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Abstract: A series of 4d/4f-polyarsenides, -polyarsines and

-polystibines was obtained by reduction of the Mo-pnic-
tide precursor complexes [{CptMo(CO)2}2(m,h2:2-E2)] (E = As,

Sb; Cpt = tBu substituted cyclopentadienyl) with two dif-
ferent divalent samarocenes [Cp*2Sm] and [(CpMe4nPr)2Sm].

For the reductive conversion of the Mo-stibide only one

product was isolated, featuring a planar tetrastibacyclobu-
tadiene moiety as an unprecedented ligand for organo-

metallic compounds. For the corresponding Mo-arsenide a
tetraarsacyclobutadiene and a second species with a side-

on coordinated As2
2@ anion was isolated. The latter can be

considered as reaction intermediate for the formation of

the tetraarsacyclobutadiene.

Polypnictides are well known examples for Zintl ions.[1] Due to

the broad scope of potential applications (e.g. in solar cells),
the solid state chemistry of rare earth polypnictides has been
investigated intensively.[2] The heavier congeners of nitrogen

form numerous ring and cage motifs in the solid state.[1] Due
to the isoelectronic relationship between C@H and E (E =

group 15 element) polypnictides such as cyclo-P4
2@ or cyclo-

P5
@ (isoelectronic to the cyclobutadiene dianion or cyclopenta-

dienyl anion) are versatile ligands in d-block chemistry.[3]

Based on this, the chemistry of molecular f-element com-

plexes ligated by polypnictides is a current and growing re-

search topic. The first f-element polyphosphide [(Cp*2Sm)4P8]
was synthesized in 2009.[4] It was obtained by a reductive ap-

proach, in which a divalent samarium complex was reacted
with elemental P4. In a comparable reductive pathway d/f-ele-

ment polyphosphides were synthesized starting from d-ele-

ment (poly)phosphide complexes as precursor compounds.[5]

While these molecular polyphosphide f-element compounds

and to a minor extent the analogue polyarsenides have already
been reported,[6] the heavier congeners are still rare and only

few 4f-polystibides are known. The first compound in this area
was published by Evans et al. in 1992. They reported the re-

ductive cleavage of Sb@C bonds by using Sb(nBu)3 and

[Cp*2Sm] to obtain [{(Cp*)2Sm}3(m-h2:2:1Sb3)(thf)] .[7] Other polysti-
bides of the f-elements are [(h5-CpMe

2Dy)3 {m-(SbMes)3Sb}] ,

[K([2.2.2]crypt)]3[Ln(h4-Sb4)3]·4py (py = pyridine; Ln = La, Y, Ho,
Er, Lu) and [(Cp*2Sm)4Sb8] .[8] Additionally, only one d/f-polysti-

bide [{(Cp*2Sm)3(m4,h1:2:2:2-Sb4)}2Hg] is known. It was isolated as
an intermediate in the reaction of [Cp*2Sm] with Sb/Hg alloy

just recently without any further characterization.[8c]

However, it is not known if the isoelectronic relation be-
tween polystibides and hydrocarbon based ligands in f-ele-

ment chemistry is still valid as seen for P and As and whether
it is possible to use such isoelectronic moieties as bridging li-

gands in d/f-compounds.
Considering this lack of knowledge, we felt challenged to

further expand the class of d/f-element polystibides and com-

pare them to their lighter homologues. In earlier investigations,
we reported the reduction of [{CpMo(CO)2}2(m,h2:2-P2)] with

[Cp*2Sm], which resulted in 4d/4f-element polyphosphides.[5a]

[Cp*2Sm] acts here as single-electron-transfer reagent (SET)[9]

and thus induces the reduction of [{CpMo(CO)2}2(m,h2:2-P2)] .
This reaction resulted in a product mixture of three different

products (Scheme 1, A as main product as well as B and C as
minor products). Due to the fact that the analogous Mo-arsen-
ides and Mo-stibides [{CpMo(CO)2}2(m,h2:2-E2)] (E = As, Sb) are

available,[10] we decided to use these compounds for accessing
d/f-element polypnictides of the heavier group 15 elements.

For solubility reasons, the tBu substituted cyclopentadienyl
(Cpt) was employed as a ligand on the molybdenum precursor.

