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RELN encodes a large, secreted glycoprotein integral to proper neuronal positioning
during development and regulation of synaptic function postnatally. Rare, homozygous,
null mutations lead to lissencephaly with cerebellar hypoplasia (LCH), accompanied by
developmental delay and epilepsy. Until recently, little was known about the frequency
or consequences of heterozygous mutations. Several lines of evidence from multiple
studies now implicate heterozygous mutations in RELN in autism spectrum disorders
(ASD). RELN maps to the AUTS1 locus on 7q22, and at this time over 40 distinct
mutations have been identified that would alter the protein sequence, four of which are
de novo. The RELN mutations that are most clearly consequential are those that are
predicted to inactivate the signaling function of the encoded protein and those that fall
in a highly conserved RXR motif found at the core of the 16 Reelin subrepeats. Despite
the growing evidence of RELN dysfunction in ASD, it appears that these mutations in
isolation are insufficient and that secondary genetic or environmental factors are likely
required for a diagnosis.
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Autism spectrum disorder (ASD) currently affects as many as 1 in 45 children in the
United States (Zablotsky et al., 2015). ASD incorporates Asperger, autism, and pervasive
developmental disorder-not otherwise specified (PDD-NOS), and is characterized by social,
behavioral, and language deficits. A small percentage (<20%) of ASD known as ‘‘syndromic
autism’’ is attributable to monogenetic diseases, the two most common being fragile
X syndrome and tuberous sclerosis (Miles, 2011; Persico and Napolioni, 2013). Other
monogenetic disorders that have a high frequency of ASD but are less prevalent in the general
population include Prader-Willi/Angelman, 15q microduplication, Rett, Smith-Lemli-Opitz,
and Timothy syndromes.

The remaining 80% of ASD cases are considered ‘‘non-syndromic autism’’ and are the focus of
high throughput sequencing efforts. A better understanding of how candidate genes contribute to
ASD at the molecular level is key to understanding how so many variants converge on a common
phenotype. RELN, encoding a large secreted glycoprotein, expressed in the brain and critical for
proper brain development and synapse function, is consistently cited as a candidate gene for ASD
(Persico and Napolioni, 2013).

In 2001 the International Molecular Genetic Study of Autism Consortium (IMGSAC)
described a region on chromosome 7q as the peak region of linkage and first autism
susceptibility locus (AUTS1; IMGSAC, 1998). Subsequent linkage studies supported
this finding (IMGSAC, 2001a,b; Lamb et al., 2005). Given the role of RELN in
neurodevelopment and its location at chromosome 7q22, RELN quickly emerged
as a candidate gene for autism and numerous studies (>15) have investigated the
occurrence of ASD risk-associated single nucleotide polymorphism (SNPs) in RELN
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(DeSilva et al., 1997; Persico et al., 2001; Krebs et al., 2002;
Zhang et al., 2002). These and other studies had mixed results,
possibly due to varying study designs, ethnic populations, and
mathematical interpretations. A recent meta-analysis considered
three known SNPs in RELN, and concluded that one rs362691
was significantly associated with an increased risk of ASD (Wang
et al., 2014a).

While SNP analysis supports heterozygous mutations
in RELN, it cannot explain how they contribute to ASD.
Many genes have been proposed as candidates for ASD
on the basis of sequencing analysis, but like RELN, their
pathological mechanism remains speculative. Instead of
perseverating on a particular individual SNP, researchers
are now considering candidate genes on a much broader
scale. The sum of coding and non-coding variants from
genome-wide screens coupled with network analyses, gene
and protein expression, and epigenetic modifications provide
evidence that helps understand functionally how a gene
contributes to ASD (Neale and Sham, 2004). From these
types of analyses emerges an approach for deciphering
the role of RELN in ASD at the molecular level, beyond
association.

RELN expression is both spatially and temporally consistent
with ASD, which is thought to originate as a neurodevelopmental
disorder that persists into postnatal life. Homozygous loss
of RELN leads to severe neuronal dysplasia in several
brain regions including the neocortex, hippocampus, and
cerebellum. Patients homozygous null for RELN suffer from
lissencephaly with cerebellar hypoplasia (LCH), a profoundly
developmentally debilitating disease (Hong et al., 2000; Chang
et al., 2007). Patients with LCH also suffer from epilepsy, but
no autistic behavior has been reported in the patients or their
parents.

RELN is first expressed by Cajal Retzius (CR) cells, and
other less well defined marginal zone neurons, that act as
pioneer neurons by regulating the positioning of projection
neurons into discrete layers in the neocortex (D’Arcangelo et al.,
1995; Hirotsune et al., 1995; Ogawa et al., 1995; Ikeda and
Terashima, 1997; Meyer et al., 2004). CR eventually degenerate
and a population of GABA-ergic interneurons expresses RELN
postnatally (Pesold et al., 1998). In the developing cerebellum,
RELN is first expressed by cells of the rhombic lip that
migrate to populate the external granule layer and regulate
the position of Purkinje neurons (D’Arcangelo et al., 1995;
Miyata et al., 1997). Postnatally, cerebellar granule cell neurons
(GCNs) now positioned in the internal granule layer continue to
secrete Reelin, although its postnatal role is not clear (Sinagra
et al., 2008). The brain size and architecture are relatively
normal in the heterozygous reeler mouse (HRM); however,
male HRM, thought to model ASD, have decreased numbers
of Purkinje cells (Hadj-Sahraoui et al., 1996; Biamonte et al.,
2009).

