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Binocular rivalry occurs when markedly different inputs
to the two eyes initiate alternations in perceptual
dominance between the two eyes’ views. A link
between individual differences in perceptual dynamics
of rivalry and concentrations of GABA, a prominent
inhibitory neurotransmitter in the brain, has highlighted
binocular rivalry as a potential tool to investigate
inhibitory processes in the brain. The present
experiment investigated whether previously reported
fluctuations of GABA concentrations in a healthy
menstrual cycle (Epperson et al., 2002) also are
associated with measurable changes in rivalry dynamics
within individuals. We obtained longitudinal measures
of alternation rate, dominance, and mixture durations
in 300 rivalry tracking blocks measured over 5 weeks
from healthy female participants who monitored the
start of the follicular and luteal phases of their cycle.
Although we demonstrate robust and stable individual
differences in rivalry dynamics, across analytic
approaches and dependent measures, we found no
significant change or even trends across menstrual
phases in the temporal dynamics of dominance
percepts. We found only sparse between-phase
differences in skew and kurtosis on mixture percepts
when data were pooled across sessions and blocks.
These results suggest a complex dynamic between
hormonal steroids, binocular rivalry, and GABAeric
signaling in the brain and thus implicate the need to
consider a systemic perspective when linking GABA
with perceptual alternations in binocular rivalry.

Introduction

Binocular rivalry is a remarkable phenomenon in
which visual confusion created by the presence of
conflicting inputs to each eye sparks alternations in
perceptual dominance between the two eyes’ views. It is
widely believed that rivalry results from differences in
activity levels among neural ensembles representing the
competing rival stimuli—differences that are modulat-
ed by a dynamically changing interplay between
excitation and inhibition (Kang & Blake, 2010; Klink,
Brascamp, Blake, & van Wezel, 2010; Lehky, 1988;
Said & Heeger, 2013; Wilson, 2003). There is active
debate concerning the locus of this interplay within the
visual hierarchy, with some favoring neural interactions
within early stages of processing including the primary
visual cortex (e.g., Lehky & Blake, 1991) whereas
others pinpoint the lynchpin stages higher within the
visual hierarchy (e.g., Leopold & Logothetis, 1999).
But essentially, all accounts of rivalry include this
notion of neural competition mediated by reciprocal
inhibition, including hybrid models in which rivalry is
characterized as the culmination of neural events
distributed over different stages of the visual hierarchy
(Blake & Logothetis, 2002; Hohwy, Roepstorff, &
Friston, 2008; Tong, Meng, & Blake, 2006).

According to reciprocal inhibition, dominance of
one stimulus is the consequence of excitation of the
neural ensemble coding for its percept and the
reciprocal inhibition of the competing percept arising
from dissimilar stimulation of the other eye. Neural
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excitation associated with the dominant stimulus
decreases over time owing to adaptation, causing the
inhibition exerted by that stimulus to weaken as well.
Eventually, the relative strength of the two represen-
tations reverses, triggering a perceptual state change.
According to extant neural models of rivalry, the rate
of binocular rivalry alternations in dominance should
depend on levels of inhibition exerted upon neurons
whose activity represents the currently suppressed
stimulus: Stronger inhibition promotes longer domi-
nance durations and thus slower rates of alternation.
To be sure, other factors, too, govern the rivalry rate,
including intrinsic noise and adaptation time constants.
But inhibition is a major ingredient in rivalry dynamics
and one that is potentially relatable to endogenous
neurochemical factors (e.g., Klink et al., 2010; van
Loon et al., 2013).

Inhibitory processes are ubiquitous within the
nervous system and play essential roles in the
regulation of neural activity and neural plasticity.
Within the brain, inhibition is mediated predominantly
by gamma amino butyric acid (GABA), a neurotrans-
mitter that activates several receptor types. Consistent
with inhibitory models of rivalry alternations, recent
research has demonstrated that short-term, monocular
eye patching temporarily affects the subsequently
measured temporal dynamics of dominance in favor of
the previously patched eye and, at the same time,
decreases GABA concentrations in the occipital cortex
(Lunghi, Emir, Morrone, & Bridge, 2015). A possible
relationship between GABA and perceptual rivalry
alternations is also suggested by increased durations of
rivalry dominance induced pharmacologically by lor-
azepam, a GABAA agonist (van Loon et al., 2013).
From an individual differences perspective, individuals
with greater resting concentrations of GABA in the
occipital cortex exhibit longer durations of perceptual
dominance in rivalry (van Loon et al., 2013). These
correlations between GABA levels and rivalry dynam-
ics suggest that binocular rivalry may provide a reliable
proxy for GABA concentrations in the human brain. If
so, given prior evidence indicating atypical patterns of
rivalry dynamics linked to schizophrenia (Tononi &
Edelman, 2000) and autism (Freyberg, Robertson, &
Baron-Cohen, 2015; Robertson, Kravitz, Freyberg,
Baron-Cohen, & Baker, 2013), the linkage between
GABA and rivalry might promote investigations of the
neurochemical and inhibitory imbalances associated
with these disorders. However, the evidence for atypical
rivalry dynamics linked to these conditions is not
uniformly consistent (Miller et al., 2003; Said, Egan,
Minshew, Behrmann, & Heeger, 2013), suggesting that
the relation between GABA and perceptual alterna-
tions may be more nuanced and thus require further
consideration. Toward that end, we have taken a
different approach to the study of this putative

relationship, one based on endogenous neuropharma-
cological changes in ovulating females.

It is well established that hormone steroids and their
metabolites affect various neurotransmitter systems,
including GABAergic systems (Akk et al., 2005; Smith,
Waterhouse, Chapin, & Woodward, 1987; Smith,
Waterhouse, & Woodward, 1988). Because progester-
one and estradiol fluctuate dramatically within a
menstrual cycle, it is not surprising that the menstrual
cycle has been linked to variable behavioral perfor-
mance in a variety of cognitive, motor, auditory, and
visual spatial tasks (Hampson, 1990; Maki, Rich, &
Rosenbaum, 2002). Of prime importance in the present
context, Epperson and colleagues (2002) have reported
that the follicular phase of the menstrual cycle, in which
estradiol is high and progesterone is low, has greater in
vivo GABA concentrations in the occipital cortex
compared with the mid- and late-luteal phases in the
menstrual cycles of normal, healthy women, in which
estradiol is low and progesterone is high. Our
experiment capitalized on the reported fluctuations in
GABA that occur during the course of a woman’s
menstrual cycle to test the extent to which the dynamics
of binocular rivalry also vary during the course of a
menstrual cycle. Given the relationship of GABA
concentration in the occipital cortex to perceptual
alternations in rivalry and the measured fluctuations of
occipital GABA concentrations in the menstrual cycle,
we surmised that the higher concentration of GABA
during the follicular phase compared with the mid- and
late-luteal phases should be the basis of strengthened
cortical inhibition during that phase. Based on the
results reported by Epperson and colleagues (2002) and
those results summarized in the previous paragraph, we
surmised in turn that relatively stronger inhibition
during the follicular phase could produce longer
periods of perceptual dominance and thus slower
alternation rates during that phase. To test this
hypothesis, we obtained repeated measures of binocu-
lar rivalry state dynamics over the course of the female
menstrual cycle.

