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Computational exploration 
of copper catalyzed vinylogous 
aerobic oxidation of unsaturated 
compounds
Ting Wang1, Yu Zhou1,2, Yao Xu1,2 & Gui‑Juan Cheng1*

Selective oxidation is one of the most important and challenging transformations in both academic 
research and chemical industry. Recently, a highly selective and efficient way to synthesize biologically 
active γ‑hydroxy‑α,β‑unsaturated molecules from Cu‑catalyzed vinylogous aerobic oxidation of α,β‑ 
and β,γ‑unsaturated compounds has been developed. However, the detailed reaction mechanism 
remains elusive. Herein, we report a density functional theory study on this Cu‑catalyzed vinylogous 
aerobic oxidation of γ,γ‑disubstituted α,β‑ and β,γ‑unsaturated isomers. Our computational study 
unveils detailed mechanism for each elementary step, i.e. deprotonation,  O2 activation, and 
reduction. Besides, the origin of regioselectivity, divergent reactivities of substrates as well as 
reducing agents, and the byproduct generation have also been investigated. Notably, the copper 
catalyst retains the + 2 oxidation state through the whole catalytic cycle and plays essential roles in 
multiple steps. These findings would provide hints on mechanistic studies and future development of 
transition metal‑catalyzed aerobic oxidation reactions.

Selective oxidation has gained a preeminent position in both academic research and chemical  industry1–3. One 
particular class of selective oxidation reactions achieved by a combined use of air as an oxidant and copper as a 
catalyst is highly desirable due to the natural abundance of air and  copper4–6. Over the past few decades, great 
progress has been made in this field and many successful Cu-catalyzed aerobic reactions have been  developed7–23.

Catalytic vinylogous reactions are among the most important reactions in organic synthesis due to their exten-
sive application in the synthesis of complex natural products and bioactive  molecules24–27. Despite significant 
advances in transition metal-catalyzed α- or β-functionalization of α,β- and β,γ-unsaturated  compounds28–32, 
the vinylogous version leading to synthetically valuable γ-substituted α,β-unsaturated  compounds33–36 has been 
rarely studied. For example, the vinylogous hydroxylation of α,β-unsaturated or β,γ-unsaturated compounds is 
a direct method to synthesize γ-hydroxy-α,β-unsaturated  compounds37–42 which are valuable biological active 
pharmaceuticals and important intermediates in organic synthesis. However, the catalytic aerobic vinylogous 
hydroxylation is highly challenging due to the control of the reaction  selectivity43,44, such as regioselectivity, 
chemoselectivity (hydroxylation vs. oxidative fragmentation, epoxidation, and other competitive oxidation reac-
tions) and overoxidation problems.

In 2018, Yin and Newhouse’s group successfully realized an efficient and operationally simple copper-cata-
lyzed vinylogous oxidation reaction by using air as an oxidant, which leads to a broad array of γ-hydroxy-α,β-
(E)-unsaturated  compounds45. Reactions of both γ,γ-disubstituted α,β- and β,γ-unsaturated compounds produce 
γ-hydroxy-α,β-(E)-unsaturated compounds in high yield with perfect stereo- and regioselectivity (Scheme 1). 
The copper(II) triflate catalyst, the base (tetramethylguanidine, TMG), and the reducing agent  (PPh3) were 
found essential for the reaction. Their method was successfully applied to the vinylogous oxidation of unsatu-
rated esters, aldehydes, ketones, amides, nitriles, and sulfones, demonstrating great potential in the synthesis of 
natural products and bioactive molecules.