Traditionally, the cerebellum is considered responsible for
fine-tuning movement, but its role in cognitive and emotional
functions is now appreciated (Buckner, 2013). Acute adult
injury results in the classical cerebellar signs early, such
as asynergy, followed by subtle, often overlooked cognitive

and communication impairments. In contrast, damage to
the cerebellum during development leads to cognitive and
communication defects. Interestingly, these early injuries have
also been associated with the occurrence of ASD, which
highlights a role for the cerebellum in its etiology (Becker and
Stoodley, 2013; Wang et al., 2014b).

One of the most consistent anatomic findings in ASD is a
decrease in cerebellar Purkinje cells and decreased volume of
the vermis (Fatemi et al., 2012; D’Mello et al., 2015; Hampson
and Blatt, 2015). In the most recent stereologic study, Skefos
et al. (2014) found that Purkinje cells were decreased in ASD
individuals. Compared to previous studies, this group included
patients with cognitive delay and epilepsy, showing that this
defect is widespread across ASD. The role of Purkinje cells and
their ability to drive ASD behaviors as seen in tuberous sclerosis,
has been recently demonstrated in a mouse model (Tsai et al.,
2012a). They used a conditional knock-out of TSC1 in Purkinje
cells to show that dysfunction in these cells was sufficient to
decrease interest in novel mouse social interaction, increase
grooming, and increase ultrasonic vocalizations—behaviors
consistent with other ASD mouse models (Silverman et al.,
2010).

Not only is RELN expression consistent with ASD, but the
Reelin signaling pathways intersect prominent ASD protein
networks. To understand how so many disparate genes can
converge on a similar phenotype, grouping candidate genes into
networks has helped to uncover cellular processes that might be
driving ASD. Network analysis continually implicates synaptic
function and dysregulated protein translation, particularly at the
synapse (Gilman et al., 2011; Sanders et al., 2012; Ebert and
Greenberg, 2013; De Rubeis et al., 2014).

Canonical Reelin signaling is initiated by Reelin binding
its receptors very-low-density-lipoprotein receptor (VLDLR)
and apolipoprotein E receptor 2 (ApoER2; LRP8; D’Arcangelo
et al., 1999; Hiesberger et al., 1999; Trommsdorff et al., 1999).
Disabled-1 (Dab1) is recruited to the receptors, which then
activates Src family kinases and leads to reciprocal activation
through tyrosine phosphorylation of Dab1 (Howell et al.,
1997, 1999; Rice et al., 1998; Arnaud et al., 2003; Bock and
Herz, 2003). This signaling initiates a number of signaling
cascades, which have been extensively reviewed (Tissir and
Goffinet, 2003; D’Arcangelo, 2014; Sekine et al., 2014). Dab1
and VLDLR have been suggested to be associated with ASD
risk, but overall there is little evidence directly implicating
Dab1, VLDLR, ApoER2, SRC, or FYN in ASD (Fatemi
et al., 2005; Iwata et al., 2012; Li et al., 2013; Shen et al.,
2015).

Particularly relevant to ASD network analyses are recent
studies of the integral role of Reelin as a modulator of
the postnatal synapse and the ability of Reelin to enhance
LTP in the hippocampus (Weeber et al., 2002; Beffert et al.,
2005; Chen et al., 2005). Secretion of Reelin, however, is
constitutive and independent of synaptic activity (Lacor et al.,
2000). Canonical Reelin-ApoER2/VLDLR-Dab1 signaling leads
to phosphorylation of the NMDA receptor (NMDAR), increased
calcium flux with glutamate stimulation, as well as altered
intermembrane mobility of NR2B and NR2A subunit-containing
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FIGURE 1 | Autism spectrum disorders (ASD) candidate genes cluster into functional networks, and the two most prominent are synapse
structure/function and protein translational control. The Reelin-signaling pathway intersects both of these networks. Reelin binds its receptors ApoER2 and
very-low-density-lipoprotein receptor (VLDLR). The adapter protein Dab1 binds the cytoplasmic NPXY motif of the receptors and is phosphorylated by Src family
kinases. This reciprocally activates Src, which leads to phosphorylation of the NMDA receptor (NMDAR) as well as downstream AKT/PI3K signaling that intersects
the mTOR pathway.

receptors (Beffert et al., 2005; Chen et al., 2005; Groc et al.,
2007; Campo et al., 2009; Ventruti et al., 2011). Reelin is also
capable of modulating presynaptic neurotransmitter release by
regulating the VAMP7 and SNAP-25 interaction (Bal et al.,
2013).

Structurally, ApoER2, NMDAR, PTEN, and PSD-95 form
a complex at the post-synaptic density in a Reelin-dependent
manner (Ventruti et al., 2011; Figure 1). Neurexins and
neuroligins, pre- and post-synaptic cell adhesion molecules
respectively, organize the synapse, and each has been implicated
in ASD (Dean and Dresbach, 2006). Neuroligins interact
with PSD-95, which in turn is anchored to the cytoskeleton
through SHANK proteins (Ebert and Greenberg, 2013).
SHANK3 mutations often lead to Phelan-McDermid syndrome,
which frequently presents with ASD (Grabrucker et al.,
2011). PSD-95 expression is also regulated by fragile X
mental retardation protein (FMRP), the protein implicated
in fragile X syndrome (Tsai et al., 2012b). Hypermethylation
of a trinucleotide expansion leads to decreased expression
of FMRP and subsequent augmented synaptic mRNA
translation.

Reelin also directly intersects protein translation control,
the second major candidate gene network and hallmark of
Fragile X and tuberous sclerosis syndromes. Tuberous sclerosis
is caused by mutations in either TSC1 or TSC2 genes,
which leads to hyperactivation of mTORC1 and subsequent
increases in protein translation (Crino, 2011). Canonical Reelin
signaling activates Akt, which phosphorylates TSC1/2 and
leads to dendrite growth and branching (Jossin and Goffinet,
2007). Recently, Reelin and Dab1 protein expression were
shown to be increased in TSC2 conditional knock-out mice
as well as human cortical tubers (Moon et al., 2015). Here,
activation of mTOR signaling may impair Cul5-mediated Dab1
degradation. Although Reelin signaling through mTOR is still
incompletely understood, it is clear that it plays a significant
role.