Methods

Participants

Sixteen female participants (mean age¼ 22) with
normal or corrected-to-normal visual acuity and no
history of ocular pathology volunteered to participate
in this study. These young adult participants reported
that they were not actively taking birth control or
fertility medications, were not pregnant or breast-
feeding, and had not previously experienced irregular
cycles in the past 6 months. Participants also had no
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history of premenstrual dysphoric, neurological, or
psychiatric disorders; no history of drug or alcohol
abuse; and no history of consumption of tobacco
(smoking or chewing), mood stabilizers, benzodiaze-
pines, or anticonvulsant medications. One participant
was excluded because she lacked data sampled from
one menstrual phase used for analysis. A second
participant was excluded because she began taking
birth control halfway through the testing period. A
third participant was excluded from analysis because
more than 50% of her dominance durations were
shorter than 500 ms, placing her data well outside the
range of durations evidenced by all others in our
sample and, for that matter, far outside the range
routinely encountered in other rivalry studies from our
laboratory.

Each participant gave written and informed consent
in compliance with the experimental protocol approved
by the Institutional Review Board at Vanderbilt
University. Participants received $10 per 30-min session
and an additional $40 bonus for completion of the
entire, 5-week study.

Apparatus and stimuli

Stimuli were generated on a Macintosh computer
running MATLAB in conjunction with routines from
the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997). Observers viewed the display in a darkened
room on a gamma-corrected CRT (21-in. Sony Multi-
Scan; refresh rate 100 Hz). The display was viewed
through a mirror stereoscope that presented half of the
monitor display exclusively to one eye and the other
half of the display to the other eye.

To induce binocular rivalry, orthogonally oriented,
circular sinusoidal gratings (6458; 4.5 cycles/8; 30%
contrast; 1.48 diameter) were dichoptically presented to
corresponding retinal areas of the two eyes; a small
circular fixation mark appeared in the center of each
grating. To stabilize binocular alignment, each rival
target was framed by a textured fusion figure (3.88 3
3.88; see Figure 1) that was identical for each eye. Each
test session started with administration of an auto-
mated alignment task wherein the participant adjusted
the X/Y positions of the fusion frames to which were
added a pair of nonius markers. Those adjustments
were made so as to achieve stable binocular alignment
as those fusion frames were alternately presented and
removed. Fusion was signified by invariance in
perceived visual position of the left- and right-eye
frames and the alignment of the nonius markers.
Participants performed this alignment procedure three
times in succession, with the positions of each dichoptic
frame offset by a variable amount before each
alignment adjustment. The average of the X/Y

positions of the three settings was used to situate the
pair of rival targets and fuser frames on the video
monitor during the experimental tracking task. In each
experimental trial, the rival targets appeared centered
within the circular fusion frame. The order of pairings
of eye and orientation was randomized within each
testing session, with the stipulation that each grating
orientation was presented to each eye an equal number
of times.

Procedure

Each observer participated in 15 experimental testing
sessions (three times a week for 5 weeks), and each
daily session comprised 20 individual blocks of rivalry
tracking. During a given block of tracking, the
participant pressed and held down one of two arrow
keys on the computer keyboard to designate which
grating orientation was exclusively dominant. Observ-
ers withheld key presses when perceptual mixtures were
experienced, and the durations of those ‘‘no-press’’
episodes were also recorded. It was carefully explained
to participants that a button should be pressed only
when one orientation or the other was exclusively
visible and that mixtures referred to simultaneous
visibility of portions of each grating, either as a
patchwork mosaic or as a superimposition of both
orientations. We also explained that one might
experience a sequence of rivalry states in which
dominance of one stimulus transitions into a mixture
comprising both stimuli followed by a transition back
to the previously dominant stimulus. Referred to as
‘‘return transitions’’ in the literature (Brascamp, van
Ee, Noest, Jacobs, & van den Berg, 2006), these
comprised 13.88% of the dominance states experienced
by our observers. Each tracking block lasted a

Figure 1. Schematic of left and right eye dichoptic stimuli. The

outer ‘‘fusion’’ patterns were identical in both eyes’ views, and

the interior rival gratings were orthogonally oriented (with eye

and orientation counterbalanced over trials for each test

session).
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minimum of 60 s. The first state change reported after
60 s ended the tracking block (e.g., mixture to
dominance, or dominance of the left eye percept to
dominance of the right eye percept). This trial
termination rule allowed us to include the last
dominance state in that tracking period without
prematurely truncating it by turning off the display.

Prior to the first day of experimental testing, each
observer underwent a routine visual screening battery
using the Keystone Orthorator to confirm that she had
normal acuity in both eyes and good stereopsis. During
this pretest session, we also familiarized the observer
with the rivalry displays, the alignment procedure for
ensuring accurate binocular alignment of the dichoptic
displays, and the tracking task. This pretest session also
included five practice blocks of binocular rivalry
tracking.

Because of variation between women in the duration
of their cycle, longitudinal analyses of alternation rate
were based on the day in which a participant measured
a spike in her luteinizing hormone and the date of the
first day of menses. During the training session,
participants were also instructed how to monitor the
start of their menstrual cycle and a surge in the
luteinizing hormone, the hormone known to trigger
ovulation (within 24–48 hr) in a normal healthy
menstrual cycle. The surge in luteinizing hormone can
be measured with over-the-counter ovulation tests of
urine samples; for our study, we used the BFP
ovulation test strips by Fairhaven Health, which
reports 99.9% accuracy detecting 25 miu/mL. Partici-
pants were instructed to use the ovulation test, at home,
on a daily basis for a week. Ovulation testing began just
prior to halfway through their menstrual cycle. For
example, if a participant reported an average menstrual
cycle that lasts 28 days, and ovulation typically occurs
halfway through the cycle, the participant was
instructed to use the ovulation tests on day 10–16 of
their cycle or until the luteinizing hormone spike is first
measured. Participants were asked to report the first
day of any menstrual flow or any spike in luteinizing
hormone during the 5 weeks of testing via a confiden-
tial internet-based survey. This reporting procedure
permitted experimenters to be naı̈ve to the menstrual
phase of the participant.

Analyses

By way of preview, our initial examination of the
results following the end of the study revealed no
obvious differences in rivalry dynamics among the
three menstrual cycle phases of interest. Thus, to
minimize the likelihood of failing to reject the null
hypothesis if, in fact, it were false, and to provide an
optimally comprehensive assessment of possible dif-

ferences among phases, we assembled a variety of
different statistical strategies (parametric and non-
parametric) and measures for comparing the three
phases. This section describes those strategies in some
detail, starting with the procedure for dealing with
aberrant durations.

As explained in the Methods section, participants
were instructed to press one of two buttons to signal
exclusive dominance of one or the other of the two rival
patterns and to press neither key when mixtures were
experienced. During rivalry, mixture periods sometimes
intervene between states of exclusive dominance but
other times do not. For some state transitions, in other
words, the previously suppressed stimulus can abruptly
and unpredictably achieve complete dominance. When
that happens, the observer requires some minimum
decision/motor response time to register an abrupt
transition and to generate the sequence of key press
changes required to signify that transition. Such
transitions inevitably produce a small but nontrivial
proportion of no-press periods lasting a fraction of a
second. Because we did not want to include those kinds
of transitions in the mixture category, we needed to
designate some brief criterion duration to specify the
minimum duration to be accepted as a mixture. We set
that criterion duration at 500 ms, a value based on
results from a rivalry replay condition created and
tested during execution of another experiment in our
laboratory (Dieter & Blake, 2015). During replay trials
in that experiment, observers pressed one of two
buttons to track unpredictable physical switches
between two dissimilarly oriented gratings that were
physically interchanged following a temporal pattern
that matched previously measured records of transi-
tions associated with genuine binocular rivalry. The
replay sequence also included mixture transitions
mimicked by local spatial morphing between the two
dissimilar gratings. From the tracking records and the
knowledge about when the physical changes in states
were happening, we were able to measure the lag times
between the tracking responses to these transitions.
Among the 15 observers tested on that task, the median
lag time was 512 ms, prompting us to discard all
durations 500 ms or shorter from the statistical
analyses of state durations in the present study. To be
on the safe side, we repeated statistical tests using data
sets created by lowering this minimum duration value
to 300 ms; results from those analyses led to the same
conclusions as those associated with the 500-ms
criterion. We also excluded any durations in excess of
60 s across participants, an unprecedented event in
normal rivalry tracking and one suggestive of finger
mistakes on the part of the participant (,0.01% of
events).

