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Background: Recent studies indicate that bladder cancer is among the top 10 most common cancers in the world
(Saginala et al. 2022). Bladder cancer frequently reoccurs, and prognostic judgments may vary among clinicians. As
a favorable prognosis may help to inform less aggressive treatment plans, classification of histopathology slides is es-
sential for the accurate prognosis and effective treatment of bladder cancer patients. Developing automated and accu-
rate histopathology image analysis methods can help pathologists determine the prognosis of patients with bladder
cancer.
Materials and methods: In this study, we introduced Bladder4Net, a deep learning pipeline, to classify whole-slide his-
topathology images of bladder cancer into two classes: low-risk (combination of PUNLMP and low-grade tumors) and
high-risk (combination of high-grade and invasive tumors). This pipeline consists of four convolutional neural network
(CNN)-based classifiers to address the difficulties of identifying PUNLMP and invasive classes. We evaluated our pipe-
line on 182 independent whole-slide images from the New Hampshire Bladder Cancer Study (NHBCS) (Karagas et al.,
1998; Sverrisson et al., 2014; Sverrisson et al., 2014) collected from 1994 to 2004 and 378 external digitized slides
from The Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/tcga).
Results: The weighted average F1-score of our approach was 0.91 (95% confidence interval (CI): 0.86–0.94) on the
NHBCS dataset and 0.99 (95%CI: 0.97–1.00) on the TCGA dataset. Additionally, we computed Kaplan–Meier survival
curves for patients who were predicted as high risk versus those predicted as low risk. For the NHBCS test set, patients
predicted as high risk had worse overall survival than those predicted as low risk, with a log-rank p-value of 0.004.
Conclusions: If validated through prospective trials, ourmodel could be used in clinical settings to improve patient care.
Background

Recent studies indicate that bladder cancer is among the top 10 most
common cancers in the world.1 Urothelial carcinoma accounts for most
cases of bladder cancer. Approximately, 75–85% of patients with bladder
cancer are classified as having nonmuscle invasive bladder cancer
(NMIBC). Furthermore, approximately 50% of NMIBC patients experience
more disease recurrences, and the treatment procedure is different from
that of patients diagnosed with muscle-invasive bladder cancer (MIBC).6

Urothelial carcinomas are graded according to the degree of tumor cellular
and architectural atypia. The cancer grade has an important role in deciding
the treatment plan, so if not determined accurately, the patient may un-
dergo unnecessary treatments. The World Health Organization (WHO)
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1973 and World Health Organization/International Society of Urological
Pathology (WHO/ISUP) classifications are widely used for tumor grading,
but these methods have relatively high intra- and interobserver
variabilities.7,8 Several studies compared different grading systems and
their effect on choosing the best treatment.9−12 A study used the WHO
1973 classification for evaluations and the interobserver agreement
among 11 pathologists was slight to moderate (κ = 0.19 − 0.44).13

Another study measured interobserver agreement among six pathologists
and showed that WHO/ISUP classification is slightly better than WHO
1973.14 Therefore, new methods should be sought to help pathologists
diagnose bladder cancer.

The stage and grade of bladder tumors are important criteria in cancer
treatment. The cancer stage consists of the location of the cancer cells and
22
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Table 1
Distribution of collected whole-slide images from four classes (PUNLMP, low-grade cases, high-grade cases, and IUC) and distribution of low-risk and high-risk images in our
datasets.