Further evidence for RELN involvement in ASD is the
observation of decreased expression of RELN transcript and
encoded protein in ASD patients. Decreased Reelin was detected
in the cerebellum of ASD subjects as compared to controls
(Fatemi et al., 2001, 2005) and in the superior frontal cortex
(Fatemi et al., 2005). RELN mRNA in these areas was
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decreased, as was the dab1 transcript. VLDLRmRNA levels were
increased.

Part of the elusiveness of ASD etiology is the likelihood
of gene-environment interactions. Maternal stressors during
gestation have been shown to alter RELN expression through
promoter methylation (Giovanoli et al., 2014). MeCP2, the gene
implicated in Rett and MeCP2 duplication syndromes, which
share features of ASD, shows increased binding to the RELN
promoter in human ASD cerebella (Zhubi et al., 2014). This
binding corresponds with decreased RELN mRNA expression,
consistent with the aforementioned reduced RELN expression in
ASD tissue samples.

With the advent of more efficient and affordable sequencing
technologies, whole-exome sequencing (WES) has become
a new, popular approach for identifying candidate genes.
WES identifies probable disease-contributing mutations that
disrupt protein function. The average rate of mutation for
the human genome is 1.2 × 10−8 per nucleotide. Over the
entire genome, Kong et al. (2012) detected 63.2 de novo
mutations per trio studied, but only 2% of the human
genome is actually coding sequence (Kong et al., 2012).
Therefore, in agreement with these findings, each exome
has approximately only a single de novo protein changing
allele (Gratten et al., 2013). Focusing then on only detected
de novo events is a way to streamline candidate gene
discovery.

Initial expectations were that individuals with yet unsolved
complex disorders would have increased indels, CNVs, and
frameshift, nonsense, and missense mutations compared to
controls. While findings support that nonsense mutations may
be more frequent in ASD than controls, the general finding is
that there is not a dramatic overall increase in de novo mutation
rates in ASD (Neale et al., 2012; Sanders et al., 2012; Samocha
et al., 2014). Furthermore, de novo mutations do not make up a
large enough proportion of cases to explain the elusive genetics
of ASD, and likely represent less than 5% of the overall ASD risk
(Neale et al., 2012).

Currently more than two de novo mutations in a gene
support its candidacy, although this threshold will increase
with increasing patients to control for multiple testing. RELN
currently has four unique documented de novo ASD-associated
mutations, three of which are likely pathological (Neale et al.,
2012; De Rubeis et al., 2014; Iossifov et al., 2014; Yuen et al.,
2015). Furthermore, RELN was 1 of 22 genes with a false
discovery rate of < 0.05 in a study of nearly 4000 ASD
patients (De Rubeis et al., 2014). De novo mutations, while
directly explaining very few cases, are likely to contribute, at
least in part, to disease in the proband in whom they were
discovered. Given the repeated implication of particular gene
signaling networks in ASD, understanding how a single de novo
mutation influences this system at the molecular level will help
explain a much larger number of ASD cases (Gratten et al.,
2013).

Large and small scale WES studies of ASD individuals
consistently identify missense and nonsense mutations in RELN,
leading researchers to emphasize its importance in ASD (De
Rubeis et al., 2014). There are currently over 40 unique RELN

variants identified in ASD probands that are absent in controls
(Bonora et al., 2003; Neale et al., 2012; Koshimizu et al.,
2013; De Rubeis et al., 2014; Iossifov et al., 2014; Yuen et al.,
2015; Zhang et al., 2015; Figure 2). These mutations have
not been functionally characterized; however, strong predictions
regarding their consequences can be deduced based on Reelin
structure and function.

Reelin, a large 410 kDa protein, comprises eight Reelin repeat
domains (D’Arcangelo et al., 1995; Nogi et al., 2006; Panteri
et al., 2006; Yasui et al., 2007). Each Reelin repeat domain is
composed of two subrepeat domains (A and B) linked by an
EGF-like domain that share highly conserved sequences and
are structurally similar. Reelin binds its receptors ApoER2 and
VLDLR through two lysine residues on subrepeat 6A (Yasui et al.,
2010).

The first prediction from structure-function analysis is
that any nonsense mutation that truncates Reelin before
the receptor-binding domain will be loss-of-function. In this
instance, the transcript would either be degraded by nonsense-
mediated decay or it would produce a protein product
unable to initiate canonical signaling. Two mutations with
this characteristic have been identified—a de novo mutation
Q417X and a frameshift mutation that disrupts Reelin after
E221 (De Rubeis et al., 2014). Both of these mutations occur
before the receptor binding residues K2359 and K2466 (mouse
equivalents K2360, K2467; Yasui et al., 2010). Whether these
mutations could also contribute to a possible gain-of-function,
perhaps through a non-canonical Reelin pathway is unclear,
since the receptor-ligand domain is unknown (Lee et al.,
2014).

Alternatively, one may predict that mutations may interfere
with conserved domains, altering Reelin function in a way
that contributes to the ASD phenotype. Aligning the subrepeat
sequences of Reelin (Clustal Omega) and plotting the mutations
identified in ASD genetic studies, we have found that
Reelin is enriched in mutations that lie within an RXR
consensus sequence that occurs once in each subrepeat (Bonora
et al., 2003; De Rubeis et al., 2014; Iossifov et al., 2014;
Figure 2). Of the identified variants, seven unique mutations
fall within the RXR consensus sequence—a much larger
percentage than would be expected by chance (R1742W,
R1742Q, R2290C, R2290H, R2292C, R2639H, R2833S). R2290C,
a mutation falling within the RXR consensus sequence, was
discovered as a de novo variant originating on the paternal
chromosome (Iossifov et al., 2014). This RXR consensus region
is highly conserved across evolution, suggesting a particular
functional relevance for this region that is linked to ASD
pathogenesis.