Next, we focused our analyses on portions of the
menstrual cycle during which there was reason to
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believe GABA levels were fluctuating. According to
Epperson et al. (2002), healthy females demonstrated
higher GABA concentrations during the follicular
phase (þ3 to þ8 days from menstruation), compared
with mid-luteal (þ3 to þ8 days from luteinizing
hormone spike) and late-luteal (�5 to �1 days from
menstruation) phases. We used these demarcations to
bin data in each of the three phases, and data from
sessions that did not fall into one of the three phases
were excluded from analyses. To test for between-phase
differences on the average durations of rivalry epochs,
we specified linear mixed models (LMMs) using SAS
PROC GLIMMIX, Version 9.4, of the SAS System for
Windowse (Copyright � 2002–2015 SAS Institute
Inc., SAS and all other SAS Institute Inc. products or
service names are registered trademarks of SAS
Institute Inc., Cary, NC; e.g., Littell, Milliken, Stroup,
Wolfinger, & Schabenberger, 2006; Stroup, 2013).
Analyses were performed on the average durations of
dominance and mixture epochs per block, thus yielding
20 scores per measure per session for each participant.
We analyzed block averages instead of the raw, epoch-
level data because preliminary assessments indicated
that aggregation of the observations within a block
facilitated model convergence, substantially reduced
computation time, and provided estimates of random
effect and residual parameters with better fit and likely
better reproducibility. The block means were log-
transformed to better meet the LMM assumption of
normality. The results of the LMM analyses were
unchanged when we weighted each block mean by the
number of epochs within a given block of the given
state (dominance or mixtures). In the Results section,
we report the outcomes from the unweighted analyses
for clarity and because they simplify the computation
of proportion of variance measures.

Each LMM model specified fixed effects denoting the
effects of phase, session, and block. Because preliminary
analyses indicated no significant higher-order interac-
tions involving the phase and block factors, we dropped
such terms from the model and specified only main effect
terms for phase and block. Because only those sessions
that fell within one of the three phases were included (on
average 7.84 sessions per participant were included in
one of the three phases and 2.61 sessions per participant
were included per phase), the data were rather sparse in
some cells formed by the crossing of session and phase
(e.g., a few session numbers were not represented in a
given phase). Because it can be problematic to model
interactions with such sparse data, we treated session
only as a main effect term and view it primarily as a
control variable. Because of the high number of levels of
the block (20) and session (15) factors and the apparent
nonlinearity of changes in mean duration across blocks
and sessions, we tested for the effects of each using spline
functions. Splines can reveal nonlinear patterns of

change while avoiding the distortions imposed by
higher-order polynomials because splines emphasize
local rather than global features of the data (for reviews,
see, e.g., Keele, 2008; Ruppert, Wand, & Carroll, 2003).
We specified truncated polynomial cubic splines yielding
smooth functions that were continuous at specific points
of the predictors (block and session) known as knots.
Preliminary comparisons using the Akaike information
criterion (AIC; Akaike, 1974) indicated that for both
block and session and for both dominance and mixture
durations, three interior knots specified at the 25th, 50th,
and 75th percentiles of block (corresponding to Blocks
6, 11, and 16) and session (corresponding to Sessions 5,
8, and 12) provided an optimal tradeoff between bias
and precision by demonstrating sufficient sensitivity to
variations in rivalry across blocks or sessions without
overfitting the data. Spline terms were specified in the
design matrix using the spline facility of PROC
GLIMMIX. The spline terms denoting effects of session
number and block number were included in models
because these factors were potential predictors of
variation in rivalry durations. If so, their inclusion
would likely heighten statistical power to detect the
effects of phase. In addition, although a repeated-
measures analysis of variance (ANOVA) testing for
between-phase differences in the average session number
indicated only moderate differences that were not
statistically significant (meanfollicular¼ 8.01, meanmid-luteal

¼ 10.08, meanlate-luteal¼ 6.56), F(2, 12)¼ 2.53, p¼ 0.12, it
was still important to include session as a factor to
ensure that the effects of phase were not confounded by
even minor between-phase differences in the distribution
of sessions on either a between- or within-subjects basis.
To further minimize confounding, we included in the
analysis two aggregate scores as between-subjects
predictors that reflected the relative number of blocks
across the three phases and the average session number
of those included in the analysis.

For mixed-effects models to yield valid estimates and
thus valid hypothesis tests, it is important to specify a
structure for the random and residual variances and
covariances that accommodates serial correlation and
other potential sources of nonindependence among
observations (e.g., Gurka, Edwards, & Muller, 2011).
Preliminary analyses comparing alternative structures
using the AIC indicated that the optimal structure
specified (a) an autoregressive (AR) lag-1 random
effects structure to model the across-session correla-
tions among scores of a given participant and (b) an
autoregressive moving average (ARMA) (1,1) structure
on the residual covariance matrix to model the within-
session correlations among the scores of a given
participant. The combination of these two structures
specified that all the observations of a given participant
were intercorrelated, with the magnitude of correla-
tions declining as blocks within a session were
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increasingly distant from one another and as sessions
within a subject were increasingly distant from one
another.

Restricted maximum likelihood was used to estimate
all parameters. The first-order Kenward-Rogers pro-
cedure (Harville & Jeske, 1992; Kenward & Roger,
1997; for a review, see Stroup, 2013) was used to
provide bias-corrected standard errors and degrees of
freedom. General F statistics were used to test omnibus
fixed effects and contrasts among means. Based on the
results of Epperson et al. (2002) indicating higher
GABA concentrations in the follicular relative to the
mid- and late-luteal phases, we conducted a planned
complex contrast comparing mean durations of the
follicular phase and the other two phases (contrast
coefficients equaled 1–0.5 and �0.5). We also con-
ducted pairwise contrasts between each of the three
phases. When such contrasts follow a significant
omnibus effect for phase, they are multiplicity-cor-
rected because this is the Fisher least significant
difference approach that provides an optimal combi-
nation of control of family-wise Type I errors and
power when the number of levels of a factor equals
three (Levin, Serlin, & Seaman, 1994; Seaman, Levin, &
Serlin, 1991). When omnibus tests were not significant,
we also report below the results of pairwise compari-
sons, but any significant effects should be regarded as
more exploratory in nature.

We assessed between-phase differences separately on
dominance and mixture durations for five reasons: (a)
Nearly all rivalry studies have focused on dominance
durations (indeed, few studies have assessed mixtures),
and dominance states have provided the primary
corpus of evidence for evaluating theories of rivalry
dynamics (Brascamp, Klink, & Levelt, 2015). Thus,
dominance states were our main interest and the focus
of our a priori hypotheses. (b) Recent work has
reported a differential influence of alcohol, a proposed
GABAergic agonist (see Mihic, 1999, for review), on
the duration and incidence of dominance and mixtures,
thus warranting their distinction (Cao, Zhuang, Kang,
Hong, & King, 2016). (c) The distributions of
dominance and mixture durations differed according to
several parametric and nonparametric indices. For

example, an LMM model that included state (domi-
nance vs. mixture) as a factor indicated significant
mean differences between dominance and mixtures,
F(1, 24) ¼ 5.77, p ¼ 0.024, and additional type-specific
random effect components. Overall, mean durations
tended to be longer for dominance epochs than mixture
epochs (see Table 1). (d) Average dominance and
mixture durations were only weakly correlated across
subjects (r ¼ 0.12). (e) Dominance states were denoted
by specific responses, whereas mixture states had to be
estimated from the absence of responses taking into
account response times for releasing one button and
then pressing another button.

