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Simple Summary: The presence of diuron in a variety of environments has been reported worldwide
to exert serious harm to human health and the ecosystem. HPLC and mass spectrometry are highly
specific and sensitive methods for herbicide detection, but they have several drawbacks including
complex sample preparation procedures, the need for expensive chemicals and equipment, and
interference from secondary contaminants during analysis. In addition, these purely chemical
approaches do not provide ecologically meaningful information on temporal changes in terms
of exposure or the interactive effects of pollutants. In order to compensate for these limitations,
biological assays have been used to assess pollutant-induced ecological risks. Lemna minor is an
attractive experimental model organism that has been used for decades for the prospective risk
assessment of pesticides. In the current study, we examined the effects of diuron on L. minor using
different endpoints at the physiological (growth and photosynthetic efficiency), biochemical (pigment
biosynthesis and reactive oxygen species (ROS) levels), and molecular (gene transcription) levels.
Our findings provide important insight into the relative sensitivity of different endpoints for diuron
toxicity assessment. In addition, they shed light on the toxicity mechanisms of diuron in a model
aquatic macrophyte species.

Abstract: The common, broad-spectrum herbicide diuron poses some risks to the environment due
to its long persistence and high toxicity. Therefore, the effective monitoring of diuron residues
will inform efforts to assess its impacts on ecosystems. In this study, we evaluated the toxicity
targets of diuron in the model aquatic macrophyte Lemna minor at the physiological (growth and
photosynthetic efficiency), biochemical (pigment biosynthesis and reactive oxygen species (ROS)
levels), and molecular (rbcL transcript) levels. The toxicity of diuron was detectable after 48 h of
exposure and the order of sensitivity of toxicity endpoints was gene transcription > maximum
electron transport rate (ETRmax) > non-photochemical quenching (NPQ) > maximum quantum
yield (Fv/Fm) > ROS > fresh weight > chlorophyll b > chlorophyll a > total frond area > carotenoids.
Under diuron stress, pigment, ROS, and gene transcript levels increased while frond area, fresh
weight, and photosynthesis (Fv/Fm and ETRmax) gradually decreased with the increasing duration
of exposure. Notably, ROS levels, Fv/Fm, frond area, and fresh weight were highly correlated with
diuron concentration. The growth endpoints (frond area and fresh weight) showed a strong negative
correlation with ROS levels and a positive correlation with Fv/Fm and ETRmax. These findings shed
light on the relative sensitivity of different endpoints for the assessment of diuron toxicity.
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1. Introduction

Herbicides have widespread applications in agriculture, horticulture, and the mainte-
nance of green spaces such as parks, golf courses, and sports fields [1]. However, 99.7% of
the applied load of herbicides is dispersed as residues that enter the aquatic environment
through runoff and leaching [2,3]. This can have both direct and indirect negative effects on
the aquatic biota and these effects are detectable at multiple levels of biological organization,
such as from the molecular to the ecosystem level. There is increasing public awareness of
the potential risks that herbicides pose not only to water quality and non-target organisms,
but also to human health [4]. Therefore, effective monitoring and management strategies
must be developed to maintain the integrity of aquatic ecosystems. Such strategies must be
underpinned by accurate quantitative data on both the detection of herbicides in aquatic
ecosystems and their risks to aquatic life.

One of the most common herbicides, which is the phenylurea herbicide diuron {3-
(3,4-dichlorophenyl)-1,1-dimethylurea)}, has been used in agriculture for over 50 years
to inhibit the growth of various annual and perennial weeds, mosses, and agricultural
crops [5,6]. Diuron can spread throughout aquatic systems through soil leaching and
causes severe environmental pollution and ecological hazards in nearby water bodies [7].
Diuron is a photosystem II (PSII) inhibitor that restricts photosynthetic activity in plants by
binding to the D1 protein in thylakoids and strongly blocks re-oxidation of the primary
electron acceptor (QA) [8,9]. This PSII inhibitor causes oxidative damage within plant
cells via the production of reactive oxygen species (ROS), such as superoxide, hydroxyl
radicals, and H2O2, and reduces CO2 fixation and plant growth [10–12]. Inhibition of the
photosynthetic apparatus by diuron can result in changes in community composition by
altering the pigment content (even at low concentrations) and reducing the biomass of
important primary producers [13].