Each subrepeat is composed of an 11-stranded beta-
jelly roll fold, and the RXR consensus sequence is found
at the beginning of the 10th beta sheet (Nogi et al., 2006).
Arginine is important structurally for hydrogen bonding with
the protein backbone (Borders et al., 1994). Disruption at
this position could compromise protein folding, exposing
the hydrophilic pore and enabling novel interactions.
Alternatively, considering that Reelin may serve as an
extracellular matrix (ECM) molecule, these closely spaced
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arginines and their neighboring tryptophan residues may
be important for glycosaminoglycan binding (Panteri et al.,
2006).

Clustering of mutations within this RXR consensus sequence
argues against random mutations leading to complete loss-
of-function. Presumably many mutations throughout the 3460
amino acids of Reelin could disrupt function. Therefore, a
mutational hotspot might suggest a particular mode of loss-of- or
gain-of-function, the details of which will need to be determined
experimentally.

Animal models of RELN mutations may ultimately be
necessary to parse out the link between RELN and ASD.
Thus far, simple loss-of-function alleles have not provided
overwhelming evidence that heterozygous RELN mutations in
the mouse produce overt or consistent behavioral phenotypes
reminiscent of ASD (Moy and Nadler, 2008). Similarly, the
human genetics of RELN mutations suggests that a second hit,
either environmental or genetic, may be necessary for ASD.
Parents of patients with LCH are heterozygous for RELN loss-
of-function alleles but do not have ASD (Hong et al., 2000;
Chang et al., 2007). Approximately half of the ASD-associated
mutations identified in RELN, including truncating and RXR
mutations, are inherited from normal parents. In addition,
following the same method of characterizing mutations in
controls from ASD studies, here too there are examples of a
nonsense mutation truncating Reelin before the receptor binding
domain (Q849X) and RXR consensus mutations (R1198H,
R2104H, and R2292H; Bonora et al., 2003; De Rubeis et al.,
2014).

Since RELN is particularly susceptible to environment-
driven epigenetic changes, one can hypothesize that perhaps
a single mutation, which decreases its expression, combined
with environmental down-regulation of Reelin production,
could drive Reelin protein levels below a critical threshold
in the brain. Or, perhaps another modifying gene allele in
trans provides this added susceptibility. One likely contributing
factor is sex. RELN mutations occur in approximately four
times as many male as female probands. And indeed,
testosterone and estrogen have differing effects on RELN

expression and HRM phenotypes (Hadj-Sahraoui et al., 1996;
Absil et al., 2003; Biamonte et al., 2009; Macri et al.,
2010).

Adding to the excitement and promise of deciphering the
role of RELN in ASD is evidence that Reelin supplementation
or increased production could potentially reverse behavioral
consequences of decreased Reelin signaling (Rogers et al., 2011,
2013; Hethorn et al., 2015). As mutations in RELN continue to
be identified in genetic studies and the molecular mechanisms
of these mutations are elucidated, we will better understand
the role of Reelin in neuronal signaling, development,
and ASD.

In the same way that science stresses transitioning from
the bench to the bedside, we must also start to move gene
candidates from the computer to the bench. RELN is now well
positioned to make such a transition in ASD research. This
approach will not be without its challenges, since it is predicted
that for RELN and many of the other candidate genes, a single
mutation may not be sufficient to cause overt ASD phenotypes,
and gene-gene or gene-environment interactions will need to be
considered.

AUTHOR CONTRIBUTIONS

DBL wrote the manuscript and BWH suggested the topics to be
covered and edited its content.

FUNDING

This work was supported by R01 NS073662 (BWH) and F31
NS086731 (DBL). National Institute of Neurological Disorders
and Stroke/National Institutes of Health.

ACKNOWLEDGMENTS

We would like to thank Eric Olson for discussions, Eric Larsen
for explaining the processes for filtering and listing mutations
on SFARI Gene-Autism Database, and Bonnie Lee Howell for
editing the manuscript.

REFERENCES

Absil, P., Pinxten, R., Balthazart, J., and Eens, M. (2003). Effects of testosterone on
Reelin expression in the brain of male European starlings. Cell Tissue Res. 312,
81–93. doi: 10.1007/s00441-003-0701-9

Arnaud, L., Ballif, B. A., Förster, E., and Cooper, J. A. (2003). Fyn tyrosine kinase
is a critical regulator of Disabled-1 during brain development. Curr. Biol. 13,
9–17. doi: 10.1016/s0960-9822(02)01397-0

Bal, M., Leitz, J., Reese, A. L., Ramirez, D. M., Durakoglugil, M., Herz, J.,
et al. (2013). Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and
selectively augments spontaneous neurotransmission. Neuron 80, 934–946.
doi: 10.1016/j.neuron.2013.08.024

Becker, E. B., and Stoodley, C. J. (2013). Autism spectrum disorder and the
cerebellum. Int. Rev. Neurobiol. 113, 1–34. doi: 10.1016/b978-0-12-418700-9.
00001-0

Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I.,
Sweatt, J. D., et al. (2005). Modulation of synaptic plasticity and
memory by Reelin involves differential splicing of the lipoprotein

receptor Apoer2. Neuron 47, 567–579. doi: 10.1016/j.neuron.2005.
07.007

Biamonte, F., Assenza, G., Marino, R., D’Amelio, M., Panteri, R., Caruso, D., et al.
(2009). Interactions between neuroactive steroids and reelin haploinsufficiency
in Purkinje cell survival. Neurobiol. Dis. 36, 103–115. doi: 10.1016/j.nbd.2009.
07.001