In addition to the LMM analyses on mean
duration, generalized linear mixed models (GLMMs)
were specified that assessed between-phase differences
on three additional quantities: the proportion of
dominance states that were return transitions (de-
scribed in the Procedure section), the switch rate for
dominance states (defined as the number of switches in
dominance states per minute), and the proportion of
mixture states in each block. GLMM models are a
liberalization of the standard LMM model that can
accommodate nonlinear functional forms and non-
normal distributions. The GLMM analysis on the two
proportion measures (return transitions and propor-
tion of mixture states) specified a binomial distribu-
tion for the dependent variable, a fixed-effects
structure identical to that of the LMM analyses, and
AR1 and ARMA(1,1) structures to model the cross-
and within-session dependencies among the observa-
tions of a given participant. The analysis of the switch
rate used an identical fixed effect, random effect, and
residual structure but specified a Poisson distribution
for the dependent variable. We directly analyzed the
number of switches rather than number per second or
minute because the final switch into a dominance
percept in a block had to occur before the 60-s mark
even if the total duration of the block was more than
60 s. Model fit diagnostics verified the absence of
overdispersion on the GLMM analyses. We used a
restricted pseudo-likelihood approach (Wolfinger &
O’Connell, 1993) for estimation because it allowed us
to model fully the random effects and residual

Measure Follicular Mid-luteal Late-luteal

Duration of dominance epochs (s) 2.31 (1.11) 2.26 (1.34) 2.40 (1.45)

Duration of mixture epochs (s) 1.77 (0.86) 1.62 (0.75) 1.75 (0.85)

Proportion of dominance epochs that were return transitions .15 (.15) .13 (.12) .13 (.13)

Switch rate per min 18.99 (6.54) 19.82 (9.05) 19.39 (6.53)

Proportion of epochs that were mixtures .31 (.16) .32 (.21) .32 (.16)

Table 1. Means for duration and proportion measures. Notes: N¼ 13. Means are computed by first computing averages, proportions,
or counts per block per session per participant, then averaging across all the blocks of a given phase per participant, and finally
averaging across participants. Standard deviations across participants are noted in parentheses.
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structure. We verified, however, that similar results
were yielded when Laplace integral approximations
were used to maximize the marginal likelihood and
obtain estimates (for a review, see Stroup, 2013).
Complex and pairwise comparisons between phases
were identical to those used in the LMM analyses.

Using nonparametric approaches, we also assessed
whether the three menstrual phases differed in other
distributional features. Because these analyses neces-
sitated simpler models, they were performed on
summary indices that were averaged across all the
epoch-level observations of a given phase for a given
individual. Thus, each participant had three scores,
one per phase. Such measures were generated for
measures of the median, variance, skew, and kurtosis
of duration values. We then used the Friedman test
(Marascuilo & McSweeney, 1977) to conduct non-
parametric repeated-measures analyses assessing be-
tween-phase differences on each measure. We also
conducted Wilcoxon signed-rank tests comparing each
pair of phases and a planned analysis that compared
the follicular measures to the average of the mid- and
late-luteal measures.

We also assessed whether the distributions as a
whole differed across phases using the following
procedure. First, for each pairing of phases (e.g.,
follicular vs. mid-luteal) and for each subject, we
computed the Kolmogorov–Smirnov (K-S) Dmax

statistic comparing the two distributions of duration
values. Across subjects, we were less interested in
whether the average Dmax values across participants
were greater than 0 (indicating some overall difference
between distributions) because that could be found
even if there were no consistent pattern across
subjects. To generate a more meaningful test of a
systematic effect, we attached a sign (þ or �) to the
Dmax values depending on the relative location of the
two distributions. For example, in a comparison
between the follicular and mid-luteal distributions, if
the follicular distribution was shifted to the right
relative to mid-luteal, Dmax was given a positive sign;
if the follicular distribution was shifted to the left
relative to mid-luteal, Dmax was given a negative sign.
We then conducted one-sample Wilcoxon tests of the
null hypothesis that the average signed Dmax value
equaled 0. Rejection of this hypothesis would imply
that the distributions for a given phase differed in a
consistent manner across participants. In addition to
pairwise comparisons between phases, we compared
the Dmax values for the follicular versus combined
mid- and late-luteal phases. Conceptually similar tests
comparing kernel density estimates of individual
distributions on a measure of distributional overlap
(e.g., Schmid & Schmidt, 2006) yielded identical
results. For the sake of brevity, we report only the K-S
analyses.

Results

Analyses of mean duration

The following exposition of results focuses on
dominance and mixture durations for all sessions
falling within the three phases of interest. In the
aggregate, those totaled 61,679 individual durations
compiled over all 13 participants and all 20 blocks for
all sessions falling within the three phases.

Figure 2 presents dominance duration density plots
for each observer, grouped and color coded by
menstrual cycle phase. Several aspects of these results
are noteworthy. First, these distributions conform to
the signature shape characteristic of binocular rivalry
durations (Brascamp, van Ee, Noest, Jacobs, & van den
Berg, 2006; Fox & Herrmann, 1967; Levelt, 1965).
Second, we see pronounced individual differences in
alternation rate among our subject sample, as indicated
by marked differences in the peaks of the histograms
across participants (peaks at longer durations imply
slower alternations). Such heterogeneity is also rou-
tinely seen in larger samples of participants (Carter &
Pettigrew, 2003; Hancock, Gareze, Findlay, & An-
drews, 2012). Of relevance for our purposes, we also see
no consistent tendency for durations measured during
the follicular phase to be longer than those measured
during mid- or late-luteal phases (i.e., the prediction
motivating this study). This tendency is borne out in
the statistical results reported below. We also created
duration density plots for mixture states for each
participant, and those are shown in Figure 3. These,
too, have the rightward skew seen for dominance
durations, and some of the mixture durations are as
long as dominance duration states. To our knowledge,
this is the first time in the literature that mixture
distributions have been plotted, so we have no basis for
comparison in terms of shape. Table 1 displays means
of the raw (i.e., untransformed) rivalry duration values
for dominance and mixture durations for each of the
three phases. To generate the values in this table, means
for each block within a given session were first
computed for each participant. Then, all the block
means within a given session were averaged for each
participant. In the final step, means for each phase were
computed by averaging the session means that fell
within each phase bin across participants. The means
and standard deviations shown in this table indicate
small differences between phases, particularly for
dominance durations.

These descriptive observations were corroborated by
the results of the LMM ANOVA performed on the log
of the average duration of dominance epochs per block.
There was no significant effect for phase, F(2, 55.7) , 1,
p¼ 0.71, on the omnibus test, and no significant effects
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or trends were evident on the planned comparison
between follicular and the average of mid-luteal and
late-luteal phases, F(1, 48.7) , 1, p¼ 0.41, or on the
pairwise comparisons among the three phases (all Fs
, 1, all ps . 0.45). In contrast, there were significant
effects for the spline functions of block, F(6, 689.5) ¼
7.10, p , 0.0001, and session, F(6, 59.89) ¼ 2.35, p¼
0.04. As shown in the top panel of Figure 4, mean
durations increased across the first four blocks but then
exhibited a progressive decline. The pattern of change
across sessions was more complex with four shifts in
direction (see the middle panel of Figure 4). Mean
dominance values reached their peak nearly midway
through the experiment during Session 7.