Reduction of the previously unknown [{CptMo(CO)2}2(m,h2:2-

As2)] with solvent free [Cp*2Sm] in hot n-hexane resulted in a
straightforward formation of the mixed d/f-metal species

[(Cp*2Sm)2As2(CptMo(CO)2)2] (1) (Scheme 2 and Figure 1).
Despite the lack of direct Sm–As contacts, compound 1

is a remarkable species because it represents the formally
expected product upon a two-electron reduction of

[a] N. Reinfandt, Dr. C. Schoo, Dr. R. Kçppe, Prof. S. N. Konchenko,
Prof. Dr. P. W. Roesky
Institut fer Anorganische Chemie
Karlsruher Institut fer Technologie (KIT)
Engesserstr. 15, Geb. 30.45, 76131 Karlsruhe (Germany)
E-mail : roesky@kit.edu

[b] L. Detsch, Prof. Dr. M. Scheer
Institut fer Anorganische Chemie
Universit-t Regensburg
Universit-tsstraße 31, 93040 Regensburg (Germany)

[c] Prof. S. N. Konchenko
Nikolaev Institute of Inorganic Chemistry SB RAS
Prosp. Lavrentieva 3, 630090 Novosibirsk (Russia)

Supporting information and the ORCID identification number(s) for the au-
thor(s) of this article can be found under :
https ://doi.org/10.1002/chem.202003905.

T 2020 The Authors. Published by Wiley-VCH GmbH. This is an open access
article under the terms of the Creative Commons Attribution Non-Commer-
cial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for
commercial purposes.

Chem. Eur. J. 2021, 27, 3974 – 3978 T 2020 The Authors. Published by Wiley-VCH GmbH3974

Chemistry—A European Journal
Communication
doi.org/10.1002/chem.202003905

http://orcid.org/0000-0003-0706-6048
http://orcid.org/0000-0003-0706-6048
http://orcid.org/0000-0002-0492-0803
http://orcid.org/0000-0002-0492-0803
http://orcid.org/0000-0003-2182-5020
http://orcid.org/0000-0003-2182-5020
http://orcid.org/0000-0002-0915-3893
http://orcid.org/0000-0002-0915-3893
http://orcid.org/0000-0002-0915-3893
https://doi.org/10.1002/chem.202003905


[{CptMo(CO)2},2(m,h2:2-As2)] . The Mo@Mo bond is cleaved upon

the double reduction, resulting in a [{CptMo(CO)2}2(m,h2:2-As2)]2@

dianion.

This is charged balanced by two [Cp*2Sm]+ cations, which

bind via isocarbonyl species to the complex core (Sm1@O1
2.378(4), Sm1@O2’ 2.391(4) a). In the corresponding P–complex

A (Scheme 1) and Mo coordination compounds featuring a N=

N2@ unit,[11] the central E2
2@ unit is end-on coordinated to the

Mo atoms. In contrast, the As2
2@ unit in 1 is side-on bound.

The As@As bond length of 2.238(2) a is in the range of As@As

double bonds known in the literature and only slightly short-

ened in comparison to [{CpMo(CO)2}2(m,h2:2-As2)] .[10a, 12] Howev-
er, quantum chemical calculations suggest a weakened double

bond (see below).

Since the isolated yields of 1 are moderate, we anticipate

that further reactions as seen for the Mo-phosphide
(Scheme 1) take place.[5a] However, further reaction products

could not be isolated from the synthesis of 1 under the
chosen reaction conditions. Therefore, the solubility of the sa-

marium reagent was altered by formally replacing one methyl
group by a n-propyl group on the Cp ring. The resulting re-

agent [(CpMe4nPr)2Sm] was treated with [{CptMo(CO)2}2(m,h2:2-

As2)] in n-heptane at elevated temperature. As result a product
mixture of two species was isolated by crystallization

(Scheme 2). The first one, [(CpMe4nPr)2Sm)2As2(CptMo(CO)2)2] (2),
is similar to 1 (see Supporting Information for details, Fig-

Scheme 1. Earlier work: Observed mixture of products in the reduction of
[{CpMo(CO)2}2(m,h2:2-P2)] .[5a]

Scheme 2. Reduction of [{CptMo(CO)2}2(m,h2:2-As2)] with [Cp*2Sm(thf)2] and [(CpMe4nPr)2Sm], resulting in [(Cp*2Sm)2As2(CptMo(CO)2)2] (1)
[((CpMe4nPr)2Sm)2As2(CptMo(CO)2)2] (2), and [((CpMe4nPr)2Sm)2As4(CptMo(CO)2)2] (3).