Bock, H. H., and Herz, J. (2003). Reelin activates SRC family tyrosine kinases in
neurons. Curr. Biol. 13, 18–26. doi: 10.1016/s0960-9822(02)01403-3

Bonora, E., Beyer, K. S., Lamb, J. A., Parr, J. R., Klauck, S. M., Benner, A., et al.
(2003). Analysis of reelin as a candidate gene for autism. Mol. Psychiatry 8,
885–892. doi: 10.1038/sj.mp.4001310

Borders, C. L., Broadwater, J. A., Bekeny, P. A., Salmon, J. E., Lee, A. S.,
Eldridge, A. M., et al. (1994). A structural role for arginine in proteins: multiple
hydrogen bonds to backbone carbonyl oxygens. Protein Sci. 3, 541–548. doi: 10.
1002/pro.5560030402

Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight
from anatomy and neuroimaging. Neuron 80, 807–815. doi: 10.1016/j.neuron.
2013.10.044

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 March 2016 | Volume 10 | Article 84

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Lammert and Howell RELN Mutations in Autism Spectrum Disorder

Campo, C. G., Sinagra, M., Verrier, D., Manzoni, O. J., and Chavis, P.
(2009). Reelin secreted by GABAergic neurons regulates glutamate
receptor homeostasis. PLoS One 4:e5505. doi: 10.1371/journal.pone.00
05505

Chang, B. S., Duzcan, F., Kim, S., Cinbis, M., Aggarwal, A., Apse, K. A., et al.
(2007). The role of RELN in lissencephaly and neuropsychiatric disease. Am.
J. Med. Genet. B. Neuropsychiatr. Genet. 144B, 58–63. doi: 10.1002/ajmg.
b.30392

Chen, Y., Beffert, U., Ertunc, M., Tang, T. S., Kavalali, E. T., Bezprozvanny, I.,
et al. (2005). Reelin modulates NMDA receptor activity in cortical neurons.
J. Neurosci. 25, 8209–8216. doi: 10.1523/jneurosci.1951-05.2005

Crino, P. B. (2011). mTOR: a pathogenic signaling pathway in developmental brain
malformations. Trends Mol. Med. 17, 734–742. doi: 10.1016/j.molmed.2011.
07.008

D’Arcangelo, G. (2014). Reelin in the years: controlling neuronal migration and
maturation in the mammalian brain. Adv. Neurosci. 2014:597395. doi: 10.
1155/2014/597395

D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and
Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24,
471–479. doi: 10.1016/s0896-6273(00)80860-0

D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and
Curran, T. (1995). A protein related to extracellular matrix proteins deleted
in the mouse mutant reeler. Nature 374, 719–723. doi: 10.1038/374719a0

Dean, C., and Dresbach, T. (2006). Neuroligins and neurexins: linking cell
adhesion, synapse formation and cognitive function. Trends Neurosci. 29,
21–29. doi: 10.1016/j.tins.2005.11.003

De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E.,
et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism.
Nature 515, 209–215. doi: 10.1038/nature13772

DeSilva, U., D’Arcangelo, G., Braden, V. V., Chen, J., Miao, G. G., Curran, T.,
et al. (1997). The human reelin gene: isolation, sequencing and mapping on
chromosome 7. Genome Res. 7, 157–164. doi: 10.1101/gr.7.2.157

D’Mello, A.M., Crocetti, D.,Mostofsky, S. H., and Stoodley, C. J. (2015). Cerebellar
gray matter and lobular volumes correlate with core autism symptoms.
Neuroimage Clin. 7, 631–639. doi: 10.1016/j.nicl.2015.02.007

Ebert, D. H., and Greenberg, M. E. (2013). Activity-dependent neuronal signalling
and autism spectrum disorder. Nature 493, 327–337. doi: 10.1038/nature
11860

Fatemi, S. H., Aldinger, K. A., Ashwood, P., Bauman,M. L., Blaha, C. D., Blatt, G. J.,
et al. (2012). Consensus paper: pathological role of the cerebellum in autism.
Cerebellum 11, 777–807. doi: 10.1007/s12311-012-0355-9

Fatemi, S. H., Snow, A. V., Stary, J. M., Araghi-Niknam, M., Reutiman, T. J.,
Lee, S., et al. (2005). Reelin signaling is impaired in autism. Biol. Psychiatry
57, 777–787. doi: 10.1016/j.biopsych.2004.12.018

Fatemi, S. H., Stary, J. M., Halt, A. R., and Realmuto, G. R. (2001). Dysregulation
of Reelin and Bcl-2 proteins in autistic cerebellum. J. Autism Dev. Disord. 31,
529–535. doi: 10.1023/A:1013234708757

Gilman, S. R., Iossifov, I., Levy, D., Ronemus, M., Wigler, M., and Vitkup, D.
(2011). Rare de novo variants associated with autism implicate a large
functional network of genes involved in formation and function of synapses.
Neuron 70, 898–907. doi: 10.1016/j.neuron.2011.05.021

Giovanoli, S., Weber, L., and Meyer, U. (2014). Single and combined effects of
prenatal immune activation and peripubertal stress on parvalbumin and reelin
expression in the hippocampal formation. Brain Behav. Immun. 40, 48–54.
doi: 10.1016/j.bbi.2014.04.005

Grabrucker, A. M., Schmeisser, M. J., Schoen, M., and Boeckers, T. M. (2011).
Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies.
Trends Cell Biol. 21, 594–603. doi: 10.1016/j.tcb.2011.07.003