The preliminary mechanistic study indicated that radicals might not be involved in the reaction because the 
reaction efficiency was not affected by the addition of radical  scavengers46–48. Based on the experimental observa-
tions, Yin et al. proposed a three-step pathway for the generation of the main γ-hydroxylated product (Scheme 2). 
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This pathway consists of deprotonation (A + R + TMG → B),  O2 activation (B + O2 → C) and  PPh3 participated 
reduction step (C + PPh3 → P + P(O)Ph3). The ketone side-product P′ was proposed to be formed through a four-
membered endoperoxide intermediate D. Scheme 2 provides a general mechanism for this Cu-catalyzed aerobic 
vinylogous oxidation reaction, but the details of each elementary step are unknown. Besides, the origin of regi-
oselectivity and the role of copper catalyst remain elusive. Furthermore, the inertness of γ,γ-dialkyl-substituted 

Scheme 1.  Copper-catalyzed vinylogous aerobic oxidation of γ,γ-disubstituted α,β- and β,γ-unsaturated 
compounds.

Scheme 2.  Proposed reaction mechanism for the copper-catalyzed vinylogous aerobic oxidation.

Scheme 3.  (a) The Representative Reaction for the DFT Calculation. (b) Binding of TMG,  PPh3, and THF with 
 CuII(OTf)2. Binding Free Energies Are in kcal/mol. (c) The Structures of  CuII(OTf)2 and  CuII(OTf)2(TMG)2. 
Bond Distances Are Given in Angstroms (Å). Note CYLview, 1.0b, https ://www.cylvi ew.org/downl oad.html.

https://www.cylview.org/download.html
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α,β-unsaturated compounds toward the aerobic oxidation reaction and the ineffectiveness of P(OEt)3 as reduc-
ing agent have not been fully understood. The understanding of the reaction mechanism is essential for further 
reaction development. Herein, we perform density functional theory (DFT)  calculations11 on this Cu-catalyzed 
vinylogous aerobic oxidation reaction to elucidate the detailed reaction mechanism, to explore the role of copper 
catalyst and phosphine, and to understand the observed regioselectivity and side-product formation.

Results and discussion
The resting state of copper catalyst. The  CuII(OTf)2 catalyzed reaction of methyl-(E)-4-phenylpent-
2-enoate E-1a with 1-equivalent TMG and 1-equivalent  PPh3 was selected as a representative case for the DFT 
calculations (Scheme 3a). We first examined the resting state of the copper catalyst. The  CuII(OTf)2 used in the 
experiment could be coordinated to the TMG base, the reducing agent  PPh3 or the solvent THF. As shown in 
Scheme 3b,c, the coordination of one TMG molecule to the  CuII(OTf)2 complex is exergonic by 33.9 kcal/mol. 
The subsequent coordination of a second TMG molecule to form the  CuII(OTf)2(TMG)2 complex would release 
22.1 kcal/mol of energy. The computational results suggest TMG is a stronger ligand than  PPh3 or THF. The 
binding with one molecule of  PPh3 or THF is less favorable than that of TMG by 3.1 or 22.4 kcal/mol, respec-
tively. In addition, the generation of cationic copper species from the dissociation of an  OTfɵ anion of the corre-
sponding neutral copper catalysts are all endergonic (Scheme S1). Thus, the four-coordinated  CuII(OTf)2(TMG)2 
(Scheme 3c) is considered to be the resting state of the copper catalyst in this reaction.

Figure 1.  Computed energy profile of copper-catalyzed vinylogous aerobic oxidation of α,β-unsaturated ester. 
Relative free energies (electronic energies) are in kcal/mol. The Hirshfeld charges of O atoms (highlighted in 
red) on INT4 and INT8 are listed.
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Reaction mechanism of copper‑catalyzed γ‑hydroxylation. Having determined the resting state of 
the copper catalyst, we then explored the mechanism of each elementary reaction step (i.e. deprotonation,  O2 
activation, and reduction) of the copper-catalyzed γ-hydroxylation of E-1a. For each step (except for  O2 activa-
tion), both reaction pathways with and without the involvement of copper catalyst were computed to examine 
the role of copper catalyst.