The LMM ANOVA on log of the average duration
of mixture epochs per block also failed to reveal
significant effects for phase, F(2, 35.1)¼ 1.85, p¼ 0.19.
Although no pairwise contrasts among the three phases
were significant (all ps . 0.10), there was a mild trend
on the complex contrast between follicular and the
average of mid-luteal and late-luteal phases, F(1, 27.9)
¼ 3.67, p¼ 0.07. Contrary to phase-specific modulation
of GABA and reciprocal inhibition models, the trend
seemed to be due to higher estimated logged values of
mixture durations for follicular (least square X̄ ¼ 0.43)
than mid-luteal (X̄¼ 0.35) and late-luteal (X̄ ¼ 0.35).
This analysis also yielded significant spline effects for
block, F(6, 577)¼ 2.86, p¼ 0.01, and session, F(6, 37.1)
¼ 3.59, p ¼ 0.007. As indicated by the top panel of

Figure 2. Distributions of dominance durations generated by kernel density plots (Wand & Jones, 1995) per phase for individual

participants. Subject identification numbers are shown in the top border.
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Figure 4, the pattern of mixture durations across blocks
was characterized by an initial early decline followed by
a late acceleration. This pattern was quite different
from that shown for changes in dominance durations
across blocks, and, indeed, the predicted values for the
two states were negatively correlated across blocks (r¼
�0.65). The pattern of shifts in mixture durations
across sessions was more complex with several shifts in
slope (see middle panel of Figure 4). This pattern was
also clearly different from that shown for dominance
durations across sessions (r ¼ 0.04).

One notable feature of the analyses of both
dominance and mixture durations was the contrast
between the low proportions of variance due to the
effects of phase and the high proportions of variance

due to the random factor of subjects. To compute the
unique proportion of variance due to phase, we ran two
LMM models, one in which phase was included as a
factor and one in which phase was omitted. For each
model, we computed the squared correlation between
the predicted means (including both fixed and random
effects) and actual block means. In other words, we
computed an LMM analogue of R2 (cf., Vonesh,
Chinchilli, & Pu, 1996). Finally, we assessed the unique
component of variance due to phase by computing the
difference between the two squared rs. For dominance
durations, the increments in squared rs due to phase
were approximately 1.7%, and for mixture durations,
the increment was approximately 1.8%. We computed
the unique proportion of variance due to subjects by

Figure 3. Distributions of mixture durations generated by kernel density plots (Wand & Jones, 1995) per phase for individual

participants. Subject identification numbers are shown in the top border.
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forming the ratio of the estimated variance for the

random effect of subject to the sum of the variances of

the random effect of subject and the residuals (i.e., we

computed an intraclass correlation). For both domi-

nance and mixture durations, there was a substantial

proportion of variance due to subjects (dominance¼
74%, mixture¼ 57%). In addition, likelihood ratio tests
indicated that the variance parameters for subjects
yielded by the LMM analyses were highly significant
(both dominance and mixture ps , 0.0001).

Proportion and rate measures

The lower rows of Table 1 display the means across
phases for switch rate and the proportion of return
transitions and mixture epochs using the same averag-
ing sequence described above for mean durations.
Analyses of dominance switch rates indicated no
significant effects of phase [omnibus, F(2,60. 71) , 1, p
¼ 0.72; planned contrast, F(1, 53.13) , 1, p ¼ 0.99, all
pairwise contrast ps . .40] or session, F(6, 63.11) ¼
1.14, p¼ 0.35). However, there was a highly significant
effect for the block spline component, F(6, 687.5) ¼
3.94, p , 0.001. As shown in the bottom panel of
Figure 4, after an initial early decline in switch rates
from Trial 1 to Trial 4, there was a generally
progressive increase through the final block. Although
the absolute magnitude of the change across blocks is
small, the effects were highly significant because of the
strong individual differences in overall rates (an intra-
class correlation indicated that 95% of the variance was
due to differences among subjects) that led to extremely
small standard errors when different blocks were
compared. Thus, there was high power to detect even
relatively moderate shifts in switch rates across blocks.
There were no significant effects of phase [omnibus,
F(2, 39.59) , 1, p¼ 0.60; planned contrast, F(1, 38.63)
, 1, p ¼ 0.64, all pairwise contrast ps . 0.40]; block,
F(6, 834.1) , 1, p¼ 0.76; or session, F(6, 43)¼ 1.31, p¼
.27, on the proportion of return transitions. The
GLMM random effects binomial model indicated no
significant effects of phase on the proportion of
mixtures: omnibus, F(2, 64.47) , 1, p . 0.90; planned
complex comparison, F(1, 60.84) ,1; pairwise com-
parisons, all ps . 0.66. There were also no significant
spline effects for block, F(6, 726)¼ 1.22, p¼ 0.29, or for
session, F(6, 63.56) ¼ 1.65, p ¼ 0.15, on this measure.

Nonparametric tests of other summary indices

We also assessed between-phase differences in
distributional features of rivalry beyond means. Table 2
shows the results of omnibus Friedman tests, pairwise
Wilcoxon signed-rank tests, and a comparison between
the follicular phase and the pooled mid-luteal and late-
luteal phases on sample medians, variances, skew, and
kurtosis. None of the tests performed on dominance
duration measures indicated any significant effects or
even notable trends (all ps . 0.30). Similarly, Wilcoxon

Figure 4. (Top) Log mean duration across blocks for dominance

and mixture epochs. (Middle) Log mean duration across

sessions for dominance and mixture epochs. (Bottom) Switch

rate across blocks. Circles denote predicted values based on

truncated polynomial cubic spline functions.
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signed-rank tests performed on the signed K-S DMax

values failed to indicate any systematic differences
between the phases (all ps . 0.30; see Table 2).
Friedman and Wilcoxon tests of between-phase differ-
ences in mixtures and Wilcoxon tests of signed K-S
DMax values indicated only two significant effects,
between the follicular phase and the average of the mid-
luteal and late-luteal phases on skew (p ¼ 0.02) and
kurtosis (p¼ 0.04). These results indicate that, relative
to the follicular distribution, the averaged mid-luteal
and late-luteal distributions were slightly more skewed
to the right and more peaked. These results should,
however, be regarded with caution given the number of
statistical tests performed in the distributional analyses.
Forty-eight statistical tests are reported in Table 2, and
had multiplicity corrections been imposed (e.g., via
Bonferroni or step-down Bonferroni procedures), the
results of these two contrasts would not have been
statistically significant.

Bayes factors for effect size intervals

Across dependent measures, the analyses summa-
rized above indicate no significant effects for phase on
dominance epochs, which were the focus of our
primary hypotheses. Reliance on the conventional null
hypothesis testing framework, however, has limita-
tions. Null findings can occur because of limited power.
In turn, a major determinant of power is sample size,
and, in the present context, although there are a large
number of observations per participant, the total

number of participants is 13. Two related limitations of
the reliance on null hypothesis tests are that (a) they fail
to indicate the relative strength of the evidence for and
against null and alternative hypotheses, and (b) they
fail to indicate the magnitude of effects or the relative
likelihood that effect sizes are within a given range
versus outside that range. Although the proportion of
variance measures reported above that were based on
the LMM analyses indicated that the effects of phase
on rivalry dynamics were quite small, particularly in the
case of dominance durations, we felt compelled to
include additional assessments that went beyond the
traditional null hypothesis testing framework and
addressed these issues.