Gratten, J., Visscher, P. M., Mowry, B. J., and Wray, N. R. (2013). Interpreting
the role of de novo protein-coding mutations in neuropsychiatric disease. Nat.
Genet. 45, 234–238. doi: 10.1038/ng.2555

Groc, L., Choquet, D., Stephenson, F. A., Verrier, D., Manzoni, O. J., and
Chavis, P. (2007). NMDA receptor surface trafficking and synaptic subunit
composition are developmentally regulated by the extracellular matrix
protein Reelin. J. Neurosci. 27, 10165–10175. doi: 10.1523/jneurosci.1772-
07.2007

Hadj-Sahraoui, N., Frederic, F., Delhaye-Bouchaud, N., and Mariani, J. (1996).
Gender effect on Purkinje cell loss in the cerebellum of the heterozygous

reeler mouse. J. Neurogenet. 11, 45–58. doi: 10.3109/016770696091
07062

Hampson, D. R., and Blatt, G. J. (2015). Autism spectrum disorders and
neuropathology of the cerebellum. Front. Neurosci. 9:420. doi: 10.3389/fnins.
2015.00420

Hethorn, W. R., Ciarlone, S. L., Filonova, I., Rogers, J. T., Aguirre, D.,
Ramirez, R. A., et al. (2015). Reelin supplementation recovers synaptic plasticity
and cognitive deficits in a mouse model for Angelman syndrome. Eur. J.
Neurosci. 41, 1372–1380. doi: 10.1111/ejn.12893

Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C.,
Cooper, J. A., et al. (1999). Direct binding of Reelin to VLDL receptor and
ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 andmodulates
tau phosphorylation. Neuron 24, 481–489. doi: 10.1016/s0896-6273(00)
80861-2

Hirotsune, S., Takahara, T., Sasaki, N., Hirose, K., Yoshiki, A., Ohashi, T., et al.
(1995). The reeler gene encodes a protein with an EGF-like motif expressed
by pioneer neurons. Nat. Genet. 10, 77–83. doi: 10.1016/0168-9525(95)
90549-9

Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E.,
Hourihane, J. O., et al. (2000). Autosomal recessive lissencephaly with
cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet.
26, 93–96. doi: 10.1038/79246

Howell, B.W., Hawkes, R., Soriano, P., and Cooper, J. A. (1997). Neuronal position
in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737.

Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999). Reelin-induced tyrosine
[corrected] phosphorylation of disabled 1 during neuronal positioning. Genes
Dev. 13, 643–648. doi: 10.1101/gad.13.6.643

Ikeda, Y., and Terashima, T. (1997). Expression of reelin, the gene responsible for
the reeler mutation, in embryonic development and adulthood in the mouse.
Dev. Dyn. 210, 157–172. doi: 10.1002/(sici)1097-0177(199710)210:2<157::aid-
aja8>3.0.co;2-f

IMGSAC. (1998). A full genome screen for autism with evidence for linkage to a
region on chromosome 7q. International Molecular Genetic Study of Autism
Consortium. Hum. Mol. Genet. 7, 571–578. doi: 10.1093/hmg/7.3.571

IMGSAC. (2001a). Further characterization of the autism susceptibility locus
AUTS1 on chromosome 7q. Hum. Mol. Genet. 10, 973–982. doi: 10.
1093/hmg/10.9.973

IMGSAC. (2001b). A genomewide screen for autism: strong evidence for linkage
to chromosomes 2q, 7q and 16p. Am. J. Hum. Genet. 69, 570–581. doi: 10.
1086/323264

Iossifov, I., O’Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., et al.
(2014). The contribution of de novo coding mutations to autism spectrum
disorder. Nature 515, 216–221. doi: 10.1038/nature13908

Iwata, K., Izumo, N., Matsuzaki, H., Manabe, T., Ishibashi, Y., Ichitani, Y., et al.
(2012). Vldlr overexpression causes hyperactivity in rats. Mol. Autism 3:11.
doi: 10.1186/2040-2392-3-11

Jossin, Y., and Goffinet, A. M. (2007). Reelin signals through phosphatidylinositol
3-kinase and Akt to control cortical development and through mTor to
regulate dendritic growth. Mol. Cell Biol. 27, 7113–7124. doi: 10.1128/mcb.
00928-07

Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G.,
et al. (2012). Rate of de novo mutations and the importance of father’s age to
disease risk. Nature 488, 471–475. doi: 10.1038/nature11396

Koshimizu, E., Miyatake, S., Okamoto, N., Nakashima, M., Tsurusaki, Y.,
Miyake, N., et al. (2013). Performance comparison of bench-top next
generation sequencers using microdroplet PCR-based enrichment for targeted
sequencing in patients with autism spectrum disorder. PLoS One 8:e74167.
doi: 10.1371/journal.pone.0074167

Krebs, M. O., Betancur, C., Leroy, S., Bourdel, M. C., Gillberg, C., Leboyer, M.,
et al. (2002). Absence of association between a polymorphic GGC repeat in the
5’ untranslated region of the reelin gene and autism.Mol. Psychiatry 7, 801–804.
doi: 10.1038/sj.mp.4001071

Lacor, P. N., Grayson, D. R., Auta, J., Sugaya, I., Costa, E., and Guidotti, A.
(2000). Reelin secretion from glutamatergic neurons in culture is independent
from neurotransmitter regulation. Proc. Natl. Acad. Sci. U S A. 97, 3556–3561.
doi: 10.1073/pnas.97.7.3556

Lamb, J. A., Barnby, G., Bonora, E., Sykes, N., Bacchelli, E., Blasi, F., et al. (2005).
Analysis of IMGSAC autism susceptibility loci: evidence for sex limited and

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 March 2016 | Volume 10 | Article 84