As of the deprotonation step, the direct deprotonation of substrate E-1a by the base (TMG) via TS1′ in the 
absence of copper catalyst requires an energy barrier of 22.3 kcal/mol and this step is energetically uphill by 
17.0 kcal/mol, which is thermodynamically unfavorable (Scheme S2). In the copper involved pathway as shown 
in Fig. 1, the  CuII(OTf)2(TMG)2 catalyst first dissociates an  OTfɵ ligand and binds with E-1a, generating a 
cationic copper-substrate species INT1. Subsequently, TMG abstracts a proton from INT1 via transition state 
TS1 with a free energy barrier of 19.8 kcal/mol and leads to a stable  CuII σ-complex, INT2 (−11.1 kcal/mol). 
The computational results thus suggest that the coordination of copper with the carbonyl group facilitates the 
deprotonation of E-1a and the formation of stable σ-complex. Further Hirshfeld population analysis demonstrates 
the  Cγ hydrogen atoms carries more positive charges when copper catalyst is bound to E-1a (Scheme S2). This 
indicates that the polarity-induced effect by the copper catalyst makes the hydrogen more acidic and thus easier 
to be  activated49–51. Hence, copper acts as a acid Lewis to mediate the first deprotonation step.

Following the deprotonation step, the molecular oxygen approaches the  CuII center and attacks the  Cγ of 
E-1a substrate in a concerted manner via a six-membered chair-like transition state (TS2, Fig. 2) which leads 
to a peroxide bridge between Cu and  substrate52–55. The distances of O–Cu and O–Cγ in TS2 are 2.23 and 
2.17 Å, respectively. Moreover, the O–O bond increases from 1.21 Å in  O2 to 1.26 Å in TS2, which indicates 
that the  O2 has been activated. This oxygen activation step needs to overcome a free energy barrier of 16.3 kcal/
mol and results in a γ-peroxy copper intermediate INT3. To understand the regioselectivity, the formation of 
α-hydroxylated product by the oxygen addition at the α-carbon via transition state α-TS2 was also calculated 
(Figure S1). The free energy of α-TS2 is 1.3 kcal/mol higher than that of TS2 which leads to the γ-hydroxylated 
product, in line with the experimental observation that γ-hydroxylated product is more favorable.

To explore the possibility of oxygen activation by binuclear copper  species52,53,56–58, we computed the reactions 
of  O2 with  CuII(OTf)2(TMG)2 and  CuI(OTf)(TMG)3, respectively, which afford peroxide bimetallic copper com-
pounds (Scheme S3). The former reaction is endergonic with 88.5 kcal/mol and thus can be ruled out. Although 
the latter one has a relatively low reaction free energy (14.9 kcal/mol), the formation of  CuI(OTf)(TMG)3 by 
the disproportionation of  CuII(OTf)2(TMG)2 needs 73.5 kcal/mol of energy which excludes the involvement of 
 CuI. The computational results thus suggest that the oxygen molecule is unlikely to be activated by binuclear 
copper complexes.
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After the  O2 activation step, the generated γ-peroxy copper species INT3 is reduced to the γ-hydroxylated 
product. The reduction process with and without copper (black and blue path in Fig. 1, respectively) was exam-
ined. In the black path, INT3 first undergoes rapid ligand exchange with  PPh3 to yield a complex INT4 which is 
further reduced by  PPh3 through transition state TS3. In this transition state,  PPh3 attacks the distal peroxide oxy-
gen while the copper transfers to the proximal oxygen in a concerted way to yield INT5. The subsequent proton 
transfer of INT5 via TS4 gives intermediate INT6 which proceeds ligand exchange to release the γ-hydroxylated 
product and regenerate  CuII(OTf)2(TMG)2 catalyst to complete the catalytic cycle. Alternatively, in the reduction 
process without the participation of copper (blue path), the INT3 first abstracts a proton from the protonated 
TMG and dissociates from copper to yield the hydroperoxyl compound INT8. Then INT8 undergoes reduction 
with  PPh3 via a concerted proton shift transition  state59 (TS5) leading to the γ-hydroxylation product. The cal-
culated activation barriers for the reduction process with and without the involvement of copper (TS3 vs. TS5) 
are 18.0 and 23.2 kcal/mol, respectively, which indicates that copper facilitates the reduction step. This could be 
attributed to two main reasons: (1) the incorporation of copper serves to withdraw electron density from the 
peroxy which helps to polarize the O–O bond as suggested by a larger difference in charges of O atoms on INT4 
than that for INT8 (Fig. 1); (2) additional interaction between Cu and the phosphorous atom stabilizes TS3.

