean 

difference of aerosol viral load in the far field for trials with less than ~4.5 ACH (including ~0 ACH 

trials) was higher than trials with greater than ~9 ACH, we did not observe a statistically significant 

difference for far field aerosol viral load (P = 0.085, unpaired t-test, Figure 5c). When examining total 

room aerosol viral load (near field and far field together), we report that trials with less than ~4.5 

ACH (including ~0 ACH trials) were associated with statistically higher viral load than trials with 

greater than ~9 ACH, with a mean difference of -3.2 CT (P = 0.01153, unpaired t-test, Supplemental 

figure 9). Our research provides further evidence that improved ventilation and filtration is 

beneficial for both near field and far field aerosol viral load (Supplemental table 2). Given these 
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relationships within this room (Figure 5b), ventilation trials indicate that an increase in ~128 PPM of 

CO2 concentration corresponds with an increase in aerosol viral load equivalent to -1 CT, thus, 

approximately a doubling of the viral load. Moreover, filtration trials indicate that there is a 

significant difference between trials with only in-room HEPA filtration (~1000 m3/hr) and paired 

control trials at ~0 ACH, where HEPA trials have lower viral load equivalent to 3.240741 CT (P = 

0.029), thus, approximately an order of magnitude reduction (Figure 5d). 

 

Our results provide evidence that increased air exchange (~9 ACH with 100% OSA) or in-room HEPA 

filtration (~1000 m3/hr) yields reduced aerosol viral load, and reason therefore suggests these 

measures are likely to reduce inhalation dose and the probability of infection in indoor spaces. We 

found no statistical difference between aerosols captured during control trials with ~0ACH and those 

with ~3 – 4.5 ACH; however, this may be related to limitations in sample size. Among three types of 

high-touch surfaces collected in this study, increased ACH was associated with lower viral load on 

participant’s computers, with a mean difference of 4.033 CT (P = 0.002323) whereas phone and chair 

samples showed no significant difference with air exchange rate (Supplemental figure 10).  

 

Relative humidity and aerosol viral load  

Relative humidity is hypothesized to impact aerosol pathogens and disease transmission in three 

ways; (1) improved human immune response[33] (2) reduced viability in aerosols at RH between 40-

60%[15,23] , and (3) increased particle deposition[16,36]. The structure and behavior of aerosol 

pathogens, specifically particle size, settling rate, and diffusion, are each affected by RH[36,37]. In 

this study, we aimed to measure environmental viral load at different RH conditions. Two 

dehumidifiers and two humidifiers were used to regulate RH to low (22.2% - 38.9%, mean = 28.8%) 

and high (44.83 % - 61%, mean = 53.9%) levels during the “relative humidity” trials. Each 

participant’s relative humidity day started with a 1-hour control trial with ~0 ACH and RH at ambient 

conditions, followed by two 1-hour dehumidification trials and two 1-hour humidification trials. 

Room aerosol CT values were paired with mean RH values (ranging from 20-70%) recorded for each 

trial.  

 

Relative humidity trials indicate that an increase of ~11.85% in RH corresponds with a decrease in 

aerosol viral load equivalent to 1 CT (p = 0.008), thus, approximately a 50% reduction in aerosol viral 

load, as shown in (Figure 6a). Similarly, an increase of ~10.02% in RH corresponds with an increase in 

surface (chair, computer, phone) viral load equivalent to -1 CT (p = 0.01) as shown in Figure 6c, 

consistent with increased particle deposition. Figure 6b shows the significant decrease in aerosol 

viral load equivalent to 3.289 CT (paired t-test, P = 0.0002643) for humidification trials as compared 

to dehumidification trials. Conversely, Figure 6d shows the significant increase in computer surface 

viral load equivalent to -2.873 CT (paired t-test, P = 0.01593) for humidification trials as compared to 

dehumidification trials.  
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This is one of the first studies that investigated the role of relative humidity on viral RNA in aerosols 

and surfaces in a realistic setting. Our results suggest that increased RH corresponds with decreased 

viral load in aerosols and increased viral load on select indoor surfaces, consistent with an increased 

rate of particle deposition. Since several studies have demonstrated that there is a substantially 

higher risk for aerosol mediated transmission than fomite mediated transmission[38], active 

humidity control (including humidification, or reduced dehumidification) could be implemented to 

reduce aerosol mediated COVID-19 transmission risk reduction in indoor spaces. Of course, 

humidification controls must be properly maintained and managed to avoid condensation and mold 

propagation. 

