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Abstract
Background  Inflammatory bowel disease (IBD) is a chronic, inflammatory, and autoimmune disorder, and its 
incidence of comorbid with major depressive disorder (MDD) is significantly higher than the general population. 
However, many patients lack proper recognition and necessary psychological health treatments. We aimed to identify 
potential biomarkers and mechanisms involved in the development of IBD comorbid with MDD (IBD-MDD).

Methods  We utilized IBD and MDD-related datasets from the GEO database for differential gene expression analysis, 
protein-protein interaction (PPI) and pathway enrichment analysis, random forest algorithm, LASSO regression 
analysis, and construction of a disease prediction model. We assessed the accuracy of the model using ROC curve, 
explored potential mechanisms through immune infiltration analysis, and validated candidate biomarkers using 
peripheral blood samples from patients in our center’s cohort.

Results  We identified 484 IBD-related secreted proteins and 142 key module genes associated with MDD. PPI 
analysis revealed two crucial modules primarily involved in inflammation and immune regulation. We identified four 
diagnostic genes (HGF, SPARC, ADAM12, and MMP8) from the 21 shared genes between IBD-related secreted proteins 
and MDD key module genes, constructed a nomogram model and confirmed its accuracy using ROC curve from 
an external independent dataset. Immune infiltration analysis revealed significant associations between the four 
diagnostic genes, and cellular immune dysregulation in MDD. Finally, we validated the expression patterns of the four 
diagnostic genes in our cohort.

Conclusions  Our study discovered four candidate biomarkers for IBD-MDD, providing new insights for the diagnosis 
and therapeutic intervention of serum-based IBD comorbid with MDD.

Keywords  Inflammatory bowel disease, Major depressive disorder, Immune cell infiltration, Diagnostic value, Serum 
secretory proteins
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Introduction
Inflammatory bowel disease (IBD) is a chronic non-spe-
cific inflammatory disorder that affects the ileum, colon, 
and rectum, primarily occurring in young and middle-
aged adults [1]. The incidence of IBD is increasing glob-
ally, with a prevalence of more than 0.5% in Western 
countries [2]. The development of IBD is closely related 
to genetic susceptibility, environmental factors, intes-
tinal microbiota, and the immune system [3, 4]. Due 
to the chronic nature of the disease, IBD requires life-
long treatment, which imposes significant psychological 
stress on patients and severely impacts their quality of 
life. Extensive research has been conducted on the con-
nection between IBD and the nervous system. Studies 
have shown that the prevalence of mood disorders, such 
as depression and anxiety, is significantly higher in IBD 
patients compared to the general population, yet most 
patients do not receive the necessary psychological treat-
ment they require [5]. A systematic review found that the 
incidence of depression in active IBD patients was as high 
as 34.7%, while it was around 19.9% in non-active IBD 
patients [6]. IBD patients with depressive symptoms face 
increased risks of disease exacerbation, treatment escala-
tion, hospitalization, emergency department visits, and 
surgery. Similarly, individuals with depression are often 
diagnosed with IBD, and their mental symptoms corre-
late with adverse disease activity in IBD [7, 8]. Therefore, 
there is a common occurrence of comorbidity between 
mental disorders and gastrointestinal diseases. The con-
cept of the “brain-gut axis” proposed in recent years 
partially explains the association between these comor-
bidities, highlighting the complex bidirectional regula-
tion between the brain and the gastrointestinal tract, 
involving mechanisms such as inflammatory immune 
responses, the autonomic nervous system, the enteric 
nervous system, and the role of the gut microbiota and 
its metabolites [9]. The coexistence of depression in IBD 
patients further reduces their quality of life and increases 
healthcare costs and the global burden of disease.

According to the International Classification of Dis-
eases and Related Health Problems, Tenth Revision 
(ICD-10) and the Diagnostic and Statistical Manual of 
Mental Disorders, Fifth Edition (DSM-5), major depres-
sive disorder (MDD) is defined as a persistent period of 
two weeks or more characterized by depressed mood 
or loss of interest or pleasure, along with several other 
symptoms such as psychomotor agitation or retarda-
tion, decreased concentration, feelings of worthlessness 
or guilt, thoughts of death or suicide [10]. The clinical 
diagnosis and assessment of depression primarily rely on 
screening scales, interviews, and a comprehensive evalu-
ation of the patient’s clinical symptoms, lacking objective 
biological markers. Commonly used depression scales 
include the Hamilton Depression Rating Scale (HAMD), 

Beck Depression Inventory (BDI), among others [11]. 
Therefore, diagnosing depression depends on the experi-
ence of clinicians and the cooperation of patients, leading 
to a high rate of misdiagnosis. Furthermore, functional 
magnetic resonance imaging, positron emission tomog-
raphy, and electroencephalography are often used as 
auxiliary methods in the clinical diagnosis of MDD [12]. 
However, these clinical examinations are costly, and their 
accuracy is still a matter of debate. Therefore, the search 
for suitable biological markers for MDD remains a focus 
of biological research, aiming to detect depressive symp-
toms early in IBD patients and provide appropriate medi-
cal interventions.