Overall, the black path of Fig. 1 that involves substrate association, deprotonation,  O2 activation, reduction, 
proton transfer and product dissociation was calculated to be the most favorable pathway for the γ-hydroxylation 
of E-1a. The copper-assisted deprotonation step is the rate-determining step, where TMG base plays a pivotal 
role in hydrogen abstraction. This result coincides with the experimental observation that in the absence of TMG 

-11.7
(-22.6)
INT3

TS3

PPh3

-9.9
(-21.9)

INT4

TMG

6.3
(-6.2)

-5.4
(-19.7)

INT4'

10.7
(-2.4)
TS3'

OMe

O
Ph

Me
O

O

OMe

O
Ph

Me

CuIIO

O OTf
PPh3

TMG

CuII

OTf
TMG TMG

OMe

O
Ph

Me
O

O

CuII

OTf
PPh3

TMG

INT3

INT4

TS3

-77.5
(-73.9)

INT5

-92.5
(-88.4)

INT5

OMe

O
Ph

Me
O

O

CuII

OTf
P(OEt)3 TMG

INT4'

OMe

O
Ph

Me

CuIIO

O OTf

P(OEt)3

TMG

TS3'

OMe

O
Ph

Me

CuII
O

OTf

TMG

INT5

PPh3

O

P(OEt)3

O

INT5

DFT:

hPPtnegAgnicudeR 3 P(OEt)3

Experiment:

%0%28dleiynoitalyxordyh-

TMG
P(OEt)3

(c)

(b)

(a)

PPh3 P(OEt)3

�

Figure 3.  (a) The reaction yields of γ-hydroxylated productusing different reducing agents. (b) Theoretically 
calculated reduction process using different reducing agents. Relative free energies (electronic energies) are 
in kcal/mol. (c) The electrostatic potential surfaces (ESP) of  PPh3 and P(O)Et3 mapped between − 6.096e−2 
to + 6.096e−2. Red as negative extreme and blue as positive extreme. Note GaussView6, https ://gauss ian.com/
gv6ma in/.

https://gaussian.com/gv6main/
https://gaussian.com/gv6main/


6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1304  | https://doi.org/10.1038/s41598-020-80188-2

www.nature.com/scientificreports/

there is no product  generated45. Furthermore, our computational results suggest the activation of  O2 molecule 
proceeds via a six-membered chair-like transition state, which is different from the common end-on or side-on  O2 
activation  model7 and accounts for the regioselective γ-carbon activation. In addition, a copper-mediated reduc-
tion process in which copper helps to polarize the O–O bond was unveiled by our computation. The reduction of 
peroxy complexes by phosphine has been reported in many aerobic  reactions60–65, while the detailed mechanism 
is rarely studied. The transition-metal assisted reduction model established in this work provides a possible 
mechanism for similar reactions. Notably, copper remains as  CuII oxidation state through the whole catalytic 
cycle and plays vital roles in multiple steps to facilitate the deprotonation,  O2 activation, as well as reduction.

