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Abstract

Resting-state fMRI (rs-fMRI) has emerged as an alternative method to study brain function in human and animal
models. In humans, it has been widely used to study psychiatric disorders including schizophrenia, bipolar
disorder, autism spectrum disorders, and attention deficit hyperactivity disorders. In this review, rs-fMRI and
its advantages over task based fMRI, its currently used analysis methods, and its application in psychiatric
disorders using different analysis methods are discussed. Finally, several limitations and challenges of rs-fMRI
applications are also discussed.
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Resting-State fMRI
Background on rs-fMRI

Functional magnetic resonance imaging (fMRI), due to
its noninvasiveness and high spatial and temporal res-
olution, has become the method of choice to perform
systems-level neuroscience in human and animal mod-
els. Most fMRI studies use the BOLD (blood oxygena-
tion level dependent) contrast mechanism first proposed
by Seiji Ogawa (Ogawa et al., 1990). When a participant
performed a task, there was increased neuronal firing
leading to vasodilation and increased blood flow in elo-
quent regions of the brain. Because this resulted in more
oxygenated red blood cells compared to deoxygenated
red blood cells, there was less dephasing of the fMRI
signal and an increase in activity in the specific brain
regions corresponding to the task was observed. Thus,
for task activation studies, participants are presented

with a stimulus for a short period of time (10–20 sec-
onds) alternating with a control condition for about the
same period. Although task-based fMRI has been widely
used to identify brain regions corresponding to specific
tasks, certain populations, such as infants, patients with
Alzheimer’s Disease, and patients with other debilitat-
ing clinical disorders, may not be able to perform certain
tasks required of them.

Resting-state fMRI (rs-fMRI) has emerged as an alter-
native to task-based fMRI to map brain functions by
observing brain signals during rest. This method was
first demonstrated in 1995 where it was shown that brain
activations in the resting state could exhibit similar cor-
relations between brain regions as activations in the
task state (Biswal et al., 1995). It was shown that rs-fMRI
signals in the sensorimotor and its associated cortex
had significant temporal correlation within the cortex
but not with other brain regions. Similar observations
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were also made in other functional regions including
the visual cortex (Lowe et al., 1998). Rs-fMRI primarily
focuses on measuring the spontaneous activity in BOLD
signals, which is measured in a resting state wherein
participants do not perform specific tasks that may alter
brain activity. These rs-fMRI signals possess very low
amplitude fluctuations, resting primarily within the 0.01
to 0.1 Hz range (van den Heuvel and Hulshoff Pol, 2010).

Rs-fMRI possesses several advantages over task-based
fMRI. For one, it is a simpler test that does not require
stimuli to be presented to a participant, nor does it
require the participant to respond to stimuli. It is also
easier for certain patient groups, such as the very young
or elderly, to undergo imaging as they do not need to per-
form actions they may have difficulty with (Maknojia et
al., 2019). Additionally, it has been found that rs-fMRI can
pick up on trends in the brain that task-based fMRI either
cannot or cannot pick up on as well. For example, one
study used rs-fMRI to classify the social and neurocogni-
tive performance in individuals based on connectivity in
the sensorimotor network (SMN). Task-based fMRI was
also used for this study but was less sensitive to detect-
ing connectivity in the brain, and the findings did not
replicate well across another independent test sample,
whereas rs-fMRI did (Viviano et al., 2018). Furthermore,
task-based fMRI only reveals brain activity and connec-
tivity elicited by a particular task in which specific brain
regions are activated, but not the whole brain. If the focus
of a study is on a particular psychological model or pro-
cess, then this would provide useful information; how-
ever, if the focus is on the whole brain, then resting-
state fMRI may be a better alternative. It can also be dif-
ficult to sort out the associations between brain activ-
ity and task performance since the interactions may be
complex or nonlinear. On the other hand, resting-state
approaches do not make any assumptions on the interac-
tion between brain activity and task performance, since
there is no task involved. Because of these advantages,
resting-state fMRI has become an important tool in neu-
roimaging and knowledge of this technique can greatly
aid in understanding the human brain.

fMRI analysis

A commonly used method through which connections
are established in fMRI is functional connectivity (FC).
FC is a measure that correlates two different neuronal
activations in the brain by analyzing their time-series
data and then using that to determine whether a tem-
poral connection exists (Smitha et al., 2017). Through
this, different networks can be established based on
specific functions such as the default mode network
(DMN). The DMN is a network known for aiding in self-
referential thoughts, cognition, and emotional thinking,
and is highly active at rest compared to when the brain
is performing a task, making it important in rs-fMRI
(Smitha et al., 2017).

Other resting-state networks have been identified in
addition to the DMN, such as the SMN, executive control
network (ECN), salience network (SN), auditory network,

visual network, frontoparietal network (FPN), and cere-
bellar network (CN) (Heine et al., 2012). One of the first
resting-state networks discovered was the SMN, which
includes regions such as the primary and secondary
somatosensory cortices, premotor cortex, primary motor
cortex, and supplementary motor area (Biswal et al.,
1995). In contrast to the DMN, which is involved in con-
templative and internalized thoughts, the ECN is asso-
ciated with more externally driven thoughts (Ng et al.,
2016). Another important resting-state network is the SN,
which is activated during thoughts specifically important
to the individual, encompassing the cognitive, homeo-
static, and/or emotional. The auditory and visual net-
works are activated in response to auditory and visual
stimuli, respectively, as their names suggest. A more
involved network is the FPN, which has been regarded
as a “functional hub” due to its activation in response
to a variety of stimuli, involved in attention, executive
control, and cognitive control. Last, the CN, composed
of the cerebellum, also covers a wide range of functions,
such as balance, working memory, emotional learning,
and executive functions (Chen et al., 2013). Despite the
identification of these resting-state networks, it is impor-
tant to note that there is still no universally accepted net-
work naming convention, and there is some controversy
as to which naming convention to use. However, efforts
have been made by Uddin and colleagues toward stan-
dardization, proposing six functional brain networks that
commonly appear in the literature: the occipital network,
pericentral network, dorsal frontoparietal network (D-
FPN), lateral frontoparietal network (L-FPN), midcingulo-
insular network (M-CIN), and the medial frontoparietal
network (M-FPN) (Uddin et al., 2019).

There are many different methods for exploring and
finding FC but, in this review, only the most commonly
used options will be discussed and explained. A brief
outline of the major approaches we discuss is shown
in Table 1. First, it is necessary to define the difference
between functional segregation and functional integra-
tion. Functional segregation is the practice of exploring
FC by separating the brain into different regions and net-
works that appear to share a similar purpose. Then, FC
is examined solely within those regions. Functional inte-
gration will instead look at the whole brain to exam-
ine FC between two different regions or networks and
their interactions to find more global trends (Lv et al.,
2018). Often, these methods are combined in a way where
the regions found through functional segregation can be
used in functional integration methods.

Amplitude of low-frequency fluctuations (ALFF)
and fractional ALFF (fALFF)

The resting-state signal fluctuations giving rise to signif-
icant temporal correlation are found to be dominant in
the low-frequency range (<0.1 Hz). The ALFF measures
the total signal power in the low-frequency range and
can be computed for every voxel or a specific region of
interest (ROI). ALFF is computed by averaging the square
root of the power of low frequency (0.01–0.1 Hz) BOLD
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Table 1: Outline of major RSFC approaches.

Major approaches Key points

ALFF • Measures the total power of the BOLD signal in the low-frequency range
fALFF • Measures the ratio of the power in the low-frequency range over the entire frequency range
ReHo • Characterizes the relationship between a voxel with nearby voxels using Kendall’s coefficient of

concordance
Seed-based FC • Correlates the time series from seeds chosen a priori with every other time series’ signals
ICA • Categorizes signals into independent networks based on statistical independence (data driven)

signals and standardizing the values to a global mean
ALFF value. ALFF has been shown to vary across regions
of the brain as well across certain clinical populations.
One of the limitations of ALFF is that it is sensitive to
background noise and voxels in the vicinity of medium
to large vasculature. To account for some of the limita-
tions of ALFF, a technique known as fALFF has been pro-
posed. fALFF is defined as the ratio of the ALFF at each
voxel divided by the signal power over the entire fre-
quency range (Zou et al., 2008). This approach does not
include bandpass filtering, so similar to ALFF, concerns
about biological artifacts remain (Cole et al., 2010).

ReHo

Regional homogeneity (ReHo), an example of functional
segregation, was developed to explore local connectiv-
ity in a specific region. It does this by analyzing a spe-
cific voxel and characterizing its relationship with nearby
voxels in the region, testing whether their activities
are correlated via Kendall’s coefficient of concordance.
Although useful, its findings are generally limited to the
region the ReHo is found in (Jiang and Zuo, 2016). ReHo
can also be used to classify brain regions by functions
based on correlation. This has become important for cer-
tain methods of functional integration, specifically seed-
based, or ROI FC.

Seed-based FC

Seed-based FC analysis looks at specific regions (known
here as seeds) and correlates the corresponding fMRI
time-series signal with every other time-series signal
throughout the whole brain to examine connectivity.
These regions are usually picked a priori from previously
available literature or from the use of functional segrega-
tion methods that were used to determine regions (van
den Heuvel and Hulshoff Pol, 2010). Seed-based analysis
is simple and relatively fast for hypothesis-driven stud-
ies, but the need to select seeds a priori makes the find-
ings of this method dependent on selecting the right
seeds, which can be difficult for exploratory analyses (Lv
et al., 2018).

Independent component analysis (ICA)

An alternative to hypothesis-driven rs-fMRI analyses is
data-driven methods. An example of this is ICA. ICA is
a multivariate statistical method that utilizes the neural

signals already present in the brain to categorize them
into independent networks based on signal indepen-
dence and correlation. That is, signals that seem tem-
porally correlated will be grouped as a unique network
and other voxels (or regions) will be left out of the net-
work created (van den Heuvel and Hulshoff Pol, 2010).
This iterative process is repeated until a set number of
independent networks is determined and all the voxels
that do not belong to any of the networks are classified as
noise. ICA is a useful method due to not having to select
regions before analysis and needing fewer assumptions
in general than seed-based analysis (Griffanti et al., 2017).
However, some manual input is still required toward the
end where independent components must be identified
by which network they seem to belong to (Calhoun and
de Lacy, 2017). This difference of assumptions makes up
a key difference between data-driven and seed-based
methods that must be considered before choosing an
analysis technique.

Graph theory

Another method to consider due to its relatively recent
popularity is graph theory. Graph theory is a method of
understanding FC by looking at the holistic relationships
between voxels, not only within a region but also within
the whole brain at the same time. Through this, it can
create an FC map of the brain that can give a high level
of information regarding certain functions (Smitha et al.,
2017). Networks in graph theory are composed of edges
and nodes. A node is a point or ROI (such as a brain
region in fMRI), while an edge is the connection that node
has with the system it is in (such as the FC the brain
regions exhibit with other regions). However, as with the
other methods, some assumptions need to be made in
the analysis step. In this case, one must determine how
the network graph theory can be created to obtain the
most reliable results. Poor choices lead to results that
may not be reliable or repeatable (Wang et al., 2010).

Graph theory has several measures and parameters
that can be used in the overall analysis. These measures
include global efficiency, local efficiency, nodal efficiency,
modularity, path length, degree of centrality, and par-
ticipation coefficient. Degree of centrality measures the
number of edges connected to a node, or in the case of
rs-fMRI how much FC is exhibited by a region and its
connected regions (Li et al., 2017). The path length is the
number of edges connecting two nodes. Global efficiency
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finds the shortest path length between two nodes in a
system, while local efficiency finds the shortest path in
the area surrounding a specific node within a system.
Network efficiency measures how efficiently information
is spread from one node to others in the system. Modu-
larity reflects how many closely connected sets of nodes
there are within a global network (Wang et al., 2010).
Finally, the participation coefficient measures how much
of a specific node’s edges are shared with the rest of the
regions in the global network (Power et al., 2013).

Preprocessing of rs-fMRI data

As with most neuroimaging analyses, preprocessing is
an important part of rs-fMRI analysis. Indeed, it is very
important as the small amplitude of rs-fMRI makes it
highly susceptible to artifacts, especially those arising
from motion (Maknojia et al., 2019). The impact of motion
may make certain results unreliable and experiments
void. In rs-fMRI, the presence of motion can cause mis-
estimation of connectivity in the brain. This can take
the form of either an underestimation of connectivity for
long-range connections or an overestimation for short-
range connectivity (Power et al., 2012). One of the first
and important steps in preprocessing is volume regis-
tration, which may reduce the artifacts caused by head
motion. This is done by aligning scans obtained from
a participant to a certain template scan with minimal
motion artifacts (Maknojia et al., 2019). While a power-
ful technique, this technique may also overcorrect in the
sense that minor motion artifacts can be corrected in a
way that still leaves an artifact, and in the absence of
motion the attempt at correction may further distort the
data (Caballero-Gaudes and Reynolds, 2017). In the case
of patients with attention deficit hyperactivity disorder
(ADHD), micromovements in the MRI scanner are com-
monly observed, causing motion artifacts in the rs-fMRI
data. Fair and colleagues have addressed this issue by
using a conservative procedure involving frame-to-frame
displacement covariates, which led to improved ADHD
characterization (Fair et al., 2012).

An efficient and data-driven form of denoising is
using linear regression to remove signals not related to
specific neuronal activations. This is done using nui-
sance regressors that can clean multiple different types
of noise, from motion to equipment artifacts and non-
neuronal signals. Nuisance regressors compute this by
regressing total signals in an area to an average signal
obtained (Caballero-Gaudes and Reynolds, 2017). Care
must be taken when using nuisance regressors as their
use may also result in valuable data being regressed out.
For example, in the case where the nuisance regressor
and the BOLD signal are of different frequencies due
to differences in filtering, new noise may be introduced
to the signal (Hallquist et al., 2013). A related method
is global signal regression (GSR). GSR is done by tak-
ing all of the brain’s rs-fMRI time-series data and then
averaging it to find a global signal. This global signal
has been believed to represent the baseline value of the

brain and could therefore be dismissed and regressed
out as not containing useful information pertaining to
FC in the brain (Maknojia et al., 2019). However, this
has been controversial as newer research indicated this
global signal could contain valuable information; there-
fore, it is important to show results without GSR as well,
if one chooses to perform GSR (Liu et al., 2017). Although
there is no single optimal preprocessing pipeline for all
datasets, it may be helpful to consider multiple pre-
processing strategies for different datasets, depending
on the research question. Parkes and colleagues have
shown that the preprocessing pipeline chosen will shape
the group comparisons in FC between patients with
schizophrenia and healthy controls (Parkes et al., 2018).
Thus, when comparing patient groups with healthy con-
trols, one should consider a preprocessing strategy that
reports all quality control benchmarks rather than sim-
ply following a single preprocessing pipeline.

Rs-fMRI and Psychiatric Disorders

In this section, we give a brief overview of common psy-
chiatric disorders and focus on the use of rs-fMRI in each
field.

ADHD

ADHD is characterized by a deficit in behavioral inhi-
bition, poor sustained attention, impulsiveness, and
hyperactivity (Barkley, 1997). According to the National
Survey of Children’s Health (NSCH) in 2016, it is esti-
mated that a total of 6.1 million children ages 0–17 years
of age have been diagnosed with ADHD in the USA
(Danielson et al., 2018). ADHD can also persist into adult-
hood, with 40–60% of children diagnosed with ADHD
continuing to show symptoms in a longitudinal study
(Barkley, 2002). Due to the hyperactivity of individuals
with ADHD, the performance of task paradigms in an
fMRI scanner may not be feasible or may be contami-
nated with large motion artifacts. However, with rs-fMRI,
individuals with ADHD do not perform any tasks, thus
reducing the possibility of large motion artifacts, despite
challenges of hyperactivity.

In adolescents with ADHD, abnormal resting-state FC
patterns are observed in the dorsal anterior cingulate
cortex, in which RSFC is significantly increased com-
pared to that of adolescents without ADHD (Tian et
al., 2006). This suggests deviations in autonomic con-
trol in children with ADHD since the anterior cingu-
late cortex is highly involved in autonomic control,
such as the sympathetic regulation of the heart rate
(Critchley et al., 2013). Similarly, Zang and colleagues
observed altered resting-state activity in children with
ADHD, using ALFF measures, and found increased ALFF
in the right anterior cingulate cortex, left sensorimo-
tor cortex, and bilateral brainstem, while there were
decreased levels of ALFF in the right inferior frontal cor-
tex, left sensorimotor cortex, and bilateral cerebellum
(Zang et al., 2007). Despite the use of different rs-fMRI
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analysis methods, we see an overlap in results in which
activity in the anterior cingulate cortex is altered in chil-
dren with ADHD. Another approach to observing regional
resting-state activity is using ReHo, which was found
to be decreased in the frontal-striatal-cerebellar circuits,
while it increased in the occipital cortex of boys with
ADHD (Cao et al., 2006). Measures of resting-state brain
activities can also be combined, as seen in Tian and col-
leagues’ work in defining a resting-state activity index
(RSAI) that combined ReHo measures with the standard
variance of low-frequency fluctuations to account for
both spatial and temporal characteristics of brain voxels,
respectively (Tian et al., 2008). In this study, a greater RSAI
was found in the basic sensory and sensory-related cor-
tices of patients with ADHD compared to matched con-
trols.

Using rs-fMRI, one could even classify different sub-
types of ADHD, as Fair and colleagues have shown by
using support vector machine (SVM)-based multivariate
pattern analysis (MVPA), which is a machine learning
algorithm that can identify different patterns inherent
in the brain (Fair et al., 2012). This study observed unique
connectivity characteristics between combined (ADHD-
C) and inattentive (ADHD-I) subtypes. ADHD-C is charac-
terized by a combination of both inattention and hyper-
activity impulsivity, while ADHD-I is predominantly
defined by inattention and not hyperactivity impulsiv-
ity, according to the Diagnostic and Statistical Manual of
Mental Disorders (Association, 2013). Altered connectiv-
ity was observed in the midline DMN and insular cortex
for the ADHD-C groups, while atypical connectivity pat-
terns were observed in the dorsal-lateral prefrontal cor-
tex (dlPFC) regions and cerebellum for the ADHD-I group
(Fair et al., 2012). Classification of ADHD patients using rs-
fMRI can also be performed using convolutional neural
networks. In a study by Zhang and colleagues, a method
of separated channel attention convolutional neural net-
work (SC-CNN-Attention) was used, which consisted of
two main stages: using an SC-CNN to learn the tem-
poral features among brain regions and then captur-
ing the temporal features among brain regions using an
attention network (Zhang et al., 2020). This study used
multi-site rs-fMRI data and achieved a mean classifica-
tion accuracy of 68.6% on five different sites.

The atypical RSFC observed in patients with ADHD
could also be studied from a dynamical systems point
of view, as FC may fluctuate over time. Kaboodvand
and colleagues assessed time-varying FC to study the
different network configurations recruited by the DMN
in ADHD patients (Kaboodvand et al., 2020). This study
found that the recruitment rate and topology of specific
resting-state network synergies are altered in patients
with ADHD. The synergies were defined by instances
where patterns of connectivity associated with the DMN
were stable for at least 4 s, and the study found a signifi-
cantly lower recruitment rate within the DMN in patients
with ADHD for the first identified synergy. The DMN is a
widely studied network in rs-fMRI, particularly for stud-
ies involving ADHD populations, with reduced network

homogeneity being found in the DMN of patients with
ADHD (Uddin et al., 2008).

ASD

Autism spectrum disorder (ASD) is comprised of sev-
eral different disorders, which share characteristics in
deficits of social behaviors and interactions, such as pro-
totypic autistic disorder, Asperger syndrome, and per-
vasive developmental disorder-not otherwise specified
(PDD-NOS) (DiCicco-Bloom et al., 2006). Prototypic autis-
tic disorder is defined by impairments in communica-
tion and restricted repetitive patterns of behaviors or
interests observed before the age of 3 years (Faras et al.,
2010). Patients with Asperger syndrome exhibit problems
in social communication as well as restricted repetitive
forms of interests, however, they can retain linguistic and
cognitive development (Faridi and Khosrowabadi, 2017).
In cases where the typical symptoms are present but spe-
cific pervasive developmental disorder criteria are not
met, patients are diagnosed with PDD-NOS (Faras et al.,
2010). In 2014, it was found that approximately one in
59 children aged 8 years had ASD in the 11 Autism and
Developmental Disabilities Monitoring sites across the
United States, and males were four times more likely
than females to be diagnosed with ASD (Baio et al., 2018).

From rs-fMRI scans, it has been observed that the
resting-state networks of those with high-functioning
autism or Asperger syndrome exhibit “underconnectiv-
ity” in the anterior–posterior connections of the brain
(Cherkassky et al., 2006). In addition to decreased RSFC,
decreased ReHo has been observed in patients with ASD,
particularly in the right superior temporal sulcus region,
right inferior and middle frontal gyri, bilateral cere-
bellar crus I, right insula, and right postcentral gyrus
(Paakki et al., 2010). Paakki and colleagues note that
these alterations are observed to be right-hemisphere
dominant, possibly due to language domain deficits.
Another method used to study connectivity alterations
in rs-fMRI is ICA, which was used by Starck and col-
leagues to identify subnetwork connectivity alterations
in the DMN for patients with ASD (Starck et al., 2013).
Using ICA, the authors observed decreased connectivity
between the anterior and posterior DMN subnetworks
in the ASD group. This similarly reflects the “under-
connectivity” model between the anterior and poste-
rior connections observed by Cherkassky and colleagues
(Cherkassky et al., 2006).

Due to the prevalence of ASD being four times greater
in males than females, resting-state fMRI has been used
to investigate the sex differences in the brains of patients
with ASD. The neural expression of ASD is shown to be
hypo-connected in males with ASD and hyper-connected
in females with ASD, in comparison to typically devel-
oping males and females, respectively (Alaerts et al.,
2016). Furthermore, cortico-cerebellar hyperconnectivity
and hypoconnectivity are also observed for females and
males with ASD, respectively (Smith et al., 2019). The
neurobiological mechanism behind these sex differences
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observed in the RSFC of males and females with ASD
is still unclear. This is a particular challenge in ASD
research since some studies exclude females altogether
due to the highly unbalanced ratio of ASD in males to
females (Hull et al., 2017).

A recent area of development in ASD research is the
classification of ASD based on resting-state data in con-
junction with machine learning and deep learning tech-
niques. Classification has been performed using 3-D con-
volutional neural nets (3-D CNN) with summary mea-
sures such as ALFF and ReHo used as inputs to a 3-D CNN
(Thomas et al., 2020). The classification of ASD is also
dependent on the sample heterogeneity. Grouping ASD
populations into more homogeneous subgroups based
on gender and severity range has been shown to yield
more accurate classification results (Reiter et al., 2020).
Furthermore, machine learning classifiers appear to per-
form with higher levels of accuracy when the temporal
dynamics of rs-fMRI data are taken into account, by using
brain dynamic networks and feature extraction methods,
with an accuracy of 88.8% achieved in Guo’s paper on the
classification of ASD (Guo, 2020).

Resting-state fMRI has allowed for the ease of large-
scale aggregation of data from multiple imaging sites due
to the simplicity of scanning protocol, which has greatly
helped in better understanding ASD. A particular initia-
tive is the Autism Brain Imaging Data Exchange, which
openly shares 1112 rs-fMRI data sets from 539 individu-
als with ASD and 573 typical controls (Di Martino et al.,
2014). This initiative not only helps in providing greater
replicability of studies, but also accelerates the discovery
pace for future ASD studies.

Bipolar disorder (BD)

BD is a psychiatric condition defined by alternating peri-
ods of mania (a period of elevated mood) and depression.
Individuals with BD are at a high risk of suicide at approx-
imately 20 to 30 times higher than the general population
(Miller and Black, 2020). BD is split into several subtypes;
primarily, these are bipolar disorder I (BD-I) and bipolar
disorder II (BD-II). The difference in diagnosis primarily
comes from the intensity of the mania period. Another
form of BD is bipolar disorder-not otherwise specified
(BD-NOS); a diagnosis given when a patient experiences
some symptoms of BD but cannot be diagnosed as pos-
sessing the condition (Price and Marzani-Nissen, 2012).

A common challenge in diagnosing BD comes from
its similarity to major depressive disorder (MDD) when
a patient with BD is in a depressive episode, which could
result in treatment for the wrong disorder. One study
aimed to quantitatively differentiate between the two
conditions by examining the resting-state FC of differ-
ent brain regions with rs-fMRI (Li et al., 2017). The study
observed both similarities and differences in the FC of
the brain of participants with BD compared to healthy
controls. Their findings reported that the degree of con-
nectivity, also known as the degree of centrality (DC), was
decreased for both conditions in the areas of the brain

responsible for sensory processing, that is, the lingual
and fusiform gyrus. They posited that these findings may
be related to several negative symptoms seen in depres-
sive states such as apathy and dull perception. However,
patients with BD exhibit a loss of DC in the insula and
an increase in the precuneus compared to patients with
MDD. Differences in DC are clear enough that Li and col-
leagues were able to differentiate between the two disor-
ders with 86% accuracy.

Mania in patients with BD has been studied exten-
sively with rs-fMRI. These studies have reported abnor-
mal brain activity in areas of the brain associated with
emotion regulation. One study found decreased 2dReHo
in the left ventral visual stream (VVS) cortex compared
to healthy controls (Zhang et al., 2019). The VVS has
been noted to respond to emotional stimuli, among other
stimuli, which Zhang and colleagues considered to pos-
sibly be related to mood swings in patients with BD.
Another ReHo study showed low ReHo within children
with BD regarding the insula region of the brain, which
may play a strong part in emotional perception (Xiao et
al., 2019).

In between mania and depression lies a euthymic
state, which is not recognized as either but is also not
comparable to healthy controls. Euthymic patients may
develop mania at any time, and this is paralleled by sim-
ilarly low ReHo in the right superior temporal gyrus,
which, while not as low as that of mania, was still notice-
ably lower than in healthy controls (Xiao et al., 2019).
Another study found that patients in euthymia also
exhibited a low level of FC between the anterior cingu-
late cortex and amygdala compared to healthy controls,
almost as low as patients in a maniac state (Brady et al.,
2016). The researchers suggested possible compensation
for abnormal brain activity in other regions, a method
that is disrupted by mania.

Abnormal brain activity has been found in patients
with BD-II that is not always reflected in patients
with BD-I. For example, lowered connectivity has been
observed between the posterior cingulate cortex and
the medial prefrontal cortex (mPFC) (Gong et al., 2019).
Another study found significantly lowered ReHo in the
left occipital frontal cortex within patients with BD-II in
a depressive state (Qiu et al., 2019). All of these regions are
associated with emotional control, consistent with find-
ings of emotional trauma experienced by patients with
BD-I, but the exact regions differ in terms of what is being
affected.

BD-NOS is often similar to BD-I in which the same
brain regions display abnormal brain activity. Generally,
brain regions associated with sensorimotor functions
display altered connectivity. An example is the increased
connectivity between the sensorimotor RSN and left pre-
central gyrus that was found in young adults with BD-
NOS (Thomas et al., 2019). The abnormal brain activity in
the sensorimotor systems is similar to that of patients
with BD-I, suggesting a link in the progression from BD-
NOS to regular BD. This is consistent with a growing field
of literature on the subject, with one study finding that
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45% of patients with BD-NOS progressed to BD-I or BD-II
(Axelson et al., 2011).

Schizophrenia

Schizophrenia is a mental condition characterized by a
variety of disorders such as hallucinations, loss of emo-
tion, and delusions (Kay et al., 1987). Resting-state fMRI
studies have found many signs of abnormal brain activity
in patients with schizophrenia. This has led to a greater
theory of schizophrenia arising from dysconnectivity in
the FC of different brain regions. Despite this, the exact
nature of the dysconnectivity is unclear as the abnormal-
ities appear to be diverse in their origin.

Much of the literature in rs-fMRI studies for
schizophrenia have focused on attempting to find
the functional localization of the brain regions corre-
sponding to certain symptoms of the condition. These
symptoms are usually grouped into two categories,
positive and negative symptoms. Positive symptoms
refer to the presence of abnormal behavior such as hal-
lucinations or other delusions, and negative symptoms
refer to the absence of usual behavior such as a lack
of happiness (Kay et al., 1987). One study found that
decreased connectivity between regions of the DMN
network, such as the medial parietal and temporal
regions, was correlated with positive symptom sever-
ity in patients (Venkataraman et al., 2012). The study
also found increased connectivity between the medial
parietal and frontal lobes, also located in the DMN, was
strongly associated with negative and general symptom
severity. These two different abnormalities in the same
brain network highlight the difficulty in identifying
specific causes of disorders. Even when abnormalities in
a network are detected, there may be heterogeneity in
FC within the brain regions.

Another study by Lee et al. also found DMN FC to be
related to positive symptoms. Specifically, they saw the
FC between the DMN and brain networks such as the cen-
tral executive network and SMN to heavily contribute to
the severity of positive symptoms (Lee et al., 2018). In
terms of negative symptoms, they found a correlation
with the salience network (SN), with SN contributing to
symptoms such as anxiety and depression. Brady et al.
also reported a connection between negative symptom
severity and sections of the default network. Here the
connection was between the dorsolateral prefrontal cor-
tex and the cerebral and cerebellar nodes of the DMN
(Brady et al., 2019).

An interesting application of rs-fMRI is the evaluation
of treatment response in patients with schizophrenia. A
study by Chan et al., 2019 noted that it was possible to
differentiate between patients with treatment-resistant
symptoms and patients whose symptoms are not treat-
ment resistant by identifying FC in specific brain regions.
This connectivity arises between striatal subregions and
the anterior cortical loci, and the degree of connectivity
was suggested as a potential biomarker for the feasibility
of treatment (Chan et al., 2019). Besides the prediction of

a treatment response, attempts have also been made to
measure FC as treatment is given to monitor changes.

For example, Brady et al.’s previously mentioned study
saw an increase in FC between the cerebellar node and
the right dorsolateral prefrontal cortex after transcra-
nial magnetic stimulation (TMS) was applied to the cere-
bellar midline. As the FC increased, the patient’s nega-
tive symptoms also decreased in severity (Brady et al.,
2019). A similar study sought to reduce auditory verbal
hallucinations (AVH) in patients by using transcranial
direct current stimulation (tDCS) on the left temporal-
parietal junction (TPJ) (Mondino et al., 2016). This caused
a decrease in FC between the left TPJ and interior frontal
areas, which came alongside a reduction in AVH.

An increasing number of studies have suggested a
theory of continuum between BD and schizophrenia.
Through the observation of several measures such as
genes, outcome, symptoms, and treatment response,
many similarities have been observed between the two
disorders (Yamada et al., 2020). Some work has been
done using rs-fMRI to examine this proposed continuum
with interesting results. One study found clear trends in
global connectivity (GC) where patients with BD exhib-
ited lower GC compared to controls, and patients with
schizophrenia exhibited lower GC compared to those
with BD (Argyelan et al., 2014). This finding supports the
theory of continuum where schizophrenia sits on the far
end of a spectrum and BD is in the middle compared to
healthy controls. However, while global trends could be
identified, similar trends in local FC within brain regions
was not observed.

MDD

MDD is a disorder characterized broadly by a high level
of negative emotions, and a lower level of positive emo-
tions. Specifically, lower levels of emotions such as hap-
piness and hope, and higher levels of emotions such as
sadness and guilt (He et al., 2019). It is a widespread dis-
order that affects as many as 16.2% of the US adult pop-
ulation. Of that population, over half say their lives have
been moderately or severely impacted by the disorder
(Kessler et al., 2003). With its wide impact and symptoms,
MDD has been a focus of study in the field of rs-fMRI for
a long time.

Much of the literature in rs-fMRI has concluded that
MDD is a disorder characterized by widespread network
dysfunction. This dysfunction has been found primarily
in networks and areas relating to emotional regulation.
These include the DMN, salience network, affective net-
work, and the prefrontal cortex (Kaiser et al., 2015). Kaiser
and colleague’s meta-analysis reported hypoconnectiv-
ity between the frontal-parietal network and the bilateral
posterior parietal cortex. Additionally, hyperconnectivity
was found between the default network and much of the
medial prefrontal cortex, as well as with the middle tem-
poral gyrus.

Other work has focused on attempting to link the FC
in the brain with certain symptoms of MDD. One study
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reported that positive and negative affect of the disor-
der could be linked to abnormal FC in the brain (He et
al., 2019). Here, having a higher negative affect was cor-
related with decreased FC between the right posterior
hippocampus (HIP) and left dlPFC/mPFC. Lower positive
affect, on the other hand, was associated with increased
FC between the left striatum and left dlPFC. Given that
the HIP and PFC are involved in emotion regulation and
that the striatum has been associated with positive feel-
ings, these correlations have strong implications for the
source of negative and positive affect in the brain.

Many studies have attempted to find useful biomark-
ers in the brain that can predict susceptibility to MDD.
One of these potential biomarkers may lie in the left mid-
dle frontal gyrus. A study using fALFF found that patients
with MDD had a level of fALFF in the left middle frontal
gyrus that was comparable to their siblings, where both
had higher levels relative to healthy controls (Liu et al.,
2013). This is not the only area implicated in the heritabil-
ity of MDD. Another study also found the right insula and
left cerebellum to be possible biomarkers (Liu et al., 2010).
Here, ReHo was investigated and it was observed that
patients with MDD and their first-degree relatives shared
lower levels of ReHo in the right insula and left cerebel-
lum relative to healthy controls. Both studies show that
rs-fMRI metrics can be useful markers to determine risk.

Attempts have been made to try and distinguish
between MDD and healthy controls based on the FC pat-
terns of the brain. A commonly used method in this pur-
suit is MVPA (Ma et al., 2013; Zeng et al., 2012; Zhong
et al., 2017). One study reported an accuracy of 94.3%
when applying the method to the whole brain (Zeng et
al., 2012). Another study extended this to two indepen-
dent samples to further confirm these findings with the
first episode, drug naı̈ve patients (Zhong et al., 2017). They
reported an accuracy of 91.9% in the first sample and
86.4% in the second sample. Both studies reported abnor-
mal connectivity in the cerebellum and cerebellar areas
that gave it high discriminatory power. Another study
extended the MVPA and applied it to the cerebellum area
rather than the whole brain and achieved an accuracy
of 90.6% (Ma et al., 2013). This study also confirmed the
involvement of the cerebellum in MDD. Another com-
monality is the abnormal connectivity found in visual
areas of the brain inside the cerebellum such as the
fusiform gyrus.

Resting-state fMRI has also been used to categorize
and predict treatment response in patients with MDD.
Due to the heterogeneous nature of the disorder, treat-
ment is a difficult and long process that some do not
take to. Areas of the brain that could help differentiate
between those who are treatment resistant and those
who are treatment sensitive are the frontal and limbic
brain regions, and regions involved in visual recognition
(Dichter et al., 2015). Specifically, those who responded
to treatments well were seen to have higher connectiv-
ity between the frontal and limbic brain regions, which
are associated with control over emotions. The visual
recognition areas such as the lingual gyrus and cuneus

also exhibited abnormal connectivity, which may sup-
port the growing theory that visual recognition areas of
the brain play a part in emotional control. Dichter et
al. (2015) also found that connectivity in the subgenual
cingulate cortex (SCC) was associated with response to
treatment from TMS and antidepressants. The SCC has
also been implicated in another study on the effective-
ness of TMS by Fox and colleagues. Here it was found that
the connection between the dlPFC and the SCC was anti-
correlated with the effectiveness of TMS (Fox et al., 2012).
Taken together, these findings implicate FC in the SCC as
being a good predictor for treatment response.

Research Domain Criteria (RDoC)

The National Institute of Mental Health (NIMH) initi-
ated the RDoC project in 2009, which is an integrative
framework for investigating mental disorders. Due to
the complex nature of the brain, it can be difficult to
make psychiatric diagnoses, especially given the inci-
dences of comorbidities or neurobiological heterogene-
ity within a disorder. Therefore, the RDoC takes a sys-
tematic approach to the classification of disorders, with
six major domains of human functioning defined: nega-
tive valence, positive valence, cognitive, social processes,
arousal/regulatory, and sensorimotor systems. Each of
these domains contains constructs, or behavioral mech-
anisms and responses, which are measured using differ-
ent units of analysis including genetic, behavioral, and
self-report assessments. These constructs are also heav-
ily influenced by environmental and neurodevelopmen-
tal factors. The RDoC approach was not intended to pro-
vide a multifaceted account of disorders in the Diag-
nostic and Statistical Manual of Mental Disorders (DSM),
but rather designed to make future revisions to the DSM
and International Classification of Diseases (ICD), which
are limited by their representation of broad syndromes
(Cuthbert, 2015). This may accelerate progress in the
field of rs-fMRI and psychiatric disorders, as research
groups focus on linking psychiatric phenotypes to
RSFC.

Limitations and Challenges

Despite the recent advancements in rs-fMRI, some lim-
itations and challenges still exist. One limitation in rs-
fMRI is intra-individual variability, which may be due
to a variety of causes, such as time-of-day, diet, blood
pressure, or cognitive load (Specht, 2019). This results in
reduced levels of test–retest reliability of rs-fMRI mea-
sures in studies utilizing repeated-measures designs in
which the participants are scanned multiple times over
a specific timeframe. Variabilities in the resting-state
signal within individuals are also region-specific, with
brain regions involved in working memory, inhibition,
attention, and language showing higher levels of intra-
individual variabilities than that of the somatomotor or
auditory network (Chen et al., 2015). This poses a chal-
lenge in using rs-fMRI for clinical examinations, since
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various physiological or mental changes could possibly
yield unreliable results. On the other hand, differences
between individuals are less of a hindrance than differ-
ences within an individual, since inter-individual differ-
ences have been utilized in functional connectotyping or
“fingerprinting” studies, which show that robust inter-
individual differences allow for the identification of a sin-
gle participant from a group (Amico and Goni, 2018; Finn
et al., 2015; Miranda-Dominguez et al., 2014). Further-
more, understanding individual differences in RSFC can
better aid in uncovering individual susceptibilities to dif-
ferent psychiatric disorders, since brain regions affected
by most psychiatric disorders tend to have high individ-
ual variability (Mueller et al., 2013).

A limitation of FC methods focusing on the asso-
ciation between brain regions is the lack of informa-
tion about causal interactions, or the directionality of
brain activity. Reid and colleagues suggest redefining
FC research to better understand the causal interaction
among neural entities, rather than simply describing FC
as the statistical associations between brain signals, as
is typically described (Reid et al., 2019). Thus, using the
term FC as an umbrella term may benefit the field by
creating a more unified concept of FC, with causal infer-
ence being the main goal. Detailed steps regarding this
unified FC framework are discussed by Reid and col-
leagues, encompassing theoretical, methodological, and
confounding properties of the data (Reid et al., 2019).

Challenges are also present in the analysis of rs-fMRI
data, in which the analysis methods chosen for one study
may not be suitable for another. For instance, if a popula-
tion of individuals with altered local connectivity is stud-
ied, ReHo would be a more sensitive method than ICA to
study RSFC, due to ReHo being more robust in extracting
local brain information. Therefore, differences in anal-
ysis pipelines between studies could lead to variabili-
ties and fewer reproducible results (Griffanti et al., 2016).
Another point of concern is the high dimensionality of
rs-fMRI data, in which methods such as ICA or principal
component analysis are used to reduce the dimension-
ality by parcellating the whole brain into smaller areas,
but the optimal number of brain units to be used is still
not clear (Bijsterbosch et al., 2020). This causes further
variability in rs-fMRI results. Additionally, challenges
may arise in head-motion correction, such that different
motion correction techniques may lead to different RSFC
results (Maknojia et al., 2019). This is in part due to the
various motion correction protocols that exist and lack of
an ideal protocol, but can be improved by transparency
in reporting the motion correction parameters used in
each study. A major challenge in rs-fMRI is the fraction-
ation of the field, as Bijsterbosch and colleagues dis-
cuss, due to the many different analysis methods being
used by different research groups, which contributes
to the formation of research silos (Bijsterbosch et al.,
2020). In their review paper, a best-practice guideline is
laid out to combat the challenges of rs-fMRI brain rep-
resentations and move the field forward in a unifying
manner.

A major challenge in using rs-fMRI to study psy-
chiatric disorders is the occurrence of comorbidities,
in which a participant with one psychiatric disorder
may also possess another. Psychiatric disorders such as
schizophrenia, BD, ADHD, ASD, and MDD are not only
common, but also commonly expressed together, with
a clinical overlap in symptoms and shared genetic risk
factors (Doherty and Owen, 2014). This poses a diffi-
culty in the development of successful biomarkers using
rs-fMRI, since there may be overlapping brain regions
affected among the psychiatric disorders. An example
can be seen between schizophrenia and BD, which both
exhibit dopamine dysregulation and may share suscepti-
bility genes (Murray et al., 2004). Using rs-fMRI, Argyelan
and colleagues have shown that in both schizophrenia
and BD, significantly lower connectivity in the paracin-
gulate gyrus and right thalamus are observed compared
to that of healthy controls (Argyelan et al., 2014). This
signifies overlapping FC patterns between schizophrenia
and BD. Another example is BD and MDD, in which both
reveal increased RSFC between the striatum and dorso-
lateral prefrontal cortex, in addition to increased cere-
bral blood flow in the right caudate and putamen for both
disorders (He et al., 2019). Even if patients do not exhibit
comorbidities of different psychiatric disorders, it may
be difficult to classify a psychiatric patient to a partic-
ular disorder, due to the shared regional FC patterns of
various psychiatric disorders. More research is required
to develop robust classification, with possible consider-
ations such as familial history, genetic expression, and
psychological exams added to rs-fMRI-based biomarker
systems.

Conclusion

The use of rs-fMRI has been shown to be multifaceted
and capable of being utilized to measure various brain
properties, ranging from FC to graph theoretical mea-
sures. From these measures, we can better under-
stand alterations in functional brain connectivity in a
range of psychiatric disorders. In this paper, we dis-
cussed some roles rs-fMRI has had in better under-
standing the following psychiatric disorders: ADHD, ASD,
BD, schizophrenia, and depression. By using metrics
such as RSFC, ReHo, ALFF, and graph theoretical mea-
sures, researchers have better understood how differ-
ent functional brain networks in psychiatric popula-
tions deviate from the norm and whether or not spe-
cific drug interventions have helped restore specific func-
tional brain properties. Future advancements in rs-fMRI
techniques will allow for the development of robust
biomarkers for various psychiatric disorders. Despite
challenges in rs-fMRI such as intra-individual variabil-
ity and overlapping psychiatric disorders’ resting-state
properties, much progress has already been accom-
plished in the field, as partially outlined here, and tech-
nological advances will aid in the development of robust
biomarkers.



Examining psychiatric disorders with rs-fMRI 51

References
Alaerts K, Swinnen SP, Wenderoth N (2016) Sex differences in

autism: a resting-state fMRI investigation of functional brain
connectivity in males and females. Soc Cogn Affect Neurosci
11:1002–16.

Amico E, Goni J (2018) The quest for identifiability in human
functional connectomes. Sci RepSci Rep 8:8254.

Argyelan M, Ikuta T, DeRosse P, et al. (2014) Resting-state fMRI
connectivity impairment in schizophrenia and bipolar disor-
der. Schizophr BullSchizophr Bull 40:100–10.

Association AP (2013) Diagnostic and Statistical Manual of Mental
Disorders, 5th edn. Arlington, VA.

Axelson DA, Birmaher B, Strober MA, et al. (2011) Course of sub-
threshold bipolar disorder in youth: diagnostic progression
from bipolar disorder not otherwise specified. J Am Acad Child
Adolesc Psychiatry 50:1001–16 e1003.

Baio J, Wiggins L, Christensen DL, et al. (2018) Prevalence of
autism spectrum disorder among children aged 8 years -
autism and developmental disabilities monitoring network,
11 sites, United States, 2014. MMWR Surveill Summ 67:1–23.

Barkley RA (1997) Behavioral inhibition, sustained attention, and
executive functions: constructing a unifying theory of ADHD.
Psychol BullPsychol Bull 121:65–94.

Barkley RA (2002) Major life activity and health outcomes associ-
ated with attention-deficit/hyperactivity disorder. J Clin Psy-
chiatry 63:10–5.

Bijsterbosch J, Harrison SJ, Jbabdi S, et al. (2020) Challenges and
future directions for representations of functional brain orga-
nization. Nat Neurosci 23:1484–95.

Biswal B, Yetkin FZ, Haughton VM, et al. (1995) Functional con-
nectivity in the motor cortex of resting human brain using
echo-planar MRI. Magn Reson Med 34:537–41.

Brady RO, Jr., Gonsalvez I, Lee I, et al. (2019) Cerebellar-prefrontal
network connectivity and negative symptoms in schizophre-
nia. Am J Psychiatry 176:512–20.

Brady RO, Jr., Masters GA, Mathew IT, et al. (2016) State depen-
dent cortico-amygdala circuit dysfunction in bipolar disor-
der. J Affect Disord 201:79–87.

Caballero-Gaudes C, Reynolds RC (2017) Methods for cleaning the
BOLD fMRI signal. Neuroimage 154:128–49.

Calhoun VD, de Lacy N (2017) Ten key observations on the anal-
ysis of resting-state functional MR imaging data using inde-
pendent component analysis. Neuroimaging Clin N Am 27:561–
79.

Cao Q, Zang Y, Sun L, et al. (2006) Abnormal neural activity in chil-
dren with attention deficit hyperactivity disorder: a resting-
state functional magnetic resonance imaging study. Neurore-
port 17:1033–6.

Chan NK, Kim J, Shah P, et al. (2019) Resting-state func-
tional connectivity in treatment response and resistance in
schizophrenia: a systematic review. Schizophr Res 211:10–20.

Chen B, Xu T, Zhou C, et al. (2015) Individual variability and test-
retest reliability revealed by ten repeated resting-state brain
scans over one month. PLoS ONE 10:e0144963.

Chen YL, Tu PC, Lee YC, et al. (2013) Resting-state fMRI map-
ping of cerebellar functional dysconnections involving mul-
tiple large-scale networks in patients with schizophrenia.
Schizophr Res 149:26–34.

Cherkassky VL, Kana RK, Keller TA, et al. (2006) Functional con-
nectivity in a baseline resting-state network in autism. Neu-
roreport 17:1687–90.

Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls
in the analysis and interpretation of resting-state FMRI data.
Front Syst Neurosci 4:8.

Critchley HD, Eccles J, Garfinkel SN (2013) Interaction between
cognition, emotion, and the autonomic nervous system.
Handb Clin Neurol 117:59–77.

Cuthbert BN (2015) Research domain criteria: toward future psy-
chiatric nosologies. Dialogues Clin Neurosci 17:89–97.

Danielson ML, Bitsko RH, Ghandour RM, et al. (2018) Prevalence of
parent-reported ADHD diagnosis and associated treatment
among U.S. children and adolescents, 2016. J Clin Child Adolesc
Psychol 47:199–212.

Di Martino A, Yan CG, Li Q, et al. (2014) The autism brain imaging
data exchange: towards a large-scale evaluation of the intrin-
sic brain architecture in autism. Mol Psychiatry 19:659–67.

Dichter GS, Gibbs D, Smoski MJ (2015) A systematic review of rela-
tions between resting-state functional-MRI and treatment
response in major depressive disorder. J Affect Disord 172:8–
17.

DiCicco-Bloom E, Lord C, Zwaigenbaum L, et al. (2006) The devel-
opmental neurobiology of autism spectrum disorder. J Neu-
rosci 26:6897–906.

Doherty JL, Owen MJ (2014) Genomic insights into the overlap
between psychiatric disorders: implications for research and
clinical practice. Genome Med 6:29.

Fair DA, Nigg JT, Iyer S, et al. (2012) Distinct neural signatures
detected for ADHD subtypes after controlling for micro-
movements in resting state functional connectivity MRI data.
Front Syst Neurosci 6:80.

Faras H, Al Ateeqi N, Tidmarsh L (2010) Autism spectrum disor-
ders. Ann Saudi Med 30:295–300.

Faridi F, Khosrowabadi R (2017) Behavioral, cognitive and neural
markers of asperger syndrome. Basic Clin Neurosci 8:349–59.

Finn ES, Shen X, Scheinost D, et al. (2015) Functional connectome
fingerprinting: identifying individuals using patterns of brain
connectivity. Nat Neurosci 18:1664–71.

Fox MD, Buckner RL, White MP, et al. (2012) Efficacy of transcra-
nial magnetic stimulation targets for depression is related to
intrinsic functional connectivity with the subgenual cingu-
late. Biol Psychiatry 72:595–603.

Gong J, Chen G, Jia Y, et al. (2019)Disrupted functional connectiv-
ity within the default mode network and salience network
in unmedicated bipolar II disorder. Prog Neuropsychopharma-
col Biol Psychiatry 88:11–8.

Griffanti L, Douaud G, Bijsterbosch J, et al. (2017) Hand clas-
sification of fMRI ICA noise components. Neuroimage 154:
188–205.

Griffanti L, Rolinski M, Szewczyk-Krolikowski K, et al. (2016) Chal-
lenges in the reproducibility of clinical studies with resting
state fMRI: an example in early Parkinson’s disease. Neuroim-
age 124:704–13.

Guo H (2020) Diagnosis of ASD from rs-fMRI images based on brain
dynamic networks. Master of Science Thesis. University of
Saskatchewan.

Hallquist MN, Hwang K, Luna B (2013) The nuisance of nuisance
regression: spectral misspecification in a common approach
to resting-state fMRI preprocessing reintroduces noise and
obscures functional connectivity. Neuroimage 82:208–25.

He Z, Lu F, Sheng W, et al. (2019) Functional dysconnectiv-
ity within the emotion-regulating system is associated with
affective symptoms in major depressive disorder: a resting-
state fMRI study. Aust N Z J Psychiatry 53:528–39.



52 Canario et al.

He Z, Sheng W, Lu F, et al. (2019) Altered resting-state cerebral
blood flow and functional connectivity of striatum in bipo-
lar disorder and major depressive disorder. Prog Neuropsy-
chopharmacol Biol Psychiatry 90:177–85.

Heine L, Soddu A, Gomez F, et al. (2012) Resting state networks
and consciousness: alterations of multiple resting state net-
work connectivity in physiological, pharmacological, and
pathological consciousness states. Front Psychol 3:295.

Hull L, Mandy W, Petrides KV (2017) Behavioural and cognitive
sex/gender differences in autism spectrum condition and
typically developing males and females. Autism 21:706–27.

Jiang L, Zuo XN (2016) Regional homogeneity: a multimodal,
multiscale neuroimaging marker of the human connectome.
Neuroscientist 22:486–505.

Kaboodvand N, Iravani B, Fransson P (2020) Dynamic synergetic
configurations of resting-state networks in ADHD. Neuroim-
age 207:116347.

Kaiser RH, Andrews-Hanna JR, Wager TD, et al. (2015) Large-scale
network dysfunction in major depressive disorder: a meta-
analysis of resting-state functional connectivity. JAMA Psy-
chiatry 72:603–11.

Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syn-
drome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–
76.

Kessler RC, Berglund P, Demler O, et al. (2003) The epidemiol-
ogy of major depressive disorder: results from the National
Comorbidity Survey Replication (NCS-R). JAMA 289:3095–105.

Lee WH, Doucet GE, Leibu E, et al. (2018) Resting-state network
connectivity and metastability predict clinical symptoms in
schizophrenia. Schizophr Res 201:208–16.

Li M, Das T, Deng W, et al. (2017) Clinical utility of a short
resting-state MRI scan in differentiating bipolar from unipo-
lar depression. Acta Psychiatr Scand 136:288–99.

Liu CH, Ma X, Wu X, et al. (2013) Resting-state brain activity in
major depressive disorder patients and their siblings. J Affect
Disord 149:299–306.

Liu TT, Nalci A, Falahpour M (2017) The global signal in fMRI:
nuisance or information? Neuroimage 150:213–29.

Liu Z, Xu C, Xu Y, et al. (2010) Decreased regional homogeneity in
insula and cerebellum: a resting-state fMRI study in patients
with major depression and subjects at high risk for major
depression. Psychiatry Res 182:211–5.

Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in
single and multislice echoplanar imaging using resting-state
fluctuations. Neuroimage 7:119–32.

Lv H, Wang Z, Tong E, et al. (2018) Resting-state functional MRI:
everything that nonexperts have always wanted to know.
AJNR Am J Neuroradiol 39:1390–9.

Ma Q, Zeng LL, Shen H, et al. (2013) Altered cerebellar-cerebral
resting-state functional connectivity reliably identifies major
depressive disorder. Brain Res 1495:86–94.

Maknojia S, Churchill NW, Schweizer TA, et al. (2019) Resting
state fMRI: going through the motions. Front Neurosci 13:825.

Miller JN, Black DW (2020) Bipolar disorder and suicide: a review.
Curr Psychiatry Rep 22:6.

Miranda-Dominguez O, Mills BD, Carpenter SD, et al. (2014) Con-
nectotyping: model based fingerprinting of the functional
connectome. PLoS One 9:e111048.

Mondino M, Jardri R, Suaud-Chagny MF, et al. (2016) Effects of
fronto-temporal transcranial direct current stimulation on
auditory verbal hallucinations and resting-state functional
connectivity of the left temporo-parietal junction in patients
with schizophrenia. Schizophr Bull 42:318–26.

Mueller S, Wang D, Fox MD, et al. (2013) Individual variability
in functional connectivity architecture of the human brain.
Neuron 77:586–95.

Murray RM, Sham P, Van Os J, et al. (2004) A developmental model
for similarities and dissimilarities between schizophrenia
and bipolar disorder. Schizophr Res 71:405–16.

Ng KK, Lo JC, Lim JKW, et al. (20016) Reduced functional segre-
gation between the default mode network and the executive
control network in healthy older adults: a longitudinal study.
Neuroimage 133:321–30.

Ogawa S, Lee TM, Kay AR, et al. (1990) Brain magnetic resonance
imaging with contrast dependent on blood oxygenation. Proc
Natl Acad Sci USA 87:9868–72.

Paakki JJ, Rahko J, Long X, et al. (2010) Alterations in regional
homogeneity of resting-state brain activity in autism spec-
trum disorders. Brain Res 1321:169–79.

Parkes L, Fulcher B, Yucel M, et al. (2018) An evaluation of the effi-
cacy, reliability, and sensitivity of motion correction strate-
gies for resting-state functional MRI. Neuroimage 171:415–36.

Power JD, Barnes KA, Snyder AZ, et al. (2012) Spurious but sys-
tematic correlations in functional connectivity MRI networks
arise from subject motion. Neuroimage 59:2142–54.

Power JD, Schlaggar BL, Lessov-Schlaggar CN, et al. (2013) Evi-
dence for hubs in human functional brain networks. Neuron
79:798–813.

Price AL, Marzani-Nissen GR (2012) Bipolar disorders: a review.
Am Fam Physician 85:483–93.

Qiu S, Chen F, Chen G, et al. (2019) Abnormal resting-state
regional homogeneity in unmedicated bipolar II disorder. J
Affect Disord 256:604–10.

Reid AT, Headley DB, Mill RD, et al. (2019) Advancing functional
connectivity research from association to causation. Nat Neu-
rosci 22:1751–60.

Reiter M, Jahedi A, Fredo J, et al. (2020) Performance of machine
learning classification models of autism using resting-state
fMRI is contingent on sample heterogeneity. Neural Comput-
ing and Applications 33:3299–3310.

Smith REW, Avery JA, Wallace GL, et al. (2019) Sex differences
in Resting-state functional connectivity of the cerebellum in
autism spectrum disorder. Front Hum Neurosci 13:104.

Smitha KA, Akhil Raja K, Arun KM, et al. (2017) Resting state fMRI:
a review on methods in resting state connectivity analysis
and resting state networks. Neuroradiol J 30: 305–17.

Specht K (2019) Current challenges in translational and clinical
fMRI and future directions. Front Psychiatry 10:924.

Starck T, Nikkinen J, Rahko J, et al. (2013) Resting state fMRI
reveals a default mode dissociation between retrosplenial
and medial prefrontal subnetworks in ASD despite motion
scrubbing. Front Hum Neurosci 7:802.

Thomas RM, Gallo S, Cerliani L, et al. (2020) Classifying autism
spectrum disorder using the temporal statistics of resting-
state functional MRI data with 3D convolutional neural net-
works. Front Psychiatry 11:440.

Thomas SA, Christensen RE, Schettini E, et al. (2019) Prelim-
inary analysis of resting state functional connectivity in
young adults with subtypes of bipolar disorder. J Affect Dis-
ord 246:716–26.

Tian L, Jiang T, Liang M, et al. (2008) Enhanced resting-state brain
activities in ADHD patients: a fMRI study. Brain Dev 30:342–8.

Tian L, Jiang T, Wang Y, et al. (2006) Altered resting-state func-
tional connectivity patterns of anterior cingulate cortex in
adolescents with attention deficit hyperactivity disorder.
Neurosci Lett 400:39–43.



Examining psychiatric disorders with rs-fMRI 53

Uddin LQ, Kelly AM, Biswal BB, et al. (2008) Network homogene-
ity reveals decreased integrity of default-mode network in
ADHD. J Neurosci Methods 169:249–54.

Uddin LQ, Yeo BTT, Spreng RN (2019) Towards a universal taxon-
omy of macro-scale functional human brain networks. Brain
Topogr 32:926–42.

van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain
network: a review on resting-state fMRI functional connec-
tivity. Eur Neuropsychopharmacol 20:519–34.

Venkataraman A, Whitford TJ, Westin CF, et al. (2012) Whole
brain resting state functional connectivity abnormalities in
schizophrenia. Schizophr Res 139:7–12.

Viviano JD, Buchanan RW, Calarco N, et al. (2018) Resting-
state connectivity biomarkers of cognitive performance and
social function in individuals with schizophrenia spectrum
disorder and healthy control subjects. Biol Psychiatry 84:
665–74.

Wang J, Zuo X, He Y (2010) Graph-based network analysis of
resting-state functional MRI. Front Syst Neurosci 4:16.

Xiao Q, Cui D, Jiao Q, et al. (2019) Altered regional homogene-
ity in pediatric bipolar disorder during manic and euthymic
state: a resting-state fMRI study. Brain Imaging Behav 13:
1789–98.

Yamada Y, Matsumoto M, Iijima K, et al. (2020) Specificity and
continuity of schizophrenia and bipolar disorder: relation to
biomarkers. Curr Pharm Des 26:191–200.

Zang YF, He Y, Zhu CZ, et al. (2007) Altered baseline brain activity
in children with ADHD revealed by resting-state functional
MRI. Brain Dev 29:83–91.

Zeng LL, Shen H, Liu L, et al. (2012) Identifying major depres-
sion using whole-brain functional connectivity: a multivari-
ate pattern analysis. Brain 135:1498–507.

Zhang B, Wang F, Dong HM, et al. Surface-based regional homo-
geneity in bipolar disorder: a resting-state fMRI study. Psychi-
atry Res 2019;278:199–204.

Zhang T, Li C, Li P, et al. (2020) Separated channel attention
convolutional neural network (SC-CNN-attention) to identify
ADHD in multi-site rs-fMRI dataset. Entropy 22:893.

Zhong X, Shi H, Ming Q, et al. (2017) Whole-brain resting-state
functional connectivity identified major depressive disorder:
a multivariate pattern analysis in two independent samples.
J Affect Disord 218:346–52.

Zou QH, Zhu CZ, Yang Y, et al. (2008) An improved approach to
detection of amplitude of low-frequency fluctuation (ALFF)
for resting-state fMRI: fractional ALFF. J Neurosci Methods
172:137–41.