Histologic subtype Internal (NHBCS) training set Internal (NHBCS) test set External (TCGA) test set

Low-risk cases (PUNLMP + Low Grade) 248 (94 + 154) 107 (39 + 68) 11 (11 + 0)
High-risk cases (High Grade + IUC) 177 (144 + 33) 75 (62 + 13) 367 (0 + 367)
Total 425 182 378
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how far they have grown. Higher stages indicate whether the tumor has
grown away from the surface. Urothelial carcinoma pathologic stages are
named Ta (papillary tumor without invasion), TIS (carcinoma in situ
(CIS)), T1 (tumor invades the connective tissue under the surface lining),
T2 (tumor invades the muscle layer), T3 (tumor invades perivesical soft tis-
sue), and T4 (extravesical tumor directly invades into other organs or struc-
tures). According to the WHO 2016 classification, NMIBC is divided into
three groups: Ta, TIS, and T1, while MIBC is divided into T2, T3, and T4.
In low-grade cancer cases, the cancer cells show morphology with less
atypia, more closely resemble normal urothelial cells, and grow slowly.
Clinical research has demonstrated that the most common bladder tumors
are low-grade tumors.15 In contrast, high-grade cancer cells show more ir-
regular and atypical morphology and can be found in both NMIBC and
MIBC. It is essential to accurately differentiate between low- and high-
grade cancers because different treatments are available for various grade
tumors. For example, prompt treatment is required for high-grade cells in
NMIBC to avoid the spread of cancer.

Papillary urothelial neoplasm of low malignant potential (PUNLMP)
was first introduced by the WHO/ISUP in 1998 as a new entity of bladder
cancer.16 PUNLMP and low-grade urothelial carcinoma are two bladder
cancer types that are not easily distinguishable based on cell morphology
under the microscope. Because of the similarities between these two cancer
types, the pathologic diagnostic accuracy for their differentiation is approx-
imately 50%.17 While the distinction between PUNLMP and low-grade
urothelial carcinoma is deemed essential by some pathologists, recent stud-
ies have shown that separating PUNLMP and low-grade urothelial carci-
noma is not clinically crucial.9 Importantly, high-grade tumor cells are
found in various tumor stages, and MIBC is considered a type of high-
grade cancer.

The histological classification of bladder cancer has significant implica-
tions for the prognosis and treatment of patients. Moreover, detecting and
classifying histologic patterns such as PUNLMP and low-grade urothelial
carcinoma under the microscope is a time-consuming and challenging
task for pathologists. Manual classification of bladder cancer histological
patterns has a high error rate due to the similarity of histological features.
Therefore, clinical information such as the cancer stage is commonly used
for a more accurate prognosis. Automated image analysis using deep learn-
ing techniques can assist pathologists in providing faster and more consis-
tent results. Additionally, these techniques can be improved by providing
new data and associated annotated labels by several pathologists so that
the model can be trained based on the expert opinion of multiple patholo-
gists.

Automated image analysis methods to classify and visualize various
cancer patterns in high-resolution whole-slide images can help pathologists
avoid errors and reduce their assessment time.18,19 In this study, we intro-
duced a CNN-basedmodel for the classification of urothelial bladder cancer
based on whole-slide histopathology images to distinguish between low-
and high-risk groups, where the low-risk class includes PUNLMP and low-
grade cases, and the high-risk class includes high-grade and invasive cases.

Materials and methods

Datasets

For the model development and evaluation, we used images from the
New Hampshire Bladder Cancer Study or NHBCS.2−4 Risk factors for blad-
der cancer have beenwidely explored in previous reports from this study.20
2

For external evaluation, we utilized histology images from The Cancer
Genome Atlas (TCGA).5 The details of these datasets are included below.

New Hampshire Bladder Cancer Study (NHBCS) dataset

This dataset contains 838 whole-slide images from 1994 to 2004 as part
of the NHBCS.21 These hematoxylin and eosin (H&E)-stained surgical re-
section slides were digitized by Aperio AT2 scanners (Leica Biosystems,
Wetzlar, Germany) at 20×magnification (0.50 μm/pixel).

We normalized the color intensity of patches and applied standard data
augmentationmethods, including randomhorizontal and vertical flips, ran-
dom 90° rotations, and color jittering.

The Cancer Genome Atlas (TCGA) dataset

We collected 378 whole-slide images from TCGA for external valida-
tion. The distribution of these whole-slide images used in this study is sum-
marized in Table 1.