As an alternative approach, we computed Bayes
factors (BFs; Kass & Raftery, 1995) for the dominance
duration data. BFs allow us to estimate the relative
strength of the evidence for and against a given
hypothesis and are analogous to likelihood ratios.
Because of the computational complexity involved in
quantifying BFs, we aggregated the log-transformed
data for each subject across the blocks and sessions of a
given phase and computed the mean dominance and
mixture durations per subject per phase. We then used
the framework of between-phase pairwise t tests to
compute measures of effect size and BFs using the
framework outlined by Morey, Rouder, and colleagues
(Morey & Rouder, 2011; Rouder, Speckman, Sun,
Morey, & Iverson, 2009) and its software implemen-
tation in the R package BayesFactor (Morey &
Rouder, 2015). We computed BFs for interval-level
hypotheses that specified ranges for the value of
Cohen’s (1988) effect size measure d, defined as d¼ (l1

Measure

Follicular vs.

mid-luteal

Follicular vs.

late-luteal

Mid-luteal vs.

late-luteal

Follicular vs.

average of mid-

and late-luteal Omnibus test

Dominance

Median Tþ ¼ 53, p ¼ 0.64 Tþ ¼ 37, p ¼ 0.59 Tþ ¼ 38, p ¼ 0.64 Tþ ¼ 53, p ¼ 0.64 v22 ¼ 0:62, p ¼ 0.74

Variance Tþ ¼ 45, p ¼ 1.00 Tþ ¼ 31, p ¼ 0.34 Tþ ¼ 33, p ¼ 0.41 Tþ ¼ 37, p ¼ 0.59 v22 ¼ 1:08, p ¼ 0.58

Skew Tþ ¼ 49, p ¼ 0.84 Tþ ¼ 41, p ¼ 0.79 Tþ ¼ 48, p ¼ 0.89 Tþ ¼ 49, p ¼ 0.84 v22 ¼ 0:15, p ¼ 0.93

Kurtosis Tþ ¼ 43, p ¼ 0.89 Tþ ¼ 46, p ¼ 1.00 Tþ ¼ 53, p ¼ 0.64 Tþ ¼ 50, p ¼ 0.79 v22 ¼ 0:15, p ¼ 0.93

Signed K-S DMax Tþ ¼ 57, p ¼ 0.46 Tþ ¼ 30, p ¼ 0.31 Tþ ¼ 34, p ¼ 0.45 Tþ ¼ 53, p ¼ 0.64 —

Mixture

Median Tþ ¼ 66, p ¼ 0.17 Tþ ¼ 51, p ¼ 0.74 Tþ ¼ 31, p ¼ 0.56 Tþ ¼ 51, p ¼ 0.74 v22 ¼ 0:83, p ¼ 0.66

Variance Tþ ¼ 56, p ¼ 0.50 Tþ ¼ 37, p ¼ 0.59 Tþ ¼ 32, p ¼ 0.38 Tþ ¼ 21, p ¼ 0.09 v22 ¼ 2:00, p ¼ 0.37

Skew Tþ ¼ 27, p ¼ 0.22 Tþ ¼ 19, p ¼ 0.07 Tþ ¼ 35, p ¼ 0.50 Tþ ¼ 12, p ¼ 0.02 v22 ¼ 2:46, p ¼ 0.29

Kurtosis Tþ ¼ 25, p ¼ 0.17 Tþ ¼ 20, p ¼ 0.08 Tþ ¼ 37, p ¼ 0.59 Tþ ¼ 16, p ¼ 0.04 v22 ¼ 3:85, p ¼ 0.15

Signed K-S DMax Tþ ¼ 73, p ¼ 0.06 Tþ ¼ 50, p ¼ 0.79 Tþ ¼ 20, p ¼ 0.08 Tþ ¼ 69, p ¼ 0.11 —

Table 2. Results of Wilcoxon signed-rank and Friedman tests of between-phase differences in distributional features. Notes: N¼ 13.
Two-tailed exact Wilcoxon signed-rank tests were used for pairwise comparisons. Tþequals the sum of the ranked differences with
positive signs. The Friedman test was used to conduct an omnibus hypothesis of equality of ranks across phases. Values of the large-
sample chi-square approximation to the Friedman statistic are displayed. Conclusions about statistical significance were identical
when observed test statistics were compared with exact critical values of the Friedman statistic. K-S¼Kolmogorov-Smirnov. For the K-
S measure, Wilcoxon signed-rank tests were performed on the signed DMax values that were computed for each pairing of phases for
each participant.
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� l2)/r, where r¼ the population standard deviation of
the difference between paired observations. The likeli-
hood that an effect size measure equals exactly 0 or any
given point value is exceeding low. For that reason, we
computed two different interval-level BFs that yielded
more meaningful and realistic assessments of the
magnitude of effects. The corresponding null hypoth-
eses specified that the range of the effect sizes for
between-phase effects was either ‘‘small’’ or ‘‘very
small.’’ Specifically, we computed BFs for two separate
null hypotheses: H0: �0.20 , d , 0.20, with the
alternative hypothesis that d ,�0.20 or d . 0.20, and,
H0: �0.10 , d , 0.10, with the alternative hypothesis
that d , �0.10 or d . 0.10. These values were chosen
based on the conventional rule of thumb (Cohen, 1988)
that d ¼60.20 indicates a small effect size. We
computed BFs for these ranges specifying that d is
distributed as a Cauchy random variable with scale
factor ¼ 2

ffiffiffi

2
p

. The Jeffreys prior (Jeffreys, 1961) was
specified for the distribution of the variances. Recall
that our strongest original predictions concerned
dominance durations and focused on the difference
between the follicular phase and the mid-luteal and
late-luteal phases. Accordingly, for the dominance
data, we computed BFs for the pairwise contrasts
between follicular and mid-luteal and follicular and
late-luteal phases and for a pairwise contrast that
compared the follicular phase to the average of mid-
and late-luteal phases (computed for each participant).

Table 3 presents the Bayes factor results for
dominance durations. Because we computed our BFs as
the ratio of the likelihoods for the null hypothesis
relative to the alternative (see, e.g., Jarosz & Wiley,
2014), values greater than 1 indicate relative support
for the null hypotheses that d ¼ 0, that �0.10 , d ,
0.10, and that �0.20 , d , 0.20. Additionally shown
are the sample estimates of d, computed as d ¼ (X̄1�
X̄2)/sd, where sd¼ the sample standard deviation of the
within-subject difference scores computed between a
pair of phases. Several features of the results are
notable. First, the sample estimates of d (¼ d) are small
for all comparisons (see Table 3). Some methodologists
prefer to express d values for within-subjects data as the

ratio of the differences between means to the average of
the within-condition standard deviations (i.e., there is
no reduction in the computed standard deviation
because of correlated observations characteristic of
within-subjects data; for a discussion, see Dunlap,
Cortina, Vaslow, & Burke, 1996). In the present
context, if d’s were expressed in that manner, they
would be approximately half the size shown in Table 3
and thus quite small on the whole. Second, all BFs
computed were greater than 1 and thus in the direction
supporting the null hypothesis given the way that we
computed BFs. Although criteria for BF evaluations
vary somewhat (e.g., Jeffreys, 1961; Kass & Raftery
1995), Raftery (1995) proposed that BFs between 1 and
3 offer weak support for a target hypothesis and that
BFs between 3 and 10 offered what he termed
‘‘positive’’ support. From this perspective, the obtained
BFs clearly offer positive support for the null
hypothesis that the effect size is within a small range
(�0.20 , d , 0.20) and, on the whole, offer positive
support for the null hypothesis that the effect size is
very small (�0.10 , d , 0.10), although the BF value
for the follicular versus mid-luteal comparison is quite
close to threshold. Table 3 also shows BFs for the point
null hypothesis that the population effect size is 0.
These values indicate a degree of support that is, on
average, on the borderline between weak and positive
support. We should reiterate, though, our belief that
the point null suffers in realism and applicability
relative to interval null hypotheses.