The presence of diuron in a variety of environments has been reported worldwide,
with concentrations ranging from 0.1–12 ng L−1 in seawater to 4,620 ng L−1 in fresh-
water near farmlands and an average of 46.6 × 103 ng L−1 in sewage treatment plant
sludge [14–16]. The half-life of diuron is more than 300 days in groundwater, surface water,
and soil as it has relatively stable phenylurea properties [17,18]. In addition, due to the
presence of chlorinated groups, diuron has strong toxicity and resistance to biochemical
degradation as well as long-term environmental subsistence and high bioaccumulation,
resulting in serious harm to human health and the ecosystem [19–21]. Due to its high
ecotoxicity, the US Environmental Protection Agency and the European Commission have
classified diuron as a priority pollutant [22]. Therefore, effective monitoring of diuron
residues in aquatic environments is of increasing interest [6].

Sophisticated analytical methods such as high-performance liquid chromatography
(HPLC) and mass spectrometry are commonly used to measure herbicide residues. How-
ever, chemical analysis is a highly specific and sensitive method for herbicide detection,
that has several drawbacks including complex sample preparation procedures, the need for
expensive chemicals and equipment, and interference from secondary contaminants during
analysis [23]. In addition, this purely chemical approach does not provide ecologically
meaningful information on temporal changes in exposure or the interactive effects of pollu-
tants [24]. In order to compensate for these limitations, biological assays have been used to
assess pollutant-induced ecological risks. In particular, aquatic bioassays are important
tools to assess the quality of water containing mixtures and unknown pollutants and to
provide safety standards for water management in an ecological context that cannot be
expected from conventional chemical analysis-based management since the latter method
relies on measurements of single and standardized chemicals. The choice of a model
organism for toxicity testing depends on its sensitivity to specific pollutants.
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Aquatic macrophytes belonging to the family Lemnaceae, which are commonly known
as duckweeds, are attractive experimental model organisms for several reasons; these
include their simple structure, homogeneity, ease of culture, and high growth rates [25,26].
They are small vascular plants consisted of floating leaves and submerged roots and they
usually grow in stagnant or slow-flowing nutrient-rich water [27,28]. In addition, these
plants play an important ecological role as primary producers, are widely distributed in
freshwater ecosystems, and are highly sensitive to organic and inorganic substances such
as herbicides, pharmaceuticals, and metals [25,29,30]. Therefore, duckweeds have been
used for decades in the United States and Europe to assess the effects of a wide range of
pollutants [31]. In particular, Lemna minor is a preferred test species because it is a model for
ecotoxicology, relative metabolomics studies have been conducted, and the toxic potential
of biologically active compounds in the aquatic environment has been demonstrated using
this species [32–35]. The International Organization for Standardization (ISO) and the
Organization for Economic Co-operation and Development (OECD) have developed a
standard growth inhibition test using L. minor.

The ultimate goal of bioassay testing is to provide representative and inclusive criteria
for exposure conditions, thereby improving risk assessment and water quality management.
In this respect, multiple rather than single endpoint testing shows greater potential for more
comprehensive risk assessment of toxics. Such an approach provides important insight
into the mechanisms underlying toxicity, as well as the relative sensitivity of measured
endpoints to toxicant concentration and/or exposure duration, thereby identifying specific
endpoints that can effectively detect perturbations by specific phytotoxicants [36]. Many
endpoints have been applied to Lemna, including frond number, plant number, root number,
dry or fresh biomass, frond diameter or area, root length, carbon uptake, chlorophyll
content, and so on [30].

In the current study, we examined the effects of diuron on L. minor using different end-
points at the physiological (growth and photosynthetic efficiency), biochemical (pigment
biosynthesis and reactive oxygen species (ROS) levels), and molecular (gene transcription)
levels. Our findings provide important insight into the relative sensitivity of different
endpoints for diuron toxicity assessment. In addition, they shed light on the toxicity
mechanisms of diuron in a model aquatic macrophyte species.

2. Materials and Methods
2.1. Plant Materials and Culture Conditions

L. minor was collected from a shallow pond in Donam-dong, Sangju-si, Korea (36◦26′48′′

N, 128◦15′22′′ E). The Lemna stock culture was maintained in the laboratory at 25 ± 2 ◦C
under 30–40 µmol photons m−2 s−1 of continuous light provided by square white LED
(Light Emitting Diode) panel lights (340 × 500 × 10 mm; Daewon, Bucheon, Korea). The
cultures were maintained in Steinberg growth medium [37] in polypropylene containers
(103 × 78.6 mm).