Data annotation

The tumor histologic subtypes in the NHBCS dataset were indepen-
dently confirmedby two expert genitourinary pathologists from the Depart-
ment of Pathology and Laboratory Medicine at Dartmouth–Hitchcock
Medical Center (DHMC) based on a standard histopathology review. In
the NHBCS dataset, 637 whole-slide imageswere categorized into papillary
urothelial neoplasm of low malignant potential (PUNLMP), low-grade pap-
illary urothelial carcinoma (low-grade, noninvasive), high-grade papillary
urothelial carcinoma (high-grade, noninvasive), and invasive urothelial
carcinoma (IUC). Among these slides, 34 were classified as carcinoma in
situ (CIS). Because of the small number of available CIS cases, we removed
them from our study. In addition, 31 cases were labeled as others, which
were excluded from our study. We used 607 whole slides from four classes
(PUNLMP, low-grade cases, high-grade cases, and IUC) in our analysis. We
combined PUNLMP and low-grade whole-slide image cases into a single
class because of their similarity, as they are both noninvasive and low-
risk cancers. Additionally, high-grade and IUC cases were merged into
one group because they are considered high-risk cancers.

We considered the grade heterogeneity during the annotation of the
WSI of the urothelial lesions, especially the noninvasive low and high-
grade papillary urothelial carcinoma. The criteria of WHO classification
of low and high-grade papillary urothelial carcinoma22 were followed dur-
ing our annotation, and the papillary urothelial carcinomas with ≥5% of
high-grade features were classified as high-risk cases. We established the
ground-truth labels for each whole-slide image in our NHBCS datasets
based on the consensus opinion of the two pathologists. If therewas any dis-
agreement, an expert pathologist re-reviewed the whole-side image and
resolved any disagreements. We randomly partitioned these slides into an
internal training set of 425 slides (~70% of the NHBCS dataset) and an
internal test set of 182 slides (~30% of the NHBCS dataset).

Two pathologists manually annotated the whole-slide images in our
internal NHBCS training set using the Automated Slide Analysis Platform
(ASAP).23 Regions of interest in each whole-slide image in our training
set were annotated with bounding boxes at the highest resolution for
each image. The annotated areas were split into smaller patches for training
a patch-level classifier. As noted above, the ground-truth labels for whole-
slide images in our internal NHBCS test set were based on the independent



Fig. 1. Overview of the Bladder4Net pipeline. Tissue patches were extracted from whole-slide images using the sliding-window method with 1/3 overlap after background, marker, and stain removal. Next, these patches were
forward passed through four different binary CNN classifiers. The resulting predictions were grouped, and the ratio of patches from each class was computed. The above was used as input for a Gaussian process classifier to
determine the final prediction: low risk or high risk.
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Fig. 2. The ratio of patch predictions for four samples of whole-slide images (one
per class). From left to right: the WSI corresponding to the PUNLMP class presents
a high ratio of patch predictions for its respective class. The same behavior occurs
for the low-grade class sample and high-grade class sample. However, the
invasive sample does not follow this pattern because CNN classifiers cannot
correctly predict this class; instead, they predict this class as a high-grade class.
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classification of two pathologists. The labels for the external TCGA test set
were established based on the provided metadata from the TCGA database
and additional confirmation by our study's expert pathologist.

Bladder4Net: Deep learning pipeline

In this study, we developed a deep learning-based model to distinguish
between low- and high-risk bladder cancer cases, where the low-risk class
includes PUNLMP and low-grade cases, and the high-risk class includes
high-grade and invasive cases. This deep learning pipeline, named
Bladder4Net, is shown in Fig. 1. We classified each patch in a whole-slide
image with binary classifiers. The portion of patches classified as a subtype
in a whole-slide image is included in a vector for all classes. Notably, the
ratio of PUNLMP and low-grade patches is added to represent low-risk
patches, and the ratio of high-grade and invasive patches is combined to
represent high-risk patches. A Gaussian process classifier was trained on
low- and high-risk patch ratios using the same training and test set
partitioning used for training the CNN classifier. The details of this pipeline
are included below.