Discussion

Based on the link between individual variability in
occipital GABA concentrations and binocular rivalry
(van Loon et al., 2013), and fluctuations of GABA
concentrations in occipital cortex associated with the
healthy menstrual cycle (Epperson et al., 2002), we
tested the extent to which rivalry dynamics fluctuated
with the phases of a healthy menstrual cycle. According
to reciprocal inhibition models of rivalry and the higher

Measure

Comparison

Follicular vs. mid-luteal Follicular vs. late-luteal Follicular vs. average of mid- and late-luteal

Cohen’s d 0.24 �0.07 0.10

Bayes factors

H0: �0.10 , d , 0.10 3.09 4.47 4.29

H0: �0.20 , d , 0.20 3.83 6.14 5.79

H0: d ¼ 0 2.62 3.48 3.37

Table 3. Bayes factors for between-phase pairwise t tests on dominance durations. Notes: N¼ 13. Cohen’s d is computed as (X̄1� X̄2)/
ŝdif, where ŝdif¼ the standard deviation of the within-subject differences between phases. Because we computed Bayes factors as the
ratio of the likelihoods for the null hypothesis relative to the alternative hypothesis, values greater than 1 indicate support for the null
hypotheses.
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concentrations of the main inhibitory transmitter in the
brain, GABA, during the follicular phase compared
with the luteal phase in the menstrual cycle, we
expected longer periods of perceptual dominance and
slower alternations over time. Contrary to this predic-
tion, however, our results disclosed no reliable change
across menstrual phases in the temporal dynamics of
dominance percepts, despite the fact that we used
several different analytic approaches (LMM, GLMM,
nonparametric) and assessed several different types of
dependent measures (e.g., means as well as other
distributional features of dominance and mixtures,
proportion of return transitions). This conclusion holds
for both omnibus and pairwise comparisons for
dominance durations and even for those analyses that
were not multiplicity corrected. In addition, BFs
indicated that it is likely that differences on dominance
durations between the follicular and the mid- and late-
luteal phases are, at best, small in magnitude. We also
failed to find between-phase differences on mixture
durations except for two effects on skew and kurtosis
that would not have survived multiplicity corrections.

From the outset, we want to stress that our findings
do not contradict van Loon et al.’s (2013) finding that
GABA levels in the occipital cortex covary with
individual differences in rivalry rate. We, like they,
found reliable differences in rivalry rate (via percept
durations), but we did not measure resting GABA
concentrations in our study group. Before considering
possible implications of our findings, we first want to
dispel four possible objections to our study and its
failure to find a relationship between menstrual phase
and rivalry dynamics.

First, one might argue that the displays or the task
we used were inappropriately designed for reliably
assessing rivalry dynamics. We find this highly unlikely,
for essentially identical methods have been used
successfully in our lab for other purposes. Moreover,
the distributions of dominance durations and the
reliable individual differences in rivalry rates measured
within our sample of participants replicate the pattern
of results found in many earlier studies, including those
explicitly designed for studying trait-level variability
across individuals (Carter et al., 2005; Miller et al.,
2010; Nagamine, Yoshino, Miyazaki, Takahashi, &
Nomura, 2008; Shannon, Patrick, Jiang, Bernat, & He,
2011; van Loon et al., 2013).

Second, results from a previous study led us to
wonder whether the stability of binocular eye alignment
in our participants might show subtle but systematic
differences during the follicular and luteal phases of the
menstrual cycle, which, in turn, can affect our measures
of rivalry dynamics. Specifically, in one experiment of
the study by van Loon et al. (2013), participants (all
males) were administered lorazepam, a benzodiazepine
that putatively potentiates GABAA receptors at the

dose levels given to those participants. Their plan was
to learn whether potentiated GABA would slow rivalry
alternations, but unfortunately, it proved impossible to
measure binocular rivalry alternations because this
short-acting pharmacological agent disrupted stable
binocular eye alignment, a prerequisite for measuring
binocular rivalry. This observation led us to wonder
whether there was a tendency for eye position to vary
more during the follicular phase when GABA is
purportedly the highest (as it was in the van Loon et al.
study because of lorazepam).

To examine that possibility, we used results from the
dichoptic alignment procedure performed on each
participant immediately before each test session to
index the stability of eye position over sessions. Recall
that each person used a method of adjustment
procedure to ensure that the monocular fusion frames
were appropriately aligned for the two eyes so as to
produce the impression of a stable, single visual object.
This adjustment was performed three times in succes-
sion, with the x/y offsets of the dichoptic targets jittered
to new positions before each adjustment. The predic-
tion here is that participants would have more difficulty
maintaining stable eye alignment during the follicular
phase, where GABA was reportedly higher (Epperson
et al., 2002). If this were the case, we would expect
greater variability across repeated alignment trials in
the follicular phase compared with the mid- and late-
luteal phases of the menstrual cycle. That was not what
we observed, however, as indicated by the eye position
result in Figure 5. Thus, we are disinclined to attribute
our null results for rivalry dynamics over menstrual
phase to eye instability. Moreover, we wonder whether
the failure of van Loon et al.’s (2013) participants to
maintain eye alignment when given lorazepam might be
attributable to disruption in the oculomotor system—
double vision is one of the possible side effects listed for
this drug.

Third, one might argue that changes in occipital
GABA concentrations throughout the menstrual phase
are not sufficient in magnitude to evoke measurable
changes in binocular rivalry dynamics. We find this
unlikely based on previous work. From the work of
Lunghi and colleagues (2015), we know that short-term
patching of one eye temporarily reduces GABA
concentrations by approximately 8% and, at the same
time, slows binocular rivalry alternations by approxi-
mate 20%. In the study that motivated our experiment,
Epperson et al. (2002) reported an approximately 30%
drop in occipital GABA concentration from the
follicular to luteal phase during the menstrual cycle of
healthy females, a drop surely sufficient to affect rivalry
dynamics based on rivalry results from the Lunghi et al.
(2015) study. It is worth noting that a subsequent study
by Epperson et al. (2005) found no fluctuations in
GABA over the phases of the menstrual cycle in
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healthy females who were chronic smokers (i.e.,
smoked 20–40 cigarettes a day for at least one year). In
the prescreening portion of our study, all of our
participants reported being nonsmokers, so our failure
to find rivalry fluctuations during the menstrual cycle
cannot be chalked up to this nicotine-related impact on
GABA.

Fourth, one might question whether our study had
sufficient power to detect between-phase differences
on rivalry duration measures. To address this issue
more directly, we conducted power analyses for

dominance durations (the major focus of our predic-
tions) using a procedure outlined by Stroup (2002,
2013) for LMM designs and using an additional
procedure for repeated-measures ANOVA designs
(Maxwell & Delaney, 2004). We performed several
different power calculations within the LMM frame-
work because there are alternative approaches to
calculating effect sizes in our complex LMM models.
These calculations indicated that we had sufficient
power to detect pairwise differences between phases
that corresponded to a medium effect size (Cohen’s d
¼ .50). Power estimates to detect d ¼ .50 varied from
.63 to .90. These values are not surprising because of
the large number of observations per participant and
because of the stable individual differences observed
across phases. Recall that individual differences
among subjects accounted for a high proportion of
the total variability in the data. In any repeated
measures design (whether analyzed via the LMM
approach or more traditional methods), the magni-
tude of the correlations among the levels of a within-
subjects factor is a major determinant of power (e.g.,
Maxwell & Delaney, 2004). As a result, even studies
with fewer than 20 participants can have adequate to
substantial power, which we think is the case for our
study.