The effect of different reducing agents. The reducing agent plays an important role in this copper-
catalyzed vinylogous γ-hydroxylation. A high-yield (82%) of the γ-hydroxylated product was obtained with 
 PPh3 as a reducing agent, however, the reaction did not occur when  PPh3 was changed to P(OEt)3 (Fig. 3a). In 
line with the experiment, our computation in Fig. 3b shows that the reduction with P(OEt)3 (TS3′) is disfavored 
by 4.4 kcal/mol compared to the corresponding reduction process with  PPh3 (TS3), which supports the  PPh3 is 
a better reducing agent than P(OEt)3 for this reaction. The calculated electrostatic potential surfaces (ESPs)66–69 
in Fig. 3c clearly indicate the P atom of  PPh3 is more electron-rich. Therefore, the  PPh3 could better stabilize the 
electron-deficient Cu center than P(OEt)3, accounting for the lower barrier of TS3.

The reactivity of different substrates. The original experimental work reported that γ-aryl-γ-alky-
disubstituted α,β-unsaturated compound E-1a and γ-aryl-γ-alky-disubstituted β,γ-unsaturated compound 
E-1b are both reactive and generates the same γ-hydroxylated product (Table 1, entry 1 and 2). The γ,γ-dialkyl-

Table 1.  The reaction yields and the calculated energy barriers of deprotonation transition states for different 
substrates.

Figure 4.  The relationship between deprotonation the energy barriers and the corresponding C–H bond 
dissociation energy (BDE) for different substrates.
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substituted β,γ-unsaturated substrate 2b also exhibits good reactivity (entry 3). However, the γ,γ-dialkyl-
substituted α,β-unsaturated compound E-2a was completely inert (entry 4). Further computation was per-
formed to understand the observed reactivities of different α,β- or β,γ-unsaturated substrates. As indicated by 
our DFT studies, the deprotonation process is the rate-determining step. Thus, we examined the deprotonation 
transition states for different substrates to evaluate their reactivities. The calculated energy barriers of deprotona-
tion follow the order: ∆∆G≠(TS1E-1b) < ∆∆G≠(TS1E-1a) < ∆∆G≠(TS12b) < ∆∆G≠(TS1E-2a), which is consistent with 
the trend of yield (Table 1). To obtain deep insights, the bond dissociation energy (BDE)70 of the corresponding 
C–H bonds (highlighted in red) were calculated to evaluate the intrinsic acidity. As shown in Figs. 4, a good lin-
ear association between the deprotonation free energy barriers (∆∆G≠) and the BDE values were observed. This 
indicates that the inherent strength of the C–H bond is a key factor affecting the deprotonation process, which is 
related to the substrate reactivity. In addition, the (E)-α,β-unsaturated esters E-1a and (E)-β,γ-unsaturated esters 
E-1b generated the same γ-hydroxylated product in experiments. Based on the understanding of reaction mech-
anism and computational results, we concluded that the deprotonation of both (E)-α,β-unsaturated ester and 
(E)-β,γ-unsaturated ester would generate the same  CuII σ-complex and thus leads to the same γ-hydroxylated 
isomer. However, the reactivities of these two substrates (E-1a and E-1b) are different. E-1a has a higher depro-
tonation energy barrier than E-1b by 2.2 kcal/mol corresponding with a lower yield of E-1a and further supports 
the deprotonation is the rate-determining step. 

The mechanism of byproduct generation. One of the main problems for the hydroxylation of α,β-
unsaturated compounds is the formation of oxidative fragments. In the original experiment, a side product ace-
tophenone was detected and proposed to be generated by oxidative fragmentation of a four-membered endop-
eroxide intermediate D as depicted in Scheme 2. We also explored the formation of acetophenone byproduct. 
As shown in Scheme 2, the main product path and the byproduct path differentiate from the γ-peroxy copper 
intermediate.