Patch classification

Analyzing large histology images using deep learning models requires
substantial memory resources. Therefore, we split each whole-slide image
into fixed-size patches (224 × 224 pixels) with 1/3 overlap. ResNet-18 is
a light deep learning architecture. Therefore, it requires fewer computa-
tional resources to train, is faster during the inference time on large
whole-slide images and is less prone to over-fitting. The Bladder4Net pipe-
line consists of four binary ResNet-1824 deep learning models that operate
at the patch level for each class. We randomly select 10% of whole-slide im-
ages in the training partition for hyperparameter tuning to find the best
hyperparameters during the training process. We selected patches in anno-
tated areas for training and evaluating the patch-level classifiers. We nor-
malized the color intensity of the patches and used standard data
augmentation methods, including random vertical and horizontal flips
and color jittering, whose parameters were selected based on the random
subsampling of patches in each class. Our model was trained on 260 610
patches (an average of 613 patches per whole-image slide), including
107 379 high-risk and 153 231 low-risk patches. To address the class imbal-
ance, we used a weighted random sampler method to generate the training
batches. For model training, we trained a ResNet-1824 initialized using nor-
mal distribution initialization. All four models used the cross-entropy loss
function and were trained for 100 epochs with an initial learning rate of
0.005 and decayed by a factor of 0.9 for each epoch.

Whole-slide inference

To classify whole-slide images, we aggregated patch-level prediction
outputs. For each whole-slide image, we preprocessed the image by remov-
ing the white background and color markers. To aggregate the patch-level
predictions, the ratio of patches from each class to the total number of
patches from a slide was computed per whole-slide image. Bladder cancer
is progressive, and there are mixed types of cancer cells in many whole
slides. Therefore, there were some low-risk patches in high-risk whole-
slide images. We used a Gaussian process classifier for whole-slide
inferencing. This classifier was trained on the patch ratios of whole-slide
images from the training set and evaluated on the same validation set
used in the patch-level analysis. The patch ratios of each classifier were
given as input to the whole-slide inference classifier. Low-risk images usu-
ally have a higher ratio of patches labeled as PUNLMP and low-grade
patches. High-risk images typically have a higher ratio of high-grade and in-
vasive patches. Fig. 2 shows the patch prediction level in four samples of
whole-slide images (one sample per class). The y-axis represents the predic-
tion ratio, the x-axis represents each WSI sample, and the bar colors are re-
lated to predicting classes. In other words, this figure illustrates how
prediction aggregations are performed; for example, when a WSI contains
4

the PUNLMP class, the ratio of predictions is expected to be higher for its
class.

Moreover, we integrated the output of four binary patch-level classifiers
to keep high-confidence patches and exclude low-confidence and normal
patches in thewhole-slide inference step. This process in our proposed pipe-
line is shown in Fig. 3. If a patch is assigned tomore than one of the labels, it
indicates that the patch class label is unreliable and should be eliminated
from the inference process. If all classifiers assign the label "others" to a
patch, the patch is also eliminated. Our proposed inference method does
not require hyperparameter tuning, as it does not rely on a threshold to
eliminate low-confidence patches.

Patient survival prediction

We analyzed the survival time of patients for low- and high-risk classes.
Survival time was calculated from the date of diagnosis to the date of death
for patients who did not survive or to the date when the Death Master File
was queried for patients who survived.21 We generated Kaplan–Meier sur-
vival curves for patients predicted as high risk versus those predicted as
low risk. A log-rank test was used to compare the survival between the
two predicted groups, considering the follow-up time.We used the Cox pro-
portional hazards model25 to estimate the effect size of our predicted risk
group on patient survival.