2.2. Diuron Toxicity Testing

The diuron toxicity test was carried out in a controlled environment chamber at
25 ± 2 ◦C and continuous light of 100 ± 10 µmol photons m−2 s−1. The test vessels were
6-well plastic plates (well dimension 34.8 mm in diameter, SPL, Seoul, Korea). Each well
contained 10.0 mL of test solution and five Lemna minor plants, each comprising two fronds
(n = 3 plates). Diuron stock solutions were prepared in dimethyl sulfoxide (DMSO;≥99.9%;
CAS No. 67-68-5; Sigma-Aldrich, St. Louis, MO, USA) and were diluted to the desired
concentrations (50 × 103 ng L−1 and 50 × 104 ng L−1) with Steinberg medium.

Plants were harvested for measurement of the different endpoints after 24, 48, and
72 h of exposure.
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2.2.1. Measuring Total Frond Area and Fresh Weight

Following 24, 48, and 72 h of exposure to different concentrations of diuron, the
changes in surface area of the plants were measured with an image analyzer. The fronds
were then dried on a paper towel and weighed to determine their fresh biomass.

2.2.2. Pigment Contents

Chlorophyll a and b (Chl a and b) and carotenoids were extracted from approximately
five L. minor plants in 1 mL methanol (CH3OH; ≥99.9%; CAS No. 67-56-1; Sigma-Aldrich,
Co., St. Louis, MO, USA) for 24 h in the dark at 4 ◦C. The absorption of the supernatant of
the methanolic extract was measured using a Scinco S-3100 PDA UV-Vis spectrophotometer
at 666 nm (Chl a), 653 nm (Chl b), and 470 nm (carotenoids). Chl a, Chl b, and carotenoid
contents were estimated using the equations described in Lichtenthaler [38]

2.2.3. Chlorophyll a Fluorescence

Chl a fluorescence was measured using a pulse amplitude modulated imaging fluorom-
eter (I-PAM, Walz, Effeltrich, Germany). After 24, 48, and 72 of exposure, the samples were
dark-adapted for 15 min and exposed to LED light pulses (0.15 µmol photons m−2 s−1) to
determine the initial fluorescence yield (Fo). The maximum fluorescence yield (Fm) was
measured by applying a saturation pulse of approximately 5000 µmol photons m−2 s−1

emitted from the built-in halogen lamp. The maximum PSII quantum yield (Fv/Fm) was
calculated using the following equation.

Fv/Fm = (Fm − Fo)/Fm (1)

Rapid light curves (RLCs) were derived using 10 s pulses of actinic light that increased
stepwise from 0 to 1517 µmol photons m−2 s−1 [39]. The maximum electron transport rate
(ETRmax) was derived from the hyperbolic tangent equation adapted from Platt et al. [40]:

ETRmax = (1 − exp (−α × I/Pt)) × exp (−β × I/Pt) (2)

where α represents the rate of electron transport under light-constrained conditions, Pt is a
theoretical parameter and β is an inhibition coefficient.

Non-photochemical quenching (NPQ) was quantified following Bilger and Björkman
in the following equation [41].

NPQ = (Fm − Fm
′)/Fm

′ (3)

where Fm
′ represents the maximum fluorescence yield of a light acclimated state.

2.2.4. Reactive Oxygen Species (ROS) Measurements

ROS production was measured using DHR123 (dihydrorhodamine; Life Technologies,
Carlsbad, CA, USA), which is oxidized to a fluorescent compound (rhodamine 123) upon
reaction with ROS [42,43]. Briefly, supernatants from L. minor homogenates containing
1 mM phosphate-buffered saline (PBS; pH 8) were incubated with 30 µM DHR-123 for
20 min at room temperature. Fluorescence was measured at an excitation wavelength
of 485 nm and an emission wavelength of 535 nm. ROS production in each sample was
quantified based on the amount of DNA measured by GelGreen (Biotium, Fremont, CA,
USA) nucleic acid staining.