 

 Conclusion and Limitations 

All participants were given the opportunity to opt out of the study at any time, thus two subjects 

only completed the first day of study. There were some modest inconsistencies between trial 

durations in order to accommodate participants’ needs. Not all participants walked on the treadmill, 

and some walked at different speeds or for different durations. Participants may have presented 

inconsistent symptoms (such as coughing) during the course of the experiments; however, the 

control trial at the beginning of each day addresses a substantial part of this limitation. While this 

was an extensive study design, conducted over three days per participants (Supplemental figures 11 

& 12), the total number of unique participants (n=11), and limited age range (18-24 years of age) of 

participants, presents some limitations to generalizability. RNA samples were not assessed for 

viability. 

In summary we found statistically significant:  

1- positive relationships between viral load (RNA) found in human specimens and paired 

aerosol and surface samples at ~0 ACH and ambient conditions for sitting and standing trials 

(routine trials) as well as trials with high expiratory activities (coughing, speaking, and 

speaking loudly);   

2-  positive relationship between viral load in near field aerosols captured during periods of 

higher expiratory activity and near field particles of 0.3 µm -1 µm, 1 µm -2.5 µm, and 10 µm -

25 µm in size, but no statistical significance for 2.5 µm -10 µm particles; 

3- increased CO2 concentrations and particle counts in the range of 1-5 µm measured in the 

near field as compared to the far field for routine trials; 

4- positive relationship between aerosol viral load in the far field and the number of 

corresponding far field particles detected in the range of 1-2.5 µm;  
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5- inverse relationships between viral load found in aerosols and degree of ventilation, as well 

as in-room filtration; 

6- relationships between viral load and degree of relative humidity; whereby higher RH is 

associated with lower viral load in aerosol samples and higher viral load in select surface 

samples, consistent with increased particle deposition on surfaces.  
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FIGURE LEGENDS: 

Figure 1 Rapid deployment modular unit (RDM), a) higher expiratory trials (S1), b) 

regular trials (S2) 

 

Figure 2 a) The correlation of near field (1.2 m) or far field (3.5 m) aerosol viral loads (RNA) with 

corresponding human nasal samples during routine trials b) comparison of near field and far field 

aerosol viral loads for routine trials, c) comparison of mean CO2 concentrations in the near field 

and far field for routine trials, d) paired t-tests for all particle size bins at near field and far field for 

routine trials, e) correlation between mean far field aerosol vial loads and the corresponding mean 

concentration of far field particles for routine trials. 

 

Figure 3 a) viral load (RNA) on each high-touch surface relative to paired nasal samples, b) viral 

load (RNA) on settling plates at near and far field relative to paired nasal samples, c) The 

correlation of each sample type (Aerosol, high touched surfaces, and settling plates) to paired 

nasal sample. 

 

Figure 4 Linear correlation between CT value and particles for a) 0.3-1 µm particles, b) 1-2.5 µm 

particles, c) 2.5-3 µm particles, d) 3-5 µm particles, e) 5-10 µm particles, and f) 10-25 µm particles. 

 

Figure 5 The impact of ventilation and filtration on CT value of aerosol samples, a) match paired 

comparison between trials with removal mechanism trials (filtration and ventilation) and control 

trials with ~0 ACH, b) linear correlation between aerosol CT value and paired mean CO2 

concentration affected by only ventilation (same physical activities), c) Comparison of aerosol CT 

for ventilation trials of under ~4.5 ACH and above ~9 ACH in near field and far field, d) match 

paired comparison of aerosol CT for trials with in-room HEPA filtration and corresponding control 

trials with ~0 ACH. 

 

Figure 6 a) Correlation between aerosol CT value and mean relative humidity among 

dehumidification, humidification, and control trials b) paired comparison of aerosol CT between 

Dehumidification and Humidification trials, c) Correlation between surface CT value and mean 

relative humidity among dehumidification, humidification, and control trials, d)) paired 

comparison of select surface (computer) CT between Dehumidification and Humidification trials. 
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Table 1 Study plan for participants that were diagnosed with COVID-19; S1 and S2 refer to experimental setup 1 and setup 

2 

Set-up 1. Physical activity 2. Removal mechanism 3. Relative humidity (RH) 

S1 10 coughs in 1 minute 10 coughs in 1 minute 10 coughs in 1 minute 

S1 Speak for 5 minutes Speak for 5 minutes Speak for 5 minutes 

S1 Speak loudly for 5 minutes Speak loudly for 5 minutes Speak loudly for 5 minutes 

S2 1-hour regular sitting 1-hour regular sitting 1-hour regular sitting 

S2 1-hour standing 1-hour sitting at ~9 ACH 1-hour sitting at low RH 

S2 30-min sitting silently  1-hour sitting at ~3 ACH 1-hour sitting at low RH 

S2 30-min sitting speaking  1-hour sitting at ~9 ACH 1-hour sitting at high RH 

S2 15-min walking on treadmill 1-hour sitting at ~4.5 ACH 1-hour sitting at high RH 

S2   1-hour sitting with HEPA filtration   
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 