Figure 1. Molecular structure of 1 in the solid state.[22] Hydrogen atoms are
omitted for clarity. Selected bond lengths [a] and angles [8]: Sm1@O1
2.378(4), Sm1@O2’ 2.391(4), Mo1@As1 2.6847(9), Mo1@As1’ 2.6997(9), Mo1@
C1 1.892(6), As1@As1’ 2.238(2), C1@O1 1.212(3), O1-Sm-O2’ 77.6(2), Mo1-As1-
Mo1’ 103.92(3).
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ure S13), whereas the second one
[((CpMe4nPr)2Sm)2As4(CptMo(CO)2)2] (3) represents the anticipated

second reduction product and thus gives a first insight into
the reaction pathway. Compound 3 is the As-analogue of com-

pound B (Scheme 1), which is observed in the reduction of the
corresponding Mo-phosphide. Despite the use of different re-

action conditions and solvents, we were not able to separate
the two compounds. Therefore, both compounds are not dis-

cussed by spectroscopic details. However, it can be concluded

that compound 3 (Figure 2), which features a planar four-mem-
bered As4 unit, seems to be the result of further reaction and
defragmentation of 2. In 3, each {CptMo(CO)2} fragment coordi-
nates in a h2-mode to the central As4 ring, which is built upon

the formation of two new As@As bonds, merging two As2 units
together. The resulting [As4(CptMo(CO)2)2]2@ building block is

further stabilized by coordination of two [Cp*2Sm]+ cations. In

contrast to 1 and 2, the samarocene moieties are directly
bound to As (Sm1@As1 3.0300(8) a). Furthermore, an isocar-

bonyl bridge (Sm1@O1 2.380(2) a), which is in the range of 1
and 2, is formed.

In contrast to the highly symmetric aromatic As4
2@ ring,

which is found for example, in [(Cptt
2Sm)(m,h4 :h4-As4)(Cp*Fe)] or

[(DippForm)2Sm}2(m2-h4 :h4-As4)] (DippForm = {(2,6-
iPr2C6H3)NC(H) = N(2,6-iPr2C6H3)}@), the As@As bond lengths in 3
differ from each other.[6a, 13]

There are two longer bonds (As1@As2 2.4862(7) a), which
are in the range of As@As single bonds (e.g. ca. 2.44 a in car-

bene stabilized diarsenic)[14] and two shorter ones (As1’@As2
2.3503(6) a). However, these are still longer than expected for

As@As double bonds due to the side-on coordination to the

{CptMo(CO)2} fragments in a h2-mode. The angles within the
ring are close to 908 (91.16(2) and 88.84(2)8), confirming the

formation of an As4 unit in the solid state.
Thus, the obtained As4 unit is comparable to [(LCo)2As4] (L =

bis(2,6-diisopropylphenyl)-b-dialdiminate)[15] and can be best
described as a neutral tetraarsacyclobutadiene, while the nega-

tive charge should be strongly distributed over the whole
complex core and especially the Sm-OC-Mo moieties. This is

quite remarkable, because the pnictogen analogues of cyclo-
butadiene should be, like the latter, very reactive and unsta-
ble.[15–16] To the best of our knowledge, compound 3 is only
the second example of a metal-coordinated/stabilized tetraar-

sacyclobutadiene and therefore expands the group of heavier
group 15 compounds which show an isoelectronic relation to-

wards hydrocarbon based ligands. In contrast to the previous

example,[15] it was not generated from yellow arsenic but by
merging two As2 units.

Next we drew our attention to antimony compounds and
performed analogue reactions with [{CptMo(CO)2}2(m,h2:2-Sb2)]

(Scheme 3). Again, both samarocenes [Cp*2Sm] and
[(CpMe4nPr)2Sm] were used as SET reagents at elevated tempera-

tures. This resulted in [(Cp*2Sm)2Sb4(CptMo(CO)2)2] (4) and

[((CpMe4nPr)2Sm)2Sb4(CptMo(CO)2)2] (5), which could be isolated
by crystallization, in moderate to good yields (67 % for 4 ; 31 %

for 5) (Scheme 3). In contrast to the reduction of the Mo-phos-
phide and Mo-arsenide, no further products could be isolated.