In recent decades, with the development of high-
throughput sequencing technologies such as RNA-seq 
and microarrays, the availability of large-scale datasets 
and significant improvements in machine learning soft-
ware and hardware have led to increased attention to 
precision psychiatry. Precision psychiatry aims to estab-
lish models for individual prediction, providing new 
means and approaches for the diagnosis of depression 
and improving the detection rate of MDD. Currently, 
the main machine learning algorithms used in diagnos-
tic prediction include random forest (RF), naive Bayes 
(NB), logistic regression (LR), Gaussian mixed model 
(GMM), support vector machine (SVM), and decision 
tree (DT) [13]. Although there is a growing consensus on 
the best practices for precision psychiatry and machine 
learning, there are still some issues in MDD biomarker 
research that could affect its performance in real-world 
prediction. For example, methodological flaws in model 
validation and a lack of external validation may lead to 
an overestimation of predictive performance in many 
studies. Therefore, we conducted dual validation by first 
validating the MDD dataset in a validation cohort after 
establishing the diagnostic model, followed by exter-
nal validation using peripheral blood samples from IBD 
patients with and without MDD in our center, thereby 
improving the predictive performance of the biomarkers. 
In addition, we explored the mechanisms of IBD-related 
MDD from the perspectives of pathway enrichment and 
immune cell infiltration.

Methods
Data collection and processing
We retrieved four transcriptomic datasets from the GEO 
database (https:/​/www.nc​bi.nlm.​nih.​gov/geo/), including 
GSE117993, GSE126124, GSE98793, and GSE39653. The 
details of these datasets are shown in Table 1. The IBD-
related intestinal tissue expression dataset (GSE117993, 
GSE126124) contained 76 control samples and 192 
intestinal samples from IBD patients, with 131 cases 
of CD and 61 cases of UC. The IBD patient peripheral 
blood mononuclear cell dataset GSE126124 included 

https://www.ncbi.nlm.nih.gov/geo/
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39 control samples and 59 IBD patient peripheral blood 
samples. The MDD patient peripheral blood dataset 
GSE98793 was used as the training set, containing 64 
control samples and 128 MDD patient peripheral blood 
samples. The MDD patient peripheral blood microarray 
dataset GSE39653 was used as the validation set, includ-
ing 24 control samples and 21 MDD patient peripheral 
blood samples. Subsequently, we used the sva package 
in R software (Version 1.01) for dataset merging, batch 
correction, and normalization [14], and the limma pack-
age for screening differentially expressed genes (DEGs) 
between the two groups [15], with a screening criteria of 
P values < 0.05 and |logFC| > 0.585. Finally, the pheatmap 
package and ggplot2 package were used to visualize the 
expression patterns of DEGs, generating heatmaps and 
volcano plots, respectively.

Secreted protein genes
We downloaded 3,946 secreted protein-coding genes 
from the Human Protein Atlas database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​p​
r​o​t​e​i​n​a​t​l​a​s​.​o​r​g​/​​​​​)​.​​

Weighted gene co-expression network analysis (WGCNA)
WGCNA can identify co-expressed gene modules and 
explore the relationships between gene sets and pheno-
types, which is useful for studying core genes in gene 

expression data [16]. In this study, we used the WGCNA 
package to construct a scale-free co-expression gene 
network based on the MDD peripheral blood data-
set GSE98793. We selected the top 25% differentially 
expressed genes for WGCNA analysis, set the fitting 
index R2 = 0.9, and the soft threshold β = 10 to ensure 
the co-expression gene network maintained scale-free 
topology. After dynamic pruning and TOM hierarchical 
clustering analysis (minimodules = 100), the most impor-
tant disease-related modules were identified for further 
analysis.

PPI and MCODE analysis
To investigate the interactions between IBD-related 
secreted proteins and important MDD genes, we con-
structed the IBD and MDD-related PPI networks based 
on the STRING database (https://www.string-db.org) 
[17] with a medium confidence score of > 0.4. We used 
Cytoscape software for PPI network visualization and 
applied the MCODE plugin in Cytoscape to calculate the 
network modules with the following parameters: Degree 
Cutoff: 2, Haircut, node score cutoff: 0.2, k-core 2, Max 
Depth 100. The top 2 scored modules were selected for 
further analysis.

Functional enrichment analysis
To elucidate the biological functions and pathways of 
the candidate genes related to IBD and MDD, we used 
the clusterProfiler package for GO and KEGG enrich-
ment analysis, and the ggplot2 package for visualizing the 
enrichment results [18].