Evaluation metrics and statistical analysis

Tomeasure the efficacy and generalizability of our approach, we evalu-
ated our trained model on 182 independent whole-slide images (WSIs)
from the NHBCS dataset and 378 WSIs from the TCGA dataset. We used
precision, recall, and the F1-score as evaluation metrics. The confusion ma-
trixwas also generated for error analysis. In addition, 95% confidence inter-
vals were computed using the bootstrappingmethod with 10 000 iterations
for all the metrics.

Results

Classification of low- and high-risk groups

In Table 2, a summary is presented of our model's per-class and average
evaluation metrics and the associated 95% CI for detecting low- and high-
risk groups based on whole-slide images in the NHBCS test set. Our
model achieved a weighted mean accuracy of 0.91, weighted mean preci-
sion of 0.91, weighted mean recall of 0.91, and weighted mean F1-score
of 0.91 on the NHBCS test set.

Table 3 shows the performance summary of our model on whole-slide
images from the TCGA database for the study of urothelial bladder
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carcinoma. Notably, each case in the TCGA dataset may have more than
onewhole-slide image. Therefore, the images for these patientswere aggre-
gated in our study. The cancer stage of all TCGA images was T2 and above,
i.e., high risk, based on the patient metadata in the TCGA dataset.
Although most patients in the TCGA cohort were in the high-risk group,
high-risk histological patterns were absent on the histology slides of a few
patients based on the evaluation of our pathologist expert. This is likely be-
cause only selected slides of each case were uploaded to the TCGA data-
base, and the selected slides may not represent the entire tumor.
Therefore, based on the tumor morphology of WSIs available for these
cases, we considered these cases low risk. On the TCGA dataset, our
model achieved a weighted mean accuracy of 0.99, weighted mean preci-
sion of 0.99, weighted mean recall of 0.99, and weighted mean F1-score
of 0.99. The confusion matrices for our model on the NHSBC and TCGA
test sets are shown in Fig. 4.

Prediction of patient survival

Fig. 5 shows the Kaplan–Meier survival curve for patients from the in-
ternal NHBCS test set. The hazard ratio of overall survival using the risk
group predicted by our model versus the tumor grade-defined risk groups
for these patients is shown in Table 4. Fig. 6 shows the Kaplan–Meier sur-
vival curve of patients from the external TCGA test set.

For the internal NHBCS test set, patients predicted as high risk had
worse overall survival than those predicted as low risk, with a log-rank p-
value of 0.004 (Fig. 5). Additionally, NHBCS test patients were followed
up for 216 months after their initial diagnosis, with a mean follow-up
time of 123.8 months. The medium survival time of predicted high-risk pa-
tients was 177months, while greater than 50%of the predicted low-risk pa-
tients survived until the end of their follow-ups. In the univariate Cox
proportional hazards analysis using our predicted risk groups, the predicted
high-risk group had an estimated hazard ratio of 1.958 (95% CI:
1.222–3.137, p-value=0.005) compared to the predicted low-risk group.
This hazard ratio was slightly higher than the hazard ratio using the labels
defined by the WHO/ISUP grading (Table 4).

Among 378 patients from the TCGA dataset, 367 were predicted to be
high risk, and 11 were predicted to be low risk. Due to the small number
of low-risk patients and the limited follow-up time, we limited our survival
analysis to the first 24 months after the initial diagnosis. There was no
death event reported during the follow-up for the low-risk group, and 35
death events were reported in the high-risk group in the first 24 months
of follow-up,with a log-rank P-value of 0.04 (Fig. 6). Notably, due to the ab-
sence of events in the low-risk group,we could not estimate the hazard ratio
and did not conduct Cox proportional hazards analysis on the TCGA
dataset.

For the NHBCS test set, patients predicted as high risk hadworse overall
survival than those predicted as low risk, with a log-rank p-value of 0.004
(Fig. 5). The patients in the NHBCS dataset were followed up for 216
months after the initial diagnosis, with a mean follow-up time of 123.8
months. The median survival time of predicted high-risk patients was 177
months, while greater than 50% of the predicted low-risk patients survived
until the end of their follow-ups.

Discussion

The WHO has updated its bladder cancer grading guidelines several
times since 1973 to align them more closely with disease recurrence and
progression.3 Based on the most recent update from the WHO in 2016,
PUNLMP, low- and high-grade stage T1 bladder cancers are categorized
as NMIBC, and high-grade cases with stage T2 and above are classified as
MIBC. The detection and classification of bladder cancer histologic patterns
under the microscope is critical for accurate prognosis and the appropriate
treatment of patients; however, this histopathological assessment is a time-
consuming and challenging task and suffers from a high variability rate
among pathologists. Therefore, patients with NMIBC can incorrectly be di-
agnosed as high-grade cases, which might result in unnecessary treatment
5

or even surgery, which can affect patients' quality of life.17,26,27 In this
study, we developed and evaluated a deep learning model to classify pa-
tients as high- or low-risk based on their whole-slide images to inform
their prognosis and treatment. Our evaluation results on both internal
and external datasets showed that this approach could potentially assist pa-
thologists in their histopathological assessment, improve the accuracy and
efficiency of a diagnosis, and ultimately improve patient health outcomes.

In recent years, deep learning models, such as convolutional neural net-
works or CNNs, have been applied to a variety of computer vision tasks as
well as biomedical applications.28−30 CNN-based models have shown
great promise in learning themorphological characteristics of different can-
cer types from histological images.31−35 A typical whole-slide image can
range upwards of 150 000 by 150 000 pixels in size and occupy gigabytes
of space. The large image sizes necessitate significant software engineering
efforts in every histology image analysis pipeline stage, such as storage
capacity, network bandwidth, computing power, and graphics processing
unit (GPU) memory. Although analyzing slides directly at the WSI level
can capture global structures/patterns and their relationships more accu-
rately, this is not currently feasible on typical computational hardware
and infrastructures. Therefore, our whole-slide histology image analysis
framework analyzes high-resolution images at a patch level to tackle this
feasibility problem. This pipeline relies on deep learning image analysis
on small patches from the whole-slide images. The results are then aggre-
gated through a confidence-based inference mechanism to classify the
whole-slide images. While this approach is more limited in capturing
large morphological structures and patterns across patches, it solves the
computational challenges induced by the large size of histology whole-
slide images and is manageable by common GPUs and computational hard-
ware. Also, our approach is deterministic, and there is no stochastic step
(e.g., random sampling) in the pipeline. As a result, our model generates
identical results for a slide in different runs.

As part of this study, we investigated the development of a multiclass
CNN model with four labels, including PUNLMP, low-grade, high-grade,
and invasive cases. Although this model achieved a reasonable perfor-
mance at the patch level (see Table S1 in the Supplemental Material),
some classes, such as PUNLMP and invasive cases, achieved suboptimal re-
sults. This outcome indicates that a single multiclass model cannot effec-
tively handle the complexities of this task and achieve good performance
and generalization for all four classes. Notably, differentiating between
PUNLMP and low-grade types has the lowest accuracy rate among clini-
cians due to their morphological similarities.17 In addition, high-grade
bladder cancer cells are found in all stages of the disease. Therefore, in
our study, we used the ResNet-18 architecture as a backbone for binary
classifications to differentiate between various classes instead of a single
multiclass model. Each of our four binary CNN-based patch-level classifiers
focuses on one class and differentiates that class from other subtypes. Our
patch-level classification results (Table S1) indicate the high performance
of our approach for this patch-level classification, as all binary classifiers
achieved an F1-score of more than 0.79.

As the primary whole-slide level classification outcomes, we focused on
identifying low- and high-risk groups for bladder cancer based on histology
slides, where the low-risk class includes PUNLMP, and low-grade cases and
the high-risk class includes high-grade and invasive cases. The differentia-
tion between these two risk groups has a significant clinical impact on pa-
tient prognosis and treatment. For whole-slide inferencing, we built a
Gaussian process classifier based on the distribution of the classified
patches from each slide.

To demonstrate the generalizability of our model,36 in addition to eval-
uating it on 182whole-slide images in our internal test set fromNHBCS.We
also evaluated our approach on 378 whole-slide images from TCGA as an
external test set. Our approach achieved a weighted average F1-score of
0.91 (95% CI: 0.86–0.94) on the internal NHBCS test set. Notably, the
TCGA dataset is highly skewed towards high-risk cases (11 low-risk vs
367 high-risk cases). Our proposed model achieved the F-1 score of
0.84 (95% CI: 0.63–1.00) in low-risk cases and 0.99 (95% CI:
0.98–1.00) in high-risk cases. Considering the skewed distribution of



Fig. 3. Patch prediction aggregation. Each patch label set should be in one of the four presented combinations. Other patch label combinations, where a patch can belong tomore than one class, indicate a low confident patch and are
eliminated. This particular case corresponds to low-grade risk.
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Table 2
Model performance on 182 whole-slide images from the internal test set of NHBCS. The 95% confidence interval is also included for each measure.

Subtype Accuracy Precision Recall F1-score

Low-risk case 0.91 (0.86–0.94) 0.89 (0.83–0.94) 0.95 (0.91–0.98) 0.92 (0.88–0.95)
High-risk case 0.91 (0.86–0.95) 0.93 (0.88–0.98) 0.85 (0.78–0.92) 0.89 (0.84–0.94)
Average 0.91 (0.86–0.94) 0.91 (0.87–0.95) 0.91 (0.86–0.94) 0.91 (0.86–0.94)

Table 3
Model performance on 378 whole-slide images from the external TCGA dataset. The 95% confidence interval is also included for each measure.

Subtype Accuracy Recall Precision F1-score

Low-risk case 0.99 (0.98–1.00) 1.0 (1.0–1.0) 0.73 (0.46–0.99) 0.84 (0.63–1.00)
High-risk case 0.99 (0.98–1.00) 0.99 (0.98–1.0) 1.0 (1.0–1.0) 0.99 (0.98–1.00)
Average 0.99 (0.98–1.00) 0.99 (0.98–1.0) 0.99 (0.98–1.00) 0.99 (0.97–1.00)

Fig. 4. Each confusionmatrix summarizes themodel results compared to ground truth labels from pathologists on the (left) internal NHBCS test set and (right) external TCGA
dataset.

Fig. 5. Kaplan–Meier survival curve of patients from the internal NHBCS test set with up to 216 months of follow-up.

W. Barrios et al. Journal of Pathology Informatics 13 (2022) 100135
the TCGA dataset, our model achieved a weighted average F1-score of
0.99 (95% CI: 0.97–1.00) on the entire TCGA dataset. TCGA metadata
information showed that all the cases in this dataset belong to the
high-risk class. However, a few cases were identified by our study's ex-
pert pathologists as low risk based on their histology images, likely
7

because the selected slides included in the TCGA dataset may not repre-
sent the entire tumor.

The earlier study on 838 whole-slide images from NHBCS21 did not in-
clude any information on the types of specimens. Nevertheless, we do not
believe the specimen types significantly affect our model. During



Table 4
The hazard ratio of overall survival using the predicted risk group (predicted
groups) versus the tumor grade-defined risk groups on patients from the internal
NHBCS test set and the associated 95% CIs and p-values.

Predictor Hazard ratio p-Value

Predicted risk groups 1.958 (1.222, 3.137) 0.00523
Tumor grade-defined risk groups 1.945 (1.218, 3.107) 0.00537

W. Barrios et al. Journal of Pathology Informatics 13 (2022) 100135
annotation, the lesion areas with recognizable histologywere included, and
the areas with a crush, cautery, or processing artifacts were excluded. Fur-
thermore, we did not include the tumor pathologic stage in this study.
Therefore, the types of specimens do not significantly affect our model’s
performance as long as the model recognizes the low- and high-grade
features and invasion. The 378 whole-slide images from TCGA for external
validation are all from cystectomy specimens.