Compounds 4 and 5 (Figure 3 and Figure 4) feature a planar
Sb4 unit similar to those of the lighter congeners observed in

B and 3. In general, only few examples for perfectly planar Sb4

rings have been reported to date. These are the ionic inorganic
species [K([2.2.2]crypt)]2

+[Sb4]2@ [17] and [PPh4]+
2[S6Sb6]2@.[18]

Until now, the metalorganic chemistry of Sb4 units features
mostly butterfly-type structures and configurations which can

formally be derived from the neutral Sb4 tetrahedron.[19] There-
fore, a planar Sb4 ring as ligand for an organometallic or coor-

dination compound is, to the best of our knowledge, unique.

In 4 and 5, the central Sb4 unit forms a planar rectangle,
with angles close to 908 (87.73(2)8 and 92.28(2)8 (4), 89.84(3)8
and 90.16(3)8 (5)). The Sb4 unit consists of two short (Sb1@Sb2
2.7313(8) a (4) and Sb1’@Sb2 2.7254(10) a (5)) and two longer

Figure 2. Molecular structure of 3 in the solid state.[22] Hydrogen atoms are
omitted for clarity. Selected bond lengths [a] and angles [8]: Sm1@As1
3.0300(8), Sm1@O1 2.380(2), Mo1@As2 2.6498(7), Mo1@As1’ 2.6261(7), Mo1@
C1 1.873(3), As1@As2 2.4862(7), As1’@As2 2.3503(6), C1@O1 1.206(4), O1-Sm-
As1 76.99(6), As1’-Mo1-As2 52.91(2), Mo1-As1’-Sm1’ 142.35(2), As1’-As2-Mo1
63.03(2), As1-As2-Mo1 105.01(3), As2-As1-As2’ 91.16(2), As1-As2-As1’
88.84(2).

Scheme 3. Synthesis of [(Cp*2Sm)2Sb4(CptMo(CO)2)2] (4) and
[((CpMe4nPr)2Sm)2Sb4(CptMo(CO)2)2] (5) with R = Me (4), n-propyl (5).
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(Sb1@Sb2’ 2.8608(7) a (4) and Sb1@Sb2 2.8618(10) a (5)) Sb@Sb
bonds. The two longer bonds are in the range of a Sb@Sb

single bond as found in Ph4Sb2 (2.837 a).[20] However, the
shorter bonds are still longer than in an anticipated Sb@Sb

double bond, for example, in the distibene [TbtSb=SbTbt]
(Tbt = 2,4,6-tris-[bis(trimethyl-silyl)methyl]phenyl) (2.642(1) a),[21]

which is a result of the h2-coordination to the {CptMo(CO)2}

fragments (analogous to 3). Therefore, the remarkable analogy
to hydrocarbon based cyclobutadiene can even be seen for

the second-heaviest group 15 homolog, forming—to the best
of our knowledge—the first metal-coordinated tetrastibacyclo-

butadiene. For further stabilization of the latter, both samarium

atoms coordinate to one Sb atom of the central Sb4 ring each
with bond distances of 3.2375(7) a (4) and 3.2794(8) a (5).

These are in agreement with samarium stibide compounds
such as [(Cp*2Sm)2Sb2] or [{(Cp*2Sm)3(m4,h1:2:2:2-Sb4)}2Hg] and are

slightly shorter than in [{(Cp*2Sm)4(m4,h2:2:2:2-Sb8)] (3.31–
3.41 a).[8c] In addition, a Sm isocarbonyl bridge is formed

(Sm1@O1 2.381(6) a (4) and 2.386(7) a (5)). Therefore, both
compounds are the first examples of a Sb4 moiety, which is iso-

structural towards hydrocarbon based ligands and additionally
serves as a bridging ligand between a lanthanide and a transi-

tion metal. Compounds 4 and 5 were additionally character-
ized by IR spectroscopy. Two separated bands for the CO li-

gands are observed. Whereas the terminal CO ligands are de-
tected as strong bands at frequencies of 1898 cm@1 (4) and
1896 cm@1 (5), the slightly weaker bands of the bridging CO

moieties exhibit stretching frequencies at lower energies
(1633 cm@1 (4), 1630 cm@1 (5), (Figures S4 and S5). The data is
in agreement with the literature.[20]

Attempting to investigate the bonding properties of these

novel systems with the aid of quantum chemical calculations is
difficult due to the low molecular symmetries, as it was the

case with the analogue phosphorus compounds before.[5a]