Starting with this intermediate (INT3), three possible pathways leading to the acetophenone byproduct were 
examined (Scheme S4). A reaction pathway involving a peroxide  radical71–78 which is formed via the homolysis 
of Cu–O bond of INT3 needs to overcome a reaction energy barrier of 29.2 kcal/mol (path I in Scheme S4). 
Alternatively, INT3 could undergo an intramolecular alkene insertion into the Cu–O bond via TSB1 to form 
four-membered endoperoxide INTB1 which is similar to the endoperoxide intermediate D proposed in the 
original experimental work (Fig. 5). But the further homolysis of the C–C and O–O bond of INTB1 via TSB2 
to cleavage the four-membered ring which affords the byproduct is highly unfavorable with an energy barrier of 
32.8 kcal/mol. Instead, our computational results demonstrated that copper can facilitate the cycloelimination 
process by transferring to the β-oxygen atom of endoperoxide (TSB3) to maintain the conjugated α,β-unsaturated 
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structure, lowering the activation barrier by 7.5 kcal/mol. The direct cycloelimination of four-membered peroxide 
complexes was proposed in many  works79–83 and our results suggested a possible role of transition metal to facili-
tate the oxidative fragmentation process and to provide the theoretical basis for further reaction improvement.

Conclusion
In summary, we have conducted DFT studies on the Cu-catalyzed vinylogous aerobic oxidation of γ,γ-
disubstituted α,β- and β,γ-unsaturated compounds. As summarized in Fig. 6, computational results unveiled a 
detailed reaction mechanism of γ-hydroxylation reaction that includes six steps: substrate association, deproto-
nation,  O2 activation, reduction, proton transfer and product dissociation (black path), and the deprotonation 
is the rate-determining step. The regioselectivity is controlled by the  O2 activation step which prefers to proceed 
via a six-membered chair-like transition state, leading to a γ-oxidation intermediate. Besides, the inefficiency of 
P(OEt)3 and inertness of γ,γ-dialkyl substituted β,γ-unsaturated ester were also understood by computations. A 
pathway consisting of intramolecular alkene insertion, cycloelimination, and product dissociation (brownish-
green path) was revealed to account for the acetophenone byproduct generation. The understanding of the 
reaction mechanism laid a theoretical foundation for further reaction development.

The copper retains the + 2 oxidation state  (CuII) and participates in the whole catalytic cycle of both main 
product and byproduct formation. Notably, it plays vital roles in multiple steps: (1) facilitates the substrate 

Figure 6.  The proposed catalytic cycle for the copper-catalyzed vinylogous aerobic oxidation of α,β- and β,γ-
unsaturated compounds.
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deprotonation by increasing the acidity of C–H; (2) activates  O2 via a six-membered chair-like model which is dif-
ferent from the common end-on or side-on  O2 activation model; (3) assists the reduction of peroxyl intermediate 
through a 1,2-migration transition state; and (4) promotes the cycloelimination of endoperoxide by transferring 
to oxygen to maintain the conjugated α,β-unsaturated structure. The understanding of mechanism for  O2 activa-
tion and O–O bond cleavage are essential for the development of transition metal-catalyzed aerobic reactions. 
The six-membered chair-like transition state for  O2 activation and copper-mediated O–O bond cleavage models 
(TS3 and TSB3) have not been documented in literature to the best of our knowledge and may provide hints 
for the mechanistic studies and future development of transition metal-catalyzed aerobic oxidation reactions.

Computational details
All the calculations were performed with Gaussian 09  package84. Geometries were optimized in gas phase by 
using unrestricted B3LYP-D385–88 and a mixed basis set of  SDD89,90 for Cu and P, and 6-31G(d)91,92 basis set for 
all other atoms. Optimized geometries were verified by frequency computations as minima (zero imaginary 
frequencies) or transition state (a single imaginary frequency) at the same level of theory. The transition states 
(TSs) were also confirmed by viewing normal mode vibrational vector. Solvent effect was included by single-
point energy calculation using SMD model with tetrahydrofuran (THF) as the solvent and B3LYP-D3 method 
with def2-TZVP basis set for Cu and P, and 6-311+G(d, p) basis set for other  atoms93–97. All relative Gibbs free 
energies and electronic energies (at 298.15 K and 1 atm) were reported in kcal/mol. The Hirshfeld  charges98 
were obtained from the B3LYP-D3 single-point calculation. The 3D structures were generated by  CYLview99.
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