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Lammert and Howell RELN Mutations in Autism Spectrum Disorder

parent of origin specific effects. J. Med. Genet. 42, 132–137. doi: 10.1136/jmg.
2004.025668

Lee, G. H., Chhangawala, Z., von Daake, S., Savas, J. N., Yates, J. R., Comoletti, D.,
et al. (2014). Reelin induces Erk1/2 signaling in cortical neurons through a non-
canonical pathway. J. Biol. Chem. 289, 20307–20317. doi: 10.1074/jbc.m114.
576249

Li, J., Liu, J., Zhao, L., Ma, Y., Jia, M., Lu, T., et al. (2013). Association study
between genes in Reelin signaling pathway and autism identifies DAB1 as a
susceptibility gene in a Chinese Han population. Prog. Neuropsychopharmacol.
Biol. Psychiatry 44, 226–232. doi: 10.1016/j.pnpbp.2013.01.004

Macri, S., Biamonte, F., Romano, E., Marino, R., Keller, F., and Laviola, G.
(2010). Perseverative responding and neuroanatomical alterations in adult
heterozygous reeler mice are mitigated by neonatal estrogen administration.
Psychoneuroendocrinology 35, 1374–1387. doi: 10.1016/j.psyneuen.2010.
03.012

Meyer, G., Cabrera Socorro, A., Perez Garcia, C. G., Martinez Millan, L.,
Walker, N., and Caput, D. (2004). Developmental roles of p73 in Cajal-Retzius
cells and cortical patterning. J. Neurosci. 24, 9878–9887. doi: 10.1523/jneurosci.
3060-04.2004

Miles, J. H. (2011). Autism spectrum disorders–a genetics review. Genet. Med. 13,
278–294. doi: 10.1097/gim.0b013e3181ff67ba

Miyata, T., Nakajima, K., Mikoshiba, K., and Ogawa, M. (1997). Regulation of
Purkinje cell alignment by reelin as revealed with CR-50 antibody. J. Neurosci.
17, 3599–3609.

Moon, U. Y., Park, J. Y., Park, R., Cho, J. Y., Hughes, L. J., McKenna, J., et al. (2015).
Impaired Reelin-Dab1 Signaling Contributes to Neuronal Migration Deficits of
Tuberous Sclerosis Complex. Cell Rep. 12, 965–978. doi: 10.1016/j.celrep.2015.
07.013

Moy, S. S., and Nadler, J. J. (2008). Advances in behavioral genetics: mouse models
of autism.Mol. Psychiatry 13, 4–26. doi: 10.1038/sj.mp.4002082

Neale, B. M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K. E., Sabo, A., et al. (2012).
Patterns and rates of exonic de novo mutations in autism spectrum disorders.
Nature 485, 242–245. doi: 10.1038/nature11011

Neale, B. M., and Sham, P. C. (2004). The future of association studies: gene-based
analysis and replication. Am. J. Hum. Genet. 75, 353–362. doi: 10.1086/423901

Nogi, T., Yasui, N., Hattori, M., Iwasaki, K., and Takagi, J. (2006). Structure
of a signaling-competent reelin fragment revealed by X-ray crystallography
and electron tomography. EMBO J. 25, 3675–3683. doi: 10.1038/sj.emboj.
7601240

Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., et al.
(1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial
molecule for laminar organization of cortical neurons. Neuron 14, 899–912.
doi: 10.1016/0168-9525(95)90534-0

Panteri, R., Paiardini, A., and Keller, F. (2006). A 3D model of Reelin subrepeat
regions predicts Reelin binding to carbohydrates. Brain Res. 1116, 222–230.
doi: 10.1016/j.brainres.2006.07.128

Persico, A.M., D’Agruma, L.,Maiorano, N., Totaro, A.,Militerni, R., Bravaccio, C.,
et al. (2001). Reelin gene alleles and haplotypes as a factor predisposing
to autistic disorder. Mol. Psychiatry 6, 150–159. doi: 10.1038/sj.mp.40
00850

Persico, A. M., and Napolioni, V. (2013). Autism genetics. Behav. Brain Res. 251,
95–112. doi: 10.1016/j.bbr.2013.06.012

Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A.,
et al. (1998). Reelin is preferentially expressed in neurons synthesizing gamma-
aminobutyric acid in cortex and hippocampus of adult rats. Proc. Natl. Acad.
Sci. U S A. 95, 3221–3226. doi: 10.1073/pnas.95.6.3221

Rice, D. S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and
Curran, T. (1998). Disabled-1 acts downstream of Reelin in a signaling pathway
that controls laminar organization in the mammalian brain. Development 125,
3719–3729.

Rogers, J. T., Rusiana, I., Trotter, J., Zhao, L., Donaldson, E., Pak, D. T., et al.
(2011). Reelin supplementation enhances cognitive ability, synaptic plasticity
and dendritic spine density. Learn. Mem. 18, 558–564. doi: 10.1101/lm.
2153511

Rogers, J. T., Zhao, L., Trotter, J. H., Rusiana, I., Peters, M. M., Li, Q.,
et al. (2013). Reelin supplementation recovers sensorimotor gating, synaptic
plasticity and associative learning deficits in the heterozygous reeler mouse.
J. Psychopharmacol. 27, 386–395. doi: 10.1177/0269881112463468

Samocha, K. E., Robinson, E. B., Sanders, S. J., Stevens, C., Sabo, A.,
McGrath, L. M., et al. (2014). A framework for the interpretation of de novo
mutation in human disease. Nat. Genet. 46, 944–950. doi: 10.1038/ng.3050

Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J.,
Willsey, A. J., et al. (2012). De novo mutations revealed by whole-exome
sequencing are strongly associated with autism. Nature 485, 237–241. doi: 10.
1038/nature10945

Sekine, K., Kubo, K., and Nakajima, K. (2014). How does Reelin control neuronal
migration and layer formation in the developing mammalian neocortex?
Neurosci. Res. 86, 50–58. doi: 10.1016/j.neures.2014.06.004

Shen, Y., Xun, G., Guo, H., He, Y., Ou, J., Dong, H., et al. (2015). Association
and gene-gene interactions study of reelin signaling pathway related genes
with autism in the Han Chinese population. Autism Res. doi: 10.1002/aur.1540
[Epub ahead of print].