Moreover, we also assessed how many participants
would be required to reveal a significant main effect for
phase on dominance durations had we observed the
precise means, standard deviations, and effect sizes
used in the present study and used the same statistical
model for analyses. We used two different approaches
to compute power (e.g., Maxwell & Delaney, 2004;
Stroup 2002, 2013), and both indicated that minimal
sample sizes equal to at least 100 would be necessary to
have adequate power. Although power analyses based
on extant data have clear limitations, these computa-
tions suggest such a small effect that doubling or even
tripling the sample size would be highly unlikely to
yield significant between-phase differences in domi-
nance durations.

In addition to the power analyses, three additional
sources of evidence indicate that our results are more
likely due to small effects rather than insufficient power
to detect nontrivial effects: (a) the very small propor-
tions of variance on dominance and mixture durations
accounted for by phase, (b) BFs indicating that small
effect sizes were more likely than not, and (c) the fact
that we clearly had sufficient power to detect signif-
icant—and, in some cases, highly significant—effects of
block and session on several measures.

Having rejected these alternative, methodologically
based arguments for our findings, we are instead led to
believe that our results reveal a more complex
relationship among GABA, hormonal fluctuations in
the menstrual cycle, and the inhibitory processing

Figure 5. Eye alignment procedure and results. (Top) Prior to

each session, the observer performed three successive

alignment estimates, adjusting the x/y position of the right-eye

image until it appeared stably superimposed on the left-eye

image (i.e., a single, stable percept in which the pairs of vertical

and horizontal nonius markers were aligned; note that nonius

lines were included during the adjustment phase only, not

during rivalry tracking trials). To estimate the variability over

these three successive adjustments, we performed an additive

translation in the X/Y positioning in both eyes so that the left

eye position was centered on (0,0). The translated Xtranslation/

Ytranslation position in the right eye thus reflected the relative

positioning between the eyes to achieve a stable fusion. We

calculated the absolute distance of each Xtranslation/Ytranslation for

each participant and session-specific right fixation, determined

by the centroid of the three right-eye alignment trials. The three

red dots mark the relative right eye placement in three

alignment trials for one participant whose results coincide with

the group average. The scale bar underneath the right-eye

display signifies 12 arc min, the average deviation among the

three settings averaged over observers and sessions. (Bottom)

The difference between the averaged distance in the follicular

phase and the average of the luteal phases was not statistically

significant, t(12) ¼ 1.05, p ¼ 0.31. Error bars represent SEM.

Journal of Vision (2016) 16(15):22, 1–19 Sy, Tomarken, Patel, & Blake 14



involved in binocular rivalry. For one thing, Epperson
and colleagues measured GABA levels only in the
occipital cortex. Yet we know that some other cortical
regions exhibit patterns of GABA fluctuation during
the menstrual cycle that differ from those seen in
occipital cortex. Prefrontal regions, for example, are
reported to exhibit larger concentrations of GABA
during ovulation, compared with follicular and luteal
phases (De Bondt, De Belder, Vanhevel, Jacquemyn, &
Parizel, 2015), but in the anterior cingulate cortex,
GABA remains invariant during the menstrual cycle
(Harada, Kubo, Nose, Nishitani, & Matsuda, 2011).
Thus, when using binocular rivalry as an index of
perception-related inhibitory activity, one should take
into account GABA fluctuations in cortical regions
other than the occipital cortex. After all, cortical
responses in frontoparietal regions of the brain have
also been correlated with rivalry alternations (Frässle,
Sommer, Jansen, Naber, & Einhäuser, 2014; Knapen,
Brascamp, Pearson, van Ee, & Blake, 2011; Lumer,
Friston, & Rees, 1998).

Another factor is the complex dynamic between
GABA and menstrual hormones and their metabo-
lites. The multifaceted relationship between GABA
and menstrual hormones is made evident in the
reported finding that despite differences in premen-
strual symptomology and occipital GABA concen-
trations between females with a healthy menstrual
cycle and those with premenstrual dysphoric disorder
(PMDD), ovarian hormone levels are not significantly
different between groups (Bäckström et al., 2003).
Moreover, despite fluctuations of group average
concentrations of ovarian hormones and GABA
across the menstrual cycle, a correlation between their
respective levels or with the severity of premenstrual
symptomology across individuals remains elusive (De
Bondt et al., 2015). Instead, some have hypothesized
that abnormal symptomology associated with PMDD
is not the consequence of the overall concentration but
rather some abnormal sensitivity to hormones and
their metabolites within the central nervous system
(Bäckström et al., 2014; Barth, Villringer, & Sacher,
2015; Huo et al., 2007). One mechanism by which
sensitivity can vary is at the receptor level. For
instance, progesterone and its metabolites facilitate
GABAergic transmission by increasing receptor af-
finity for GABA, whose binding opens chloride gated
channels and increases neural inhibition (Deligianni-
dis et al., 2013; Lan & Gee, 1994; Rupprecht, 1997;
van Wingen et al., 2008). Considering the interaction
between progesterone and GABA in isolation, the
increased presence of progesterone in the luteal phase
could be expected to increase neural inhibition. In the
context of reciprocal inhibition in binocular rivalry,
the luteal phases should then have longer durations of
exclusive dominance and shorter mixtures. This

prediction is in direct opposition to the predictions
made when considering only lowered occipital GABA
concentration during the luteal phase compared with
the follicular phase. When considering the interaction
between progesterone and GABAergic receptors and
the changes in GABA in the menstrual cycle together,
we are led to wonder whether GABA concentration is
down-regulated during the luteal phase to maintain a
level of homeostasis that counteracts greater receptor
sensitivity in the presence of progesterone. The
balancing of GABA in the presence of progesterone
would therefore maintain the level of inhibition within
an individual throughout the menstrual cycle and
thereby explain the invariance of binocular rivalry
dynamics in each menstrual phase. The presence of a
neurochemical regulatory process that acts along the
temporal scale of the menstrual cycle could also
explain the present contradictory findings and the
reported relationship between perceptual alternations
and transient manipulations of GABA, either through
short-acting pharmacological manipulations using, for
example, lorazapam (van Loon et al., 2013) or eye
patching (Lunghi et al., 2015). Essentially, rapid
inhibitory state changes in GABA might still alter
perceptual alternation in the absence of any change in
an opposing excitatory homeostat such as progester-
one.

Finally, the relationship between the menstrual cycle
and binocular rivalry is also complicated when
considering that ovarian hormones can act on multiple
receptor types other than those reactive to GABA (e.g.,
Gulinello, Gong, Li, & Smith, 2001; Sumner & Fink,
1998; Weiland, 1992; Woolley, Weiland, McEwan, &
Schwartzkroin, 1997). In sum, during the menstrual
cycle, there is a delicate balance of hormones that have
diverse interactions with neurotransmitter receptors
throughout various brain regions. Thus, it is important
to adopt a broad and systemic perspective when
attempting to link GABA with perceptual phenomena
such as binocular rivalry.

Keywords: binocular rivalry, menstrual phase, GABA,
dominant and mixed percepts
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