Therefore, we focused on a comparative energy analysis of the
pnictogen systems based on theoretical data (technical details

given in the Supporting Information). Figure 5 easily explains
that the formation of [(Cp2*Sm)2E2(CpMo(CO)2)4] (E = As, Sb;

type A, Scheme 1) among the pnictogen model compounds
can be excluded. From the analysis of the molecular structures

(data given in the Supporting Information) a distinct difference

regarding the E2 units can explain this fact : P2 fits—as can be
seen from the small torsion angle Mo-P-P-Mo—particularly

well into the 14-membered „Sm2(CO)4Mo4“ ring system, while
As2 and Sb2 protrude clearly from the plane of the 14-link ring

of type A-systems due to their sizes (tors(Mo-E-E-Mo): P2 : 20.7,
As2 : 34.9, Sb2 : 41.78). By comparing E2 bond distances and

shared electron numbers (SEN) from Ahlrichs-Heinzmann pop-

ulation analyses in these compounds with theoretical data on
E2, H2E2 and E2H4 as reference systems for formal triple, double

or single E2 bonds,[21] its bond strength can be convincingly es-
timated. We conclude that in [(Cp2*Sm)2P2(CpMo(CO)2)4] (A) a

double bond is present, whereas in the theoretical As and Sb
homologues of A the E@E bond would only be of strong single
bond character. In contrast, in the As compounds 1 and 2 a

weakened double bond of the As2 unit is found. Both findings
are in line with the energetic findings.

Figure 3. Molecular structure of 4 in the solid state.[22] Hydrogen atoms are
omitted for clarity. Selected bond lengths [a] , angles [8]: Sm1@Sb2’
3.2375(7), Sm1@O1 2.381(6), Mo1@Sb2 2.8146(9), Mo1@Sb1 2.8549(9), Mo1@
C1 1.894(8), Sb1@Sb2 2.7313(8), Sb1@Sb2’ 2.8608(7), C1@O1 1.209(10), O1-
Sm-Sb2’ 76.73(14), Sb1-Mo1-Sb2 57.59(2), Mo1-Sb2-Sm1’ 153.18(2), Sb1-Sb2-
Mo1 61.94(2), Sb2’-Sb1-Mo1 102.32(2), Sb2-Sb1-Sb2’ 87.73(2), Sb1-Sb2-Sb1’
92.28(2).

Figure 4. Molecular structure of 5 in the solid state.[22] Hydrogen atoms and
solvent molecules (toluene) are omitted for clarity. Selected bond lengths
[a] and angles [8]: Sm1@Sb1 3.2794(8), Sm1@O1 2.386(7), Mo1@Sb2
2.8464(11), Mo1@Sb1’ 2.8315(11), Mo1@C1 1.888(10), Sb1@Sb2 2.8618(10),
Sb1’@Sb2 2.7254(10), C1@O1 1.221(12), O1-Sm-Sb1 76.8(2), Sb1’-Mo1-Sb2
57.37(3), Mo1-Sb1’-Sm1’ 152.00(3), Sb1’-Sb2-Mo1 61.59(3), Sb1-Sb2-Mo1
103.46(3), Sb2-Sb1-Sb2’ 90.16(3), Sb1-Sb2-Sb1’ 89.84(3).

Figure 5. Energetic relationship of the compounds under discussion. The
species „[{CpMo(CO)2}2(m,h2:2-E2)] + [(Cp2*Sm)2P2(CpMo(CO)2)2] + E2“ were
taken as reference systems. They were arbitrarily set to identical energies.
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In conclusion, the product formation upon reduction of
[{CpMo(CO)2}2(m,h2:2-P2)] and [{CptMo(CO)2}2(m,h2:2-E2)] (E = As,

Sb) depends strongly on the pnictide. As seen from the forma-
tion of 1, 2, and A, the Mo@Mo bond is cleaved first. The coor-

dination of the central E2
2@ unit (end-on vs. side-on) and the

bond order within this unit depends on the pnictide. Subse-

quent rearrangements lead to rectangular planar central E4

units with alternating short and long bond distances. Whereas
this ring structure is only a minor byproduct in the case of

phosphorus containing compound, it is the main product for
the analogue Sb complex. The resulting compounds feature
for the first time a tetrastibacyclobutadiene ligand in organo-
metallic and coordination chemistry. Moreover, they show that
the remarkable and rare isoelectronical analogy to cyclobuta-
diene, which was already observed for phosphorus and arsenic,

can still be obtained for the heavier pnictogen antimony.
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