Finally, we computed Kaplan–Meier survival curves for patients
predicted as high risk versus those predicted as low risk for both the
NHBCS and TCGA test sets. Patients predicted as high risk had worse over-
all survival than those predicted as low risk, with log-rank p-values of 0.004
and 0.039 on the NHBCS and TCGA test sets, respectively. Additionally, our
predicted high-risk group in the NHBCS test had an estimated hazard ratio
of 1.958 (95% CI: 1.222–3.137, p-value = 0.005) compared to the
predicted low-risk group, which was slightly higher than the hazard ratio
using the labels defined by the WHO/ISUP grading.

Of note, we did not sub-classify the high-grade lesions further based
on the percentage of high-grade areas or the low- to the high-grade ratio
in the current study. However, for future research, we plan to evaluate
the performance of our model for borderline lesions (i.e., the majority
of the lesion with low-grade morphology, while 5–10% of the area is
occupied by high-grade foci). The nested variant of urothelial carci-
noma was classified as invasive urothelial carcinoma in high-risk
cases. Our model classifies invasive urothelial carcinoma based on not
only the cytological features but also other histologic features, such as
the growth pattern and the stromal reaction. In this study, we did not
annotate invasive urothelial carcinoma with histologic subtypes due
to the limited number of cases for these variants. In future work, we
plan to evaluate the performance of our model for different histologic
subtypes of invasive urothelial carcinoma. Finally, we plan to include
Fig. 6. Kaplan–Meier survival curve of patients from the TCGA
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additional relevant variants and factors in our pipeline, deploy our
developed approach as part of a clinical decision-support system in clin-
ical settings, and conduct a follow-up prospective clinical trial with
appropriate clinical metrics to evaluate the clinical impact of this
work on pathologist performance and patient health outcomes. We
envision the deep learning model could provide a second opinion to
the pathologists while reviewing the bladder cancer specimens, en-
hance the accuracy and efficiency of their performance, and improve
patient outcomes.

Conclusions

Our implementation achieved the weighted average F1-score of
0.91 (95% CI: 0.86–0.94) for the internal NHBCS test set and 0.99
(95% CI: 0.97–1.00) on the external TCGA test set, which implies that
is possible to leverage Bladder cancer recognition using whole slide im-
ages. In future work, we plan to expand our model to distinguish be-
tween high-grade invasive and high-grade noninvasive classes, which
is clinically helpful to determine the progression and reoccurrence of
bladder cancer. Because we had a limited number of muscle-invasive
cases in our datasets, building such a model for this differentiation
was not feasible in the current study. We plan to collect additional
data and develop new data augmentation techniques, such as genera-
tive adversarial networks (GANs), to tackle the dataset imbalance.
Such techniques can mitigate the effects of unbalanced data by pre-
venting overfitting and thus improving overall performance.37 In addi-
tion, we consider including vision transformers in our future pipeline
to improve our high-resolution image encoding approach.38 In future
work, we also want to deploy the developed model for histopatholo-
gical characterization of whole-slide images for bladder cancer as a
computer-aided diagnosis system in clinical settings. We also plan to
conduct a follow-up prospective clinical trial to compare the model's
performance to pathologists and evaluate its clinical impact on pathol-
ogists' performance. We envision the deep learning model could
provide a second opinion to the pathologists while reviewing the blad-
der cancer specimens and enhance the accuracy and efficiency of their
performance. Lastly, we have in mind to conduct a prospective study to
validate our approach in clinical practice and evaluate its impact on
health outcomes.
bladder cancer dataset with up to 48 months of follow-up.
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