2.2.5. RNA Extraction, cDNA Synthesis, and RT-PCR Analysis

Whole plants with fronds and roots were harvested, ground in liquid nitrogen, and
total RNA was extracted from the samples using a RNeasy Plant Mini Kit (Qiagen, Hilden,
Germany) as per the manufacturer’s protocol. RNA concentrations were determined using
a Nanodrop UV spectrophotometry (Thermo Fisher Scientific, Waltham, MA, USA). cDNA
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was generated from 1 µg of total RNA from L. minor using a Diastar RT Kit (SolGent Co.,
Ltd, Daejeon, Korea).

Primers for quantitative reverse-transcription PCR (qRT-PCR) are summarized in
Table 1. qRT-PCR was performed using a CFX Connect Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, US). Each 10 µL reaction mixture contained 5 µL of 2X RT PCR
Smart Mix (with SYBR Green) (SolGent Co., Ltd, Daejeon, Korea), 10 nM of each primer,
and 1 µL of diluted first-strand cDNA. The cycling conditions were as follows: 95 ◦C
for 5 min followed by 40 cycles of 94 ◦C for 30 s, 57 ◦C for 30 s, and 70 ◦C for 10 s in
96-well optical reaction plates. Cycle threshold (CT) values were determined for three
biological replicates, with three technical replicates for each value. The expression levels of
the reference gene (18S rRNA) and target gene (rbcL) tested were determined based on the
Ct values and were calculated using the 2−44CT method [44].

Table 1. Primers used in this study.

Genes Sequence

18S Rrna *
(housekeeping gene)

Forward: 5′AGAGGAACAGTCGGGGGCATT-3′

Reverse: 5′-CGGCATCGTTTACGGTTGAGA-3′

rbcL Forward: 5′-GTCCATGTACCAGTAGAAGATTCGGC-3′

Reverse: 5′-ATGTCACCACAAACAGAGACTAAAGC-3′

* The sequence cited from [45].

2.3. Statistical Analysis

Data were analyzed by one-way analysis of variance (ANOVA) and post-hoc compar-
isons were performed via the least significant difference (LSD) test to determine differences
among treatments. Correlation analysis between 10 endpoints and diuron concentration
was performed using the R package ggplot2 (R version 4.0.5). For all tests, p < 0.05 was
considered statistically significant.

3. Results and Discussion
3.1. Total Frond Area and Fresh Weight

The most commonly measured endpoint in Lemna tests is the frond area. Therefore,
we compared the sensitivity of frond area to diuron with that of other endpoints. Total
frond area and fresh weight of L. minor decreased significantly (p < 0.05) as a function
of exposure time and concentration of diuron. Diuron has been reported to inhibit plant
growth by interfering with electron flow in photosystem II during photosynthesis, resulting
in reduced carbon uptake and cessation of carbohydrate production [46]. Both the total
frond area and fresh weight are considered to be a result of the overall response to the
toxicant and, therefore, follow the changes in the biochemical and physiological processes
at cellular and tissue levels.

As shown in Figure 1, total frond area and fresh weight decreased by approximately
2% compared to the control after 24 h of exposure to both concentrations of diuron. After
48 and 72 h of diuron exposure, the decreases in the total frond area were 20% (159 mm2 to
126 mm2) and 43% (223 mm2 to 124 mm2) at 50× 103 ng L−1 and 52% (159 mm2 to 76 mm2)
and 65% (223 mm2 to 77 mm2) at 50 × 104 ng L−1 diuron, respectively (Figure 1A). For
fresh weight, 34% (26 mg to 17 mg) and 59% (41 mg to 17 mg) inhibitions were observed at
50 × 103 ng L−1 diuron after 48 and 72 h of exposure, respectively, and reductions of 64%
(26 mg to 9.0 mg) and 78% (41 mg to 9.0 mg) were observed after 48 and 72 h of exposure,
respectively, at 50 × 104 ng L−1 (Figure 1B).
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3.2. Photosynthetic Pigments

Short-term acute reactions to diuron, as revealed by fluorescent indicators, are po-
tentially reversible, but the diuron can destroy chlorophyll and carotenoids (such as xan-
thophyll) along with cell membranes upon prolonged exposure which causes irreversible
damage [47]. This damage can increase the overall leaf spectral reflectance and the ratio
of accessory pigments to chlorophyll [47]. The contents of chlorophylls and carotenoids
after exposure to diuron are shown in Figure 2. After 72 h of exposure to 50 × 103 and
50 × 104 ng L−1 diuron, Chl a content increased significantly by 38% (0.44 mg mg−1 FW
to 0.61 mg mg−1 FW) and 29% (0.44 mg mg−1 FW to 0.57 mg mg−1 FW), respectively
(Figure 2A). However, Chl a content was not significantly affected by 24 or 48 h diuron
treatment (Figure 2A). The Chl b content increased in response to 48 and 72 h of diuron
exposure. The amount of Chl b was 23% (0.23 mg mg−1 FW to 0.29 mg mg−1 FW) (48 h
exposure) and 32% (0.24 mg mg−1 FW to 0.31 mg mg−1 FW) (72 h exposure) higher at a di-
uron concentration of 50 × 103 ng L−1 compared to the control (Figure 2B). The carotenoid
content also increased significantly after 48 and 72 h of diuron exposure. Even at a diuron
concentration of 50 × 103 ng L−1, carotenoid levels were increased by 19% (0.21 to 0.25)
and 47% (0.18 to 0.26) when compared to levels in the control after 48 and 72 h of exposure,
respectively (Figure 2C).

In plants exposed to diuron-type herbicides, an increase in chlorophyll content was
observed, which was attributed to the induction of shade-type chloroplast formation by
these herbicides [48]. Shade-type chloroplasts have ultrastructural modifications, such
as wider grana and higher thylakoid stacks [49], which may have accommodated more
pigments in the chloroplasts. Thus, the reason for the higher chlorophyll content in L. minor
exposed to diuron than in the control L. minor could be due to the formation of shade-type
chloroplasts with an accompanying increase in pigment content in diuron-exposed L. minor.
For carotenoids, it is possible that carotenoids with antioxidant properties were increased
in response to ROS production. Macinnis-Ng and Ralph [50] also reported that the total
chlorophyll content of seagrass (Zostera capricorni) significantly increased after diuron
treatment compared to the control group.
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statistically significant differences at p < 0.05 (one-way ANOVA, LSD). Absence of a letter in a column
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3.3. Chlorophyll a Fluorescence

In vivo Chl a fluorescence is a non-destructive, simple, and rapid quantitative indicator
of changes in PSII activity caused directly or indirectly by stress [26,51]. The effect of
diuron on PSII photochemical activity has been reported in several studies [10,26,52,53].
Accordingly, derivatives of diuron in water induceed a change in the Chl a fluorescence
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yield of PSII, which is quantitatively correlated with the concentration of this phenylurea
herbicide. Fv/Fm reflects the integrity of the photosystem II/light-harvesting complex II
(PSII/LHCII) complex or the intactness of the thylakoid membranes, indicating the intrinsic
photochemical efficiency of PSII [54,55]. In the current study, by 24 h diuron exposure had
already caused a significant reduction in Fv/Fm within the tested concentration range, to
39% (0.69 to 0.42) and 59% (0.69 to 0.28) of the control at 50 × 103 and 50 × 104 ng L−1,
respectively. After 48 h of treatment, the Fv/Fm values decreased even further (Figure 3A,B).
These results suggest that PSII/LHCII or thylakoid membranes are affected by diuron.
Kumar and Han [24] also detected a significant decrease in Fv/Fm with increasing diuron
concentration in L. minor (p < 0.001).
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Figure 3. Effects of diuron (50 × 103 and 50 × 104 ng L−1) on maximum quantum yield (Fv/Fm). (A) Images of the
chlorophyll a fluorescence parameter Fv/Fm in L. minor under diuron stress. Chlorophyll fluorescence images were obtained
using Imaging PAM (I-PAM, Walz, Effeltrich, Germany). (B) The average values of Fv/Fm in L. minor. Values are mean ±
standard deviation (n = 3). Different letters indicate statistically significant differences at p < 0.05. Scale bar, 5 mm.

The photosynthetic electron transport rate (ETR) in a plant varies depending on the
rate of photon absorption and the efficiency of PSII [56]. Diuron binds to the exchangeable
quinine (QB) site of the D1 protein and blocks electron transport beyond the 1-electron
reduction in the bound quinone QA, the first stable electron acceptor [24]. In the current
study, the maximum electron transport rate (ETRmax) of L. minor exposed to diuron was
significantly (p < 0.05) suppressed (by greater than ~90%) after 24 h of exposure (Table 2).
This reduction in ETR may not only reduce ATP content but also nicotinamide adenine
dinucleotide phosphate hydrogen (NADPH) content and plant growth [46]. Park et al. [26]
showed that ETRmax is the most sensitive endpoint for diuron toxicity in L. minor.

Non-photochemical quenching (NPQ) is the fraction of excess energy dissipated as
heat by the NPQ photo-protective mechanism [57]. Due to its high sensitivity and rapid
response, NPQ is one of the most appropriate indicators of phytotoxicity [58]. Signif-
icant reductions in NPQ have been reported in L. minor, especially in the presence of
12.5 × 103 ng L−1 diuron [24]. Han et al. [59] suggested that a toxicant (i.e., copper (Cu))
may reduce the rate of reactions in the P680-pheophytin-QA-QB pathway or the electron
transport chain. Furthermore, according to Brack and Frank [60], urea herbicides simul-
taneously reduce photochemical and non-photochemical quenching due to blockages in
the electron transport chain. Thus, non-photochemical quenching is also reduced since the
proton motive force cannot be built up without electron transport. Therefore, the decrease
in NPQ in L. minor observed in the current study is likely due to the decrease in the ETR.
NPQ values decreased from 0.6 to 0.3 in response to all diuron treatments after 48 and 72 h
of exposure (Table 2).
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Table 2. Effect of diuron (50 × 103 and 50 × 104 ng L−1) on induced chlorophyll a fluorescence parameters including
maximum electron transport rate (ETRmax) and non-photochemical quenching (NPQ) in Lemna minor exposed for 24, 48,
and 72 h. Data represent mean ± standard deviation of three replicates. Different letters indicate statistically significant
differences at p < 0.05 (one-way ANOVA, LSD).

Diuron
(ng L−1)

24 h Exposure 48 h Exposure 72 h Exposure

ETRmax NPQ ETRmax NPQ ETRmax NPQ

0 34 a ± 0.71 0.55 a ± 0.001 34 a ± 0.99 0.59 a ± 0.006 35 a ± 1.9 0.56 a ± 0.02
50 × 103 0.75 b ± 0.09 0.47 b ± 0.02 1.5 b ± 0.12 0.28 b ± 0.004 1.5 b ± 0.24 0.31 b ± 0.01
50 × 104 0.12 b ± 0.09 0.45 b ± 0.02 0.01 b ± 0.00 0.36 c ± 0.01 0.01 b ± 0.00 0.38 b ± 0.04

3.4. Reactive Oxygen Species (ROS)

ROS produced by plants subjected to biological and abiotic stress induce oxidative
stress [61]. ROS inhibit chloroplast development in plants, reduce seed survival and root
growth, stimulate frond separation and desiccation, and trigger peroxidation of essential
membrane lipids in intracellular plasma membranes and organelles [24,62]. Here, we
observed a concentration-dependent increase in ROS levels in response to diuron exposure
(Figure 4A). As shown in Figure 4B, the ROS concentrations in L. minor increased with
increasing diuron concentration. Compared to the control, 50 × 103 and 50 × 104 ng L−1

diuron increased ROS levels 1.1-fold (100% to 115%) and 1.5-fold (100% to 153%), re-
spectively, after 24 h of exposure; 1.4-fold (100% to 136%) and 2.3-fold (100% to 228%),
respectively, after 48 h of exposure; and 2.1-fold (100% to 207%) and 3.6-fold (100% to
363%), respectively, after 72 h of exposure. In addition, diuron causes the depletion of
ascorbate, which is a major non-enzymatic antioxidant, and weakens antioxidant enzyme
activity in L. minor [63].
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Figure 4. Experimental procedure used to assess ROS levels as DHR123 values normalized to DNA content. Supernatants
from Lemna minor homogenates containing 1 mM phosphate-buffered saline (PBS; pH 8) were incubated with 30 µM
DHR-123 for 20 min at room temperature (A). Reactive oxygen species (ROS) production in L. minor exposed to increasing
concentrations of diuron (0, 50× 103, 50× 104 ng L−1) for 24, 48, and 72 h (B). Bars represent the mean± standard deviation
of three replicates. Different letters indicate statistically significant differences at p < 0.05 (one-way ANOVA, LSD).

3.5. Gene Transcription

The transcript levels of rbcL, which is the gene encoding Rubisco [64], were signifi-
cantly higher than those in the control after 48 and 72 h of exposure to diuron, reaching
236% (1.0 to 2.5) and 169% (1.0 to 1.7) of the mean transcript levels in the control following
exposure to 50 × 103 ng L−1 diuron and 610% (1.0 to 6.3) and 702% (1.0 to 7.1) following
exposure to 50 × 104 ng L−1 diuron, respectively (Figure 5). Perhaps this upregulation
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of gene transcription represents the plant’s response to this phytotoxic substance to help
maintain photosynthesis and survival. However, this increase may result in more severe
oxidative damage via increased ROS production [65]. Further studies are required to
support this hypothesis.
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Figure 5. Relative rbcL expression in Lemna minor under diuron stress. L. minor was exposed to
different concentrations of diuron (50 × 103 and 50 × 104 ng L−1). Data are the means of three
replicates (± standard deviation). Different letters indicate statistically significant differences at
p < 0.05 (one-way ANOVA, LSD).

The levels of 18S rRNA can be highly dynamic in response to stress; therefore, it seems
worthwhile to use a second reference gene from the L. minor genome, which will render
the analysis much more reliable.

Figure 6 shows the correlative relationships between 10 endpoints and diuron con-
centrations (p < 0.05). Under diuron stress, pigment, ROS, and gene transcript levels
increased while frond area, fresh weight, and photosynthetic endpoints (Fv/Fm and ETRmax)
gradually decreased over the duration of exposure (Figure 6A–C). Notably, the ROS levels,
Fv/Fm, frond area, and fresh weight were highly correlated with diuron concentration in all
the time points examined. The growth endpoints (frond area and fresh weight) showed
a strong negative correlation with ROS levels and positive correlations with Fv/Fm and
ETRmax (Figure 6B,C). A high correlation was also detected between NPQ and ETRmax
(Figure 6A–C).
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Figure 6. Correlation between 10 endpoints and diuron concentrations in L. minor at 24 (A), 48 (B), and 72 h of exposure (C).
Only indicators showing statistical significance at the 5% level are shown in circles. The color and size of the circle indicate
the strength of the correlation. The color bar on the right indicates the scale of the correlation coefficients. Light blue, blue,
and navy blue indicate the correlation coefficients > 0.5, 0.7, and 0.9, respectively, while light pink, orange, and red indicate
correlation coefficients < 0.5. The numbers in the boxes are the correlation coefficients. Note that for the sake of clarity,
all correlation matrix views show only the upper part of the matrix to avoid duplication. Diuron, diuron concentration;
FA, frond area; FW, fresh weight; Chl a, chlorophyll a content; Chl b, chlorophyll b content; Car, carotenoid content; Fv/Fm,
maximum quantum yield; ETRmax, the maximum electron transport rate; NPQ, non-photochemical quenching; ROS,
reactive oxygen species production; Gene, relative rbcL gene expression.

Diuron toxicity was detectable at all endpoints after 48 h of exposure. The order of
sensitivity based on the quantitative responses (inhibition or stimulation) of the different
endpoints measured after 48 h of exposure to 50 × 103 ng L−1 diuron relative to the control
was as follows: Gene transcription (136%) > ETRmax (95%) > NPQ (51%) > Fv/Fm (39%) >
ROS (36%) > Fresh weight (33%) > Chl b (23%) > Chl a (21%) > Total frond area (20%) >
Carotenoids (19%).
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4. Conclusions

The current results provide new insight into the mechanism of diuron toxicity in
duckweed (L. minor) and the sensitivity of different endpoints at the physiological, bio-
chemical, and molecular levels. The most sensitive and least sensitive endpoints in L. minor
that can be used to assess diuron toxicity are gene transcription (molecular endpoint) and
carotenoid content (biochemical endpoint), respectively.

The relatively significant increase in rbcL gene transcription in response to 48 h of ex-
posure to diuron represents the plant’s response to this phytotoxic compound even though
it may result in more severe oxidative damage due to increased ROS production. This
excessive ROS production significantly reduces plant growth since the growth endpoints
(frond area and fresh weight) showed a strong negative correlation with ROS levels. In the
P680-pheophytin QA-QB pathway, the ETR can be reduced by xenobiotics such as diuron,
which can subsequently interfere with the assembly of PSII and results in decreased NPQ.
In this sense, the high correlation between the ETR and NPQ detected in the current study
is noteworthy.
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