Silverman, J. L., Yang, M., Lord, C., and Crawley, J. N. (2010). Behavioural
phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 11,
490–502. doi: 10.1038/nrn2851

Sinagra, M., Gonzalez Campo, C., Verrier, D., Moustie, O., Manzoni, O. J.,
and Chavis, P. (2008). Glutamatergic cerebellar granule neurons synthesize
and secrete reelin in vitro. Neuron Glia Biol. 4, 189–196. doi: 10.
1017/s1740925x09990214

Skefos, J., Cummings, C., Enzer, K., Holiday, J., Weed, K., Levy, E., et al. (2014).
Regional alterations in purkinje cell density in patients with autism. PLoS One
9:e81255. doi: 10.1371/journal.pone.0081255

Tissir, F., and Goffinet, A. M. (2003). Reelin and brain development. Nat. Rev.
Neurosci. 4, 496–505. doi: 10.1038/nrn1113

Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W.,
Nimpf, J., et al. (1999). Reeler/Disabled-like disruption of neuronal migration
in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97,
689–701. doi: 10.1016/s0092-8674(00)80782-5

Tsai, P. T., Hull, C., Chu, Y., Greene-Colozzi, E., Sadowski, A. R., Leech, J. M.,
et al. (2012a). Autistic-like behaviour and cerebellar dysfunction in Purkinje
cell Tsc1 mutant mice. Nature 488, 647–651. doi: 10.1038/nature11310

Tsai, N. P., Wilkerson, J. R., Guo, W., Maksimova, M. A., DeMartino, G. N.,
Cowan, C. W., et al. (2012b). Multiple autism-linked genes mediate synapse
elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell
151, 1581–1594. doi: 10.1016/j.cell.2012.11.040

Ventruti, A., Kazdoba, T. M., Niu, S., and D’Arcangelo, G. (2011). Reelin
deficiency causes specific defects in the molecular composition of the synapses
in the adult brain. Neuroscience 189, 32–42. doi: 10.1016/j.neuroscience.2011.
05.050

Wang, Z., Hong, Y., Zou, L., Zhong, R., Zhu, B., Shen, N., et al. (2014a). Reelin gene
variants and risk of autism spectrum disorders: an integrated meta-analysis.
Am. J. Med. Genet. B. Neuropsychiatr. Genet. 165B, 192–200. doi: 10.1002/ajmg.
b.32222

Wang, S. S., Kloth, A. D., and Badura, A. (2014b). The cerebellum, sensitive periods
and autism. Neuron 83, 518–532. doi: 10.1016/j.neuron.2014.07.016

Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D.,
et al. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal
synaptic plasticity and learning. J. Biol. Chem. 277, 39944–39952. doi: 10.
1074/jbc.m205147200

Yasui, N., Nogi, T., Kitao, T., Nakano, Y., Hattori, M., and Takagi, J. (2007).
Structure of a receptor-binding fragment of reelin and mutational analysis
reveal a recognition mechanism similar to endocytic receptors. Proc. Natl.
Acad. Sci. U S A. 104, 9988–9993. doi: 10.1073/pnas.0700438104

Yasui, N., Nogi, T., and Takagi, J. (2010). Structural basis for specific recognition
of reelin by its receptors. Structure 18, 320–331. doi: 10.1016/j.str.2010.
01.010

Yuen, R. K., Thiruvahindrapuram, B., Merico, D., Walker, S., Tammimies, K.,
Hoang, N., et al. (2015). Whole-genome sequencing of quartet families
with autism spectrum disorder. Nat. Med. 21, 185–191. doi: 10.1038/
nm.3792

Zablotsky, B., Black, L. I., Maenner, M. J., Schieve, L. A., and Blumberg, S. J.
(2015). Estimated prevalence of autism and other developmental disabilities
following questionnaire changes in the 2014 National Health Interview Survey.
Natl. Health Stat. Report 1–20.

Zhang, Y., Kong, W., Gao, Y., Liu, X., Gao, K., Xie, H., et al. (2015).
Gene mutation analysis in 253 chinese children with unexplained epilepsy

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 March 2016 | Volume 10 | Article 84

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Lammert and Howell RELN Mutations in Autism Spectrum Disorder

and intellectual/developmental disabilities. PLoS One 10:e0141782. doi: 10.
1371/journal.pone.0141782

Zhang, H., Liu, X., Zhang, C., Mundo, E., Macciardi, F., Grayson, D. R., et al.
(2002). Reelin gene alleles and susceptibility to autism spectrum disorders.Mol.
Psychiatry 7, 1012–1017. doi: 10.1038/sj.mp.4001124

Zhubi, A., Chen, Y., Dong, E., Cook, E. H., Guidotti, A., and Grayson, D. R.
(2014). Increased binding of MeCP2 to the GAD1 and RELN promoters
may be mediated by an enrichment of 5-hmC in autism spectrum
disorder (ASD) cerebellum. Transl. Psychiatry 4:e349. doi: 10.1038/tp.
2013.123

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Lammert and Howell. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution and reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 March 2016 | Volume 10 | Article 84

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

	RELN Mutations in Autism Spectrum Disorder
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES


