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Abstract: The purpose of the present paper is to predict the grain size of steel during the hot-rolling
process. The basis represents a macroscopic simulation system that can cope with temperatures,
stresses and strains of steel in a complete continuous rolling mill, including reversible pre-rolling and
finishing rolling with several tenths of rolling passes. The grain size models, newly introduced in the
present paper, are one-way coupled to the macro-scale calculations performed with the slice model
assumption. Macroscale solution is based on a novel radial basis function collocation method. This
numerical method is truly meshless by involving the space discretization in arbitrarily distributed
nodes without meshing. A new efficient node generation algorithm is implemented in the present
paper and demonstrated for irregular domains of the slice as they appear in different rolling passes.
Multiple grain size prediction models are considered. Grain size prediction models are based on
empirical relations. Austenite grain size at each rolling pass as well as the ferrite grain size at the
end of rolling are predicted in this simulation. It is also shown that based on the rolling schedule, it
is highly likely that recrystallization takes place at each pass throughout a continuous rolling mill.
The simulation system is coded as a user-friendly computer application for industrial use based
on programming language C# and an open source developer platform NET and runs on regular
personal computers the computational time for a typical rolling simulation is usually less than one
hour and can thus be straightforwardly used to optimize the rolling mill design in a reasonable time.

Keywords: meshless methods; radial basis functions; hot rolling; steel; recrystallization; austenite
grain size; ferrite grain size

1. Introduction

In the present paper, the macroscopic simulation system, coping with a complete
continuous rolling mill, including reversible pre-rolling and finishing rolling with several
tenths of rolling passes [1–5], is upgraded to deal with grain size prediction. The main
aim is to calculate, in addition to the temperature and deformation fields, the austenite
grain size at each rolling pass and ferrite grain size at the end. The microscopic grain-size
prediction models are one-way coupled to the macroscopic thermo-mechanical simulation.
A previously developed 2D numerical model [6], based on the slices that allow only plane
strain deformation and are aligned perpendicular to the rolling direction, is used. The
slices on which 2D stresses and temperature fields are computed are illustrated in Figure 1.

Shaping any metal, such as in the hot rolling process, requires consideration of large
plastic deformation. An overview of related multiscale physics is given in the following
paragraphs. The start of this plastic deformation process is triggered when the dislocations
can move inside a grain. This threshold is the yield stress, and its value depends on the
dislocation density. By applying deformation and heat treatment, dislocation density and
the grain sizes face a significant variation.

If the strain rate and temperature are high enough, a different phenomenon, dynamic
recrystallization, occurs. The dynamic recrystallization depends on the critical strain. As a
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result, new grain sizes appear, either partially or fully. However, not all recrystallization
takes place immediately after exceeding the critical strain. After a particular time, meta-
dynamic crystallization may take place.

Materials 2021, 14, 4277 2 of 26 
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When the deformation is small, or there is no deformation, a softening process may
occur due to sufficient time at high temperatures. The softening can again lead to partial
or complete static recrystallization. Static recrystallization usually leads to larger grains
with higher temperatures [7]. The stored energy in a material is proportional to the defect
density. Therefore, an increase in grain size decreases the total grain boundary area and as
a result, the stored energy is reduced.

The numerical prediction of grain size constitutes an essential aspect of microstructure
studies [8]. Smaller grains may be desired since they lead to higher strength because it is
harder for dislocations to pass over the grain boundaries during plastic deformation. Or
the other way around for the ductility. The steel industry needs to predict the mechanical
properties of their final product, which is only possible with the microstructure analysis [9].

In this paper, multiple grain size prediction models [10–17] were coupled with the
macroscopic rolling simulation system. The basis of the micro-scale simulation used in
the present paper is based on the model predicted by Hodgson and Gibbs [10] with minor
adjustments. Multiple grain size prediction models for different types of steels were
gathered. These models consist of empirical correlations to determine the critical strain and
grain size after meta-dynamic, dynamic or static recrystallization. All the necessary input
data for these models were obtained from the macroscopic 2D slice model results. Checking
for possible recrystallization type and predicting the corresponding austenite grain size was
performed immediately after obtaining the macroscopic results for each slice. After the hot
rolling process was completed, the rolled steel was still hot and considered mainly in the
austenite phase. Based on the models found in the literature, ferrite grain size prediction
could be made as a function of the cooling process. Ferrite transformation temperature is
calculated based on the material composition, and in the simulations, the steel is cooled
down just below that transformation temperature. The discussion of how to implement the
microscopic models can be found in textbooks [1,9]. Since it was not possible to obtain all
the correlations for each steel grade separately for all the micro-scale simulation sections,
a combination of those relations for various steel types were gathered and also applied.
This was just to show that in this way, both macro and micro simulation results of hot
rolling could be obtained easily by using a single meshless simulator. A specific model was
used for each sub-section of micro simulation, but the necessary parameters were material
dependent, and they could also be user-defined. In the results section, the first macro scale
simulation results by using 16MnCrS steel were given. Later the same results were used as
inputs for multiple micro-scale simulations. Comparison of different grain size prediction
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models were shown to distinguish the behaviour of each model. Each collocation point in
a computational domain represents a small area with a uniform grain structure.

Over the years, a comprehensive rolling simulation system has been developed for in-
dustrial use. The supporting steel factory provides rolling schedules in use, and macro-scale
simulations have been up to now run by a successful macroscopic hot rolling simulation sys-
tem [18]. The meshless solution of the macro-scale deformation was chosen here since it is
very straightforward to distribute collation nodes over a computational domain. Therefore,
it was easy to implement numerically and also did not require any background integration.
Meshless methods were multiple times proven to solve thermal [19] and mechanical [20]
problems efficiently and accurately. Recently, micro-scale simulation capabilities based on
empirical relations found in the literature were added, and a one-way coupling between
macro and micro-scale models was formed. The motivation for the present research was un-
derstanding and simulating the material behaviour in between the passes, which is usually
ignored during a multi-pass rolling. In the majority of the simulations, the initial material
definition was used throughout the simulation regardless of the number of deformation
steps, time and temperature. This work clearly shows the possibility of recrystallization at
each pass separately during hot rolling and how much the material properties may change,
based on the change of the grain size.

In the present paper, the possibility of complete or partial recrystallization is modelled.
This makes more realistic the assumption of complete recrystallization at each roll pass, as
assumed in some publications [17]. Furthermore, the effects of the chemical composition of
the steel billet on its macro response and grain structure are also investigated.

2. Materials and Methods

It is pointed out by Sellars [8] that the experimental tests or industrial trials are
not enough to understand all the details of the hot rolling process since it is impossible
to control or monitor all the parameters of rolling in industrial conditions and even in
laboratory conditions. Therefore, the best solution suggested by Sellars [14] is combining
the numerical simulations with empirical models based on experiments. A macro-scale
numerical prediction of the deformation of steel with heat transfer during hot rolling has
been previously developed [6,18]. To achieve the microstructure evolution just as described
in Figure 2, we need to know the initial grain configuration and empirical models that
depend on the involved steel grade.
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Figure 2. Picture of one-way macro-micro coupling.

2.1. Macro Scale Solution

Thermo-mechanical simulation of rolling is based on 2D slices aligned towards the
rolling direction. The slices were simulated one after another, and both thermal and
mechanical models were solved in a coupled way
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LTσ+ b = 0, (1)

ρcp
∂T
∂t

= ∇ · (k∇T) +
.

Q, (2)

where L,σ, b are derivative operator matrix, stress vector and body force vector, respec-
tively. ρ, cp, T, k,

.
Q stand for the density, specific heat, temperature, thermal conductivity

and internal heat generation, respectively. The meshless numerical procedure is based on
the interpolation of an unknown field θ(p) at position p = pxix + pyiy, interpolated with
radial basis shape functions ψ(p) over seven neighbouring nodes (N) as shown in Figure 3,

θ(p) =
N

∑
i=1

ψi(p)αi, (3)

where αi are the collocation coefficients that need to be determined. The partial derivatives
of the unknown field can be calculated as

∂θ(p)
∂xj

=
N

∑
i=1

∂ψi(p)
∂xj

αi. (4)
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The temperature in the thermal model and the mechanical model’s displacement field
are interpolated with the multi-quadric (MQ) radial basis functions (RBF). The details of
the solution of these two models have been previously published in [21].

The boundary condition for the thermal model is of the Robin type,

− k
∂T
∂nΓ

= h
(

T − Tre f
)

. (5)

where k is thermal conductivity, nΓ is unit normal vector on the surface, h is heat transfer
coefficient, and Tre f is the reference temperature. The majority of complications during
simulation usually appear at the contact boundaries between the strand and the groove.
The heat flux there becomes very high in comparison with the non-contact boundaries. At
the contact boundaries, Tre f is considered as the roll’s surface temperature. The boundary
conditions for the mechanical model are described both with the prescribed traction (τ)
and the prescribed displacement (u)

τ = −µp, u = u, (6)

where µ is the coefficient of friction, p is stress acting on the boundary, and u is the dis-
placement. In some rare cases, when the groove surface has a unique geometry, prescribed
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traction boundary condition may not be appropriately satisfied, and might lead to er-
roneous results. To overcome this issue, during the calculation step at first contact, an
artificially sticking boundary condition was applied to some of the boundary points. This
resulted in no relative motion between the roll surface and the boundary in one calcula-
tion step. Later all the boundary nodes received proper boundary conditions defined in
Equation (6) as schematically seen in Figure 4.
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Interpolating an unknown field with regular node distribution over a rectangular
domain works perfectly with meshless Local Radial basis Function Collocation Method
(LRBFCM) and is also easy to implement numerically. However, severe deformation
simulations, such as rolling or forging, require redistribution of the computational nodes.
In other words, a solution with the regular node distribution becomes impossible in large
deformations. An essential advantage of the LRBFCM is that it gives stable results also
with scattered node distribution. A comparison of the results is shown later in this paper
where a rectangular domain is interpolated with regular and scattered node distribution.

LRBFCM interpolates the temperature field in the thermal model, and the governing
equation is solved through explicit time stepping. The time step is chosen as 1 ms. The
nodes of the mechanical and thermal models coincide. The solution is obtained through
local interpolation for each influence domain without creating a global matrix. In the
mechanical model, interpolation of displacement filed over each local influence domain can
be assembled into a global solution matrix (A) by replacing the local collocation coefficients
with the inverse of the local interpolation matrix and the local displacement vector. Hence,
the system of equations can be written in the following form

AU = B, (7)

and solved for global column matrix of displacements U =
[
ux1, uy1, . . . . . . , uxN , uyN

]T
with the size of two times the number of collocation nodes (2N). The adjacent vector B
includes the boundary values. As a result of the nonlinear material model of steel, the
solution matrix A depends on the current state of displacements. The solution can only be
achieved iteratively. In this paper, a direct iteration method was chosen due to its simplicity
and to avoid assembling the Jacobian matrix. The local solution of the system of equations
leads to a sparse matrix A, and with the help of the Intel math kernel library [22], it can be
solved efficiently by direct iteration with iteration index j.

A
(

Uj
)

Uj+1 = B, (8)
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2.2. Micro Scale Solution

In the present work, the critical strain, the time for dynamic, meta-dynamic or static
recrystallization and the grain sizes after different types of recrystallization implemented
through a sequence of different empirical models. It is assumed that each collocation point
in a computational domain represents a small area with a uniform grain structure. Grain
size prediction models were obtained for the austenite phase. Solution steps were adopted
from Hodgson and Gibbs [10], as shown in Figure 5.
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2.2.1. Critical Strain

The micro-scale modelling starts by checking first if the strain field in some of the
points, some of the sub-areas or globally exceeds the critical strain value (εc)

εc = Ac

(
.
ε exp

Qd
RT

)
︸ ︷︷ ︸

Z

p
Dq, (9)

where Z denotes the Zener–Hollomon parameter (s−1), used in a multitude of empiri-
cal relations,

.
ε is strain rate, Qd is activation energy (J/mol K), R is ideal gas constant

8.314 J/mol K, T is temperature in Kelvin and D is the initial austenite grain size diameter.
The coefficients in Equation (9) for different steel grades are listed in Table 1. The dynamic
or meta-dynamic recrystallization is triggered at the points where the critical strain value
is exceeded. This can occur locally or on the global scale of the domain.
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Table 1. Parameters used in the critical strain definition for carbon–manganese steel in [11,12,14] and
low carbon steel in [13].

Coefficients [11] [12] [13] [14]

Ac 6.82 × 10−4 4.76 × 10−4 4.9 × 10−4 4.9 × 10−4

Qd 312,000 66,500 300,000 312,000

p 0.13 0 0.17 0.15

q 0 0 0.3 1

2.2.2. Dynamic Recrystallization

The dynamic recrystallization (DRX) occurs when the critical strain is reached, but
time is not long enough for meta-dynamic recrystallization. The grain size is predicted
from the following equation

DDRX = AdZr, (10)

The coefficients of Equation (10) are defined in Table 2 below.

Table 2. Parameters used in the grain size equation for dynamic recrystallization of carbon–
manganese steel.

Coefficients [10] [12] [14] [16]

Ad 16,000 22,600 1800 16,000

r −0.23 −0.27 −0.15 −0.23

Qd 312,000 267,100 312,000 300,000

2.2.3. Meta-Dynamic Recrystallization

The meta-dynamic crystallization is also called post dynamic recrystallization. Its
effect on the grain size is similar to the dynamic recrystallization; however, there is a
time-based criterion that includes strain rate. In this paper, the following definition is
used [15],

tMDRX = 1.166ε−0.8, (11)

as developed by Manohar et al. If the current time t at any deformation step exceeds the
criterion (t > tMDRX), it is considered that the meta-dynamic recrystallization (MDRX)
occurs. If this is the case, the grain sizes must be recalculated from the following equation,

DMDRX = AmZr. (12)

The grain size prediction model for the meta-dynamic and dynamic recrystallization
is the same, but the coefficients are different. The constants of Equation (12) are defined in
Table 3 below.

Table 3. Parameters used in the grain size equation for meta-dynamic recrystallization of carbon–
manganese steel [10,14,16], and low carbon steel [10].

Coefficients [10] [13] [14] [16]

Am 26,000 25,000 1600 26,000

r −0.23 −0.23 −0.11 −0.23

Qd 312,000 312,000 312,000 300,000
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2.2.4. Static Recrystallization

There is a time criterion for static recrystallization (SRX) to occur, and in this paper, a
model defined by Zhang et al. [16] for high carbon steel is used. It has the following form,

tSRX = 1.944× 10−4ε−1.0D0.6
0

(
3.6

.
ε

)0.28
exp

(
6900
RT

)
. (13)

when the time during the simulation is larger than (t > tSRX) then, static recrystallization
may be expected. The grain size after the recrystallization is obtained from

DSRX = AsεmDr
0 (14)

The coefficients for Equation (14) are defined in Table 4.

Table 4. Parameters used in the grain size prediction model when static recrystallization takes
place. These parameters are obtained by Zhang [16] for high carbon steel and Sellars [8] for carbon
manganese steel.

Coefficients [13] [7]

As 0.5 1

m −0.67 −0.5

r 0.67 0.4

2.2.5. Grain Growth

After complete recrystallization, the grains will grow until the next partial or complete
recrystallization. In the present paper, the following grain growth model to calculate the
new grain size is considered for three types of steel.

DGG0 = Dn
0 + kst exp

(
QGG
RT

)
. (15)

The coefficients for Equation (15) are defined in Table 5.

Table 5. Parameters used in the grain growth calculation when complete recrystallization takes place.
These parameters were obtained by Hodgson and Gibbs [10] for three types of steel.

Coefficients C-Mn-V C-Mn-Ti C-Mn-Nb

n 7 10 4.5

ks 1.45 × 1027 2.6 × 1028 4.1 × 1028

QGG −400 −437 −435

2.2.6. No-Recrystallization Temperature

It is known from the experiments that recrystallization may not occur every time, even
though the conditions are met. This limitation comes from the temperature value. If it is
below a certain value (Tnr), recrystallization will not take place. This temperature value is
defined from the following equation given in [23]

Tnr = Anεm .
ε

ntk, (16)

where An = 905, m = −0.045, n = −0.006, k = −0.024 and t is the time in seconds. These
values are for high strength low alloy steel, experimentally obtained in [24]. The time in
Equation (16) is accounted for only during the deformation process.
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2.2.7. Ferrite Grain Size Prediction

After the steel leaves the last rolling stand, it is cooled in a controlled way at the cooling
bed. During the cooling process the austenite phase transforms into ferrite and perlite,
especially for C-Mn steels. In this paper, only the ferrite transformation is considered,
and the temperature at which the transformation occurs is called Ferrite Transformation
Temperature (FTT). (FTT) for any type of steel in ◦C is calculated based on the following
equation given in [25]:

TFTT = 910− 310[%C]− 80[%Mn]− 20[%Cu]− 15[%Cr]− 80[%Mo]− [%Ni]. (17)

The steel has to cool down until the maximum temperature goes below the FTT, and
with that specific cooling rate at that temperature, the ferrite grain size can be predicted
based on the following equation.

D0
F =

(
α0 + α1Ceq

)
+
(
α3 + α4Ceq

) .
T
−0.5

+ α4(1− exp(α5DA)). (18)

The necessary coefficients are defined in Table 6. It is important here not to ignore the
residual strain (εr) which has an impact on reducing the ferrite grain size. If complete
recrystallization occurred at each roll pass, the residual strains were obtained only from
the last rolling stand. The following model by Sellars and Beynon [26] is considered in the
simulations to calculate the final ferrite grain size.

DF = D0
F(1− 0.45

√
εr). (19)

Table 6. Parameters used to calculate ferrite grain size for C-Mn steel.

Coefficients [10] (%C) + (%Mn)/6 > 0.35 [10] (%C) + (%Mn)/6 < 0.35 [26] C-Mn-Ti

α0 −0.4 22.6 1.4

α1 6.37 −57 0

α2 24.2 3 5

α3 −59 0 0

α4 22 22 22

α5 0.015 0.015 0.015

2.3. Coupling of Micro and Macro Models

Macro-scale simulation is followed by micro-scale simulation for each slice at a time
except for the final ferrite grain size, which is calculated at the end. The major steps of the
macro and micro-simulation steps and the coupling between them can be seen in Figure 5.
The results were visualized for each slice, in particular at the exit from each rolling stand.
The temperature, strain and strain rate fields are the inputs of the micro-scale model and
were obtained from the macro-scale simulation results. This solution procedure represents
a one way coupled system. When the simulation is completed, switching between or
rearranging the micro-scale models and recalculating them is possible. Each micro-scale
simulation took a few seconds. It was unnecessary to rerun the macro-scale simulation,
which is time-consuming, to make a sensitivity study with different micro-scale model
parameters. It was also possible to add entirely new micro-scale correlations into the
database. There are two different ways of visualization of the micro-scale results. First
is the type of recrystallization to see if it is partial or complete and when it happens.
The second outcome is the grain size at each slice position, scaled from the minimum to
the maximum.
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3. Node Positioning

After the continuous casting in a typical steel production line, the strand proceeds to a
reheating furnace to remove the cast dendritic structures and homogenize most alloying
elements [2]. The strand afterwards deforms in the reversing rolling mill to obtain the
desired pre-shape for the continuous rolling mill. The initial rectangular shape for the
finishing rolling was not a perfect rectangle, but it had curved corners. We obtained the
proper initial shape for use in the finishing rolling by using the reversing rolling mill
simulation results. The regular node distribution was straightforward to generate and
effective for the perfect rectangular shape. However, the regularly distributed nodes did
not correctly provide the appropriate results near the curved edges.

Most of the rolling schedules used in the simulations may be categorized into two
groups when rolling the billets. In the first group, oval grooves were used to achieve
more oval or round-shaped forms. In the second group, primarily flat rolls were used
to get more slab-like shapes. Regular node distribution was adequate for most of the
slab simulations; however, regular nodes faced stability issues for a schedule that turns a
rectangular billet into a round bar. Previously we used an Elliptic Node Generation (ENG)
algorithm [27,28] for positioning the nodes in the domains with curved boundaries. This
algorithm successfully maps a rectangular shape to an arbitrary shape with four sides and
ensures high orthogonality. The downside of this method represents a mapped corner. This
corner is potentially most tricky during any interpolation, just like in a rectangular domain.
However, if we use an irregular node arrangement, this corner complexity will be lost
completely. This provides a much more extensive deformation range with stable results.

3.1. Regular vs. Irregular Node Positioning

A fast, irregular node generation algorithm [29] is numerically implemented in the
rolling simulation system. Additionally, the first row of internal points, just next to the
boundaries, is aligned in the opposite direction of the unit normal of the nearest bound-
ary point.

3.2. Node Repelling Algorithm

Due to the different texture of internal points near the boundaries and the rest of
the internal points, an iterative node adjustment algorithm was used. In this way, the
neighbouring nodes have a more uniform distance to the central nodes. The adjustment is
based on a node repelling algorithm. The vector component of displacement ∆ui, due to
repelling, is defined as

∆ui = C
Nmax

∑
j=1

s
pi − pj

i(
‖pi − pj

i‖
)n . (20)

C is a smoothing factor usually taken between 0 and 1. The higher the node density, the
smaller it should be. In this paper it is taken as (1/6). s is also a similar factor taken as 1,
and reduced to 0.8 when at least one neighbouring point is located at a boundary. NMAX is
a maximum number of the nearest nodes to consider without the boundary nodes. It was
taken as 45 during the first iteration, and it was slowly reduced in each iteration until it
reached seven nodes inside an influence domain.

4. Numerical Results

In this section, multiple numerical results from the represented multiscale rolling
simulation system (Institute of metals and technology, version 7.6.4, Ljubljana, Slovenia)
are illustrated. Macro-scale results are compared with regular and irregular collocation
nodes and also compared with Finite Element Method (FEM) results. Later, an actual
rolling schedule which consists of eight rolling stands, is applied. Micro-scale results are
demonstrated in terms of grain size and recrystallization throughout the rolling schedule.
The necessary values and definitions are given in Table 7.
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Table 7. Parameters used in the rolling simulation.

General Data

Initial size of the slab 60.48 × 60.48 mm

Initial temperature field of the slab 1100 ◦C

Entry velocity towards the rolling direction 760 mm/s

Coefficient of friction 0.15

Initial grain size 10 µm

Material Model

σ
(

ε,
.
ε, T
)
= 589ε0.214

.
ε
0.2

exp
(

38,000
RT

)
MPa, for 16MnCr5 alloyed steel

Thermal Model

Thermal conductivity 29 W/mmK

Specific heat 630 J/KgK

Density 7450 kg/m3

Heat transfer coefficient to air 20 W/m2K

Heat transfer coefficient to roll 10,000 W/m2K

Roll surface temperature 600 ◦C

Groove and Roll Data

Roll radii 230 mm

Roll gaps 34.5–26.5–118–22.5–112–20–107.4–18.2 (mm)

Groove geometries
(H-horizontal, V-vertical)

flat (H)—flat (H)—oval box (V)—flat (H)—flat
box (V)—flat (H)—flat box (V)—flat (H)

Distance between rolling stands 3 m (for the first five rolling stands), 4.5 m
(after the fifth rolling stand).

4.1. Regular vs. Irregular Node Positioning—Slab

An initial slab with 217 × 45 mm2 is flat-rolled into 34.5 mm height. The material is
elastic with Young’s modulus 106 Pa and Poisson’s ratio 0.35. A regular node distribution
with 546 nodes and irregular with 571 nodes are used, as shown in Figure 6. The deformation
is calculated in 11 steps in both cases, and the coefficient of friction is taken as 0.1.
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The results in terms of effective strain can be seen in Figure 7. The results are almost
identical; therefore, for a slab that undergoes the flat rolling, irregular node generation has
no distinct benefit.
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4.2. Regular vs. Irregular Node Distribution—Real Shape

More distinct differences occur when starting from an initial shape with curved
corners, as obtained from the reversing rolling mill. The node arrangement is kept regular
with ENG [28] and irregular with the algorithm [29], as shown in Figure 8. The regular and
irregular node distributions involve 396 and 400 nodes, respectively.
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The instability issue at the edge of the first contact is still carried out until the end
of the simulation in the regular node arrangement. In Figure 9, it is shown that irregular
node arrangement made a better interpolation when the boundary shape diverges from
regular (rectangular) geometry. Smoothed corners created problems with regular node
arrangement. Comparing with FEM results in Figure 9c, the overshoot near the corner
in Figure 9b is very clear. However, this can be overcome by using an irregular node
arrangement where the corner information is completely lost as shown in Figure 9a.
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4.3. Irregular Meshless Node Distribution vs. FEM

The same flat rolling example as in Section 4.1 is chosen here with an ideal plastic
material model. Effective stress–effective strain relation is σ = 589ε0.2. A comparison is
made with FEM code [30], and a good agreement is found. An example of a shear strain
comparison is given in Figure 10 below. As expected, a good agreement has been found
between the meshless results with irregular node arrangement and FEM.
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4.4. Rolling Schedule with Eight Rolling Stands

In this section, a rolling schedule from the industry with specific grooves are shown in
Figure 11 The same was used in all subsequent simulations. The initial size of the billet was
60.48 by 60.48 mm, where the corners are rounded with a radius of 11 mm. An irregular
node distribution, the same as demonstrated in Section 4.2, is used. This rolling schedule
aimed to obtain a 45 × 30 mm2 end shape within a half millimetre error range.
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4.4.1. Effective Strain Results

Effective strain and temperature fields are the most critical inputs of the micro-scale
models. The corresponding position and time of each slice have to be known throughout the
simulation. Figure 12 represents the effective strain result of slices positioned at the exit of
each roll pass. These results have shown the total effective strain through each of the rolling
passes. Therefore these fields contain the highest possible values for each pass. These
results are also crucial since they have a significant impact on the micro-scale simulation.
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4.4.2. Recrystallization Results at Each Pass

In the simulations, the deformation occurred so rapidly that the time for meta-dynamic
or static recrystallization was never reached. However, at each pass, soon after the first
contact, a complete dynamic recrystallization was always achieved except for the model
developed by Yada [12]. In that model, the dynamic recrystallization was partial at each
pass. To contrast, the results obtained by Yada’s model are shown in Figure 13. In the three
other models, there was always complete dynamic recrystallization.
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Figure 13. Recrystallization based on the model given by Yada [12] at the exit of each roll pass. (a) at first roll pass, (b) at
second roll pass, (c) at third roll pass, (d) at forth roll pass, (e) at fifth roll pass, (f) at sixth roll pass, (g) at seventh roll pass,
(h) at eighth roll pass. Possible recrystallization types are dynamic (DRX), meta-dynamic (MDRX) and static (SRX). Axis inc.
is the length of axis increments and Av. Temps stands for average temperature.

4.4.3. Recrystallization Results at Each Pass with Yada Model

The results of partial dynamic recrystallization obtained by the rolling simulation
system are shown in Figure 13 for slices at each roll pass’s exit.

4.4.4. Grain Size Comparisons of Different Models

A rolling schedule is used as described in Section 4.4 and Figure 11. Grain size
simulation results based on the model by Sellars and Whiteman [14] is shown in Figure 14.
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Figure 14. Simulation of maximum and minimum grain size based on the model by Sellars and Whiteman [14].

The model by Yada [12] is shown in Figure 15, the model by Manohar, et al. [15] is
shown in Figure 16 and the model by Hodgson and Gibbs [10] is shown in Figure 17. The
grain growth model is obtained in [10]. In micro-scale simulations, each collocation point
in a computational domain represents a small area with a uniform grain structure.
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Figure 15. Simulation of maximum and minimum grain size based on the model by Yada [12].
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Figure 16. Simulation of maximum and minimum grain size based on the model by Manohar et al. [15].
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Figure 17. Simulation of maximum and minimum grain size based on the model by Hodgson and Gibbs [10].
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4.4.5. Ferrite Grain Size for 16MnCr5

For the calculation of the final grain size in the ferrite phase, 16MnCr5 steel is con-
sidered. This steel grade has 0.16% carbon, 1.15% manganese and 0.95% chromium. The
ferrite transformation temperature is based on the model given by Hodgson and Gibbs,
calculated as 754.15 ◦C, and the user interface is displayed in Figure 18. The real-time
cooling to below FTT took 14 min; however, the computational time took twice as long.
The final ferrite grain size and comparison between the two models is shown in Figure 19.
A strong dependence on residual strain on the ferrite grain size is observed.
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and Gibbs (right). Axis inc. is the length of the axis increments. Av. Temp. stands for average temperature. Vel. Inc. is the
increase of the slab’s velocity towards the rolling direction. Slab. Len. Is the length of the rolled slab. LYS is the lower yields
stress and UTS is the ultimate tensile strength.

4.4.6. No Recrystallization Temperature

Based on the model expressed by Yang, et al. [24], no-recrystallization temperatures
are calculated and compared with minimum and average temperature values for each
slice position through the rolling simulation. The result is shown in Figure 20 below, and
it is clear that for hot rolling at 1100 ◦C, the temperature of steel was always above the
no-recrystallization temperature.
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minimum temperature values.

The positions of roll passes which are used in Figures 14–17 and 20 are given in Table 8
below. The origin of this coordinate (z = 0) is considered to be the initial slice’s position.

Table 8. Positions of centres of each roll along the rolling direction with reference to the initial slice position.

Passes 1 2 3 4 5 6 7 8

Position on rolling
direction (mm) 500 3500 6100 9700 13,300 20,800 25,300 29,800

5. Discussion

Micro-scale calculations are based on a multitude of empirical correlations obtained
from the experiments in the last four decades. The simulation system is capable of checking
for meta-dynamic, dynamic or static recrystallization. When recrystallization occurs, a new
grain size is calculated. If there is a full recrystallization, grain growth will start. At the end
of rolling, cooling is simulated with the thermal model until it reaches the ferrite transfor-
mation temperature. The simulation ends with ferrite grain size prediction. A comparison
of different models based on maximum and minimum grain sizes is shown. The accuracy
of those results are limited to the accuracy of the input data which is simulated by the
macro-scale model and the accuracy of the empirical micro-scale models. It is known from
the industrial user experience that the accuracy of the macro-scale results is highly satisfac-
tory. Therefore, if the empirical models are based on enough experiments, the expected
grain-related results should be between the maximum and minimum simulated values.

Another outcome of this research is to be able to come up with new grain size predic-
tion models in the future. This is why all the definitions are implemented as user-defined
functions. Numerous additional experimental results are needed to obtain this goal.

The simulation system is currently limited to austenite and ferrite grain size predic-
tions and assumes only one phase at a time. This will be improved in the future with
multiple initial phase definitions and phase transformation criteria. The micro-scale models
are also limited to the adequacy of those coefficients used. All the necessary coefficients
for each steel type may not be found. It is a long and complicated experimental process
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to define all those parameters by analyzing numerous grain size data obtained by either
using electron microscope [31] or ultrasound [32].

6. Conclusions

In the present paper, a rolling simulation system capable of predicting the grain
structure is described. First, a macroscopic thermo-mechanical simulation is performed,
based on a 2D solution over each cross-sectional slice. Displacement, strain, stress and
temperature fields are calculated considering the defined process parameters (rolling
schedule), heat transfer and material properties. The solution is achieved through a truly
meshless radial basis function collocation method. A new irregular node generation
algorithm is used, which is shown, by FEM comparison, to perform better on irregular
domains. This method requires only the distribution of collocation nodes over a domain,
without classical meshing. It is possible to represent the complex domain shapes more
accurately with the irregular node distribution as with the regular node distribution. Due
to the high possibility of recrystallization at each pass, strain filed during the last rolling
stand leads to relatively smaller ferrite grain size. It was shown in the simulations that
dynamic recrystallization always took place at each roll pass. Meta-dynamic and static
recrystallizations did not occur due to time restrictions. It was also expressed that no-
recrystallization temperatures most probably does not stop recrystallization during hot
rolling of steel above 1100 ◦C. A list of all the correlations used in this paper may be found
in Appendix A.
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Appendix A

C-Mn Low C High C C-Mn-V C-Mn-Ti C-Mn-Nb HSLA

Critical
strain

A 6.82 × 10−4 4.76 × 10−4 4.9 × 10−4 4.9 × 10−4

Qd 312,000 66,500 312,000 300,000

p 0.13 0 0.15 0.17

q 0 0 1 0.3

Dynamic
recrystal-
lization

A 16,000 22,600 1800 16,000

r −0.23 −0.27 −0.15 −0.23

Qd 312,000 267,100 312,000 300,000

Meta-
dynamic
recrystal-
lization

A 26,000 1600 26,000 25,000

r −0.23 −0.11 −0.23 −0.23

Qd 312,000 312,000 300,000 312,000

Static
recrystal-
lization

A 1 0.5

m −0.5 −0.67

r 0.4 0.67

Grain
growth

m 7 10 4.5

ks 1.45 × 1027 2.6 × 1028 4.1 × 1028

QGG −400 −437 −435

No-
recrystall-

ization
tempera-

ture

A 905

m −0.045

n −0.006

k 0.024

www.store-steel.si
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C-Mn Low C High C C-Mn-V C-Mn-Ti C-Mn-Nb HSLA

Ferrite
grain size

α0 −0.4 22.6 1.4

α1 6.37 −57 0

α2 24.2 3 5

α3 −59 0 0

α4 22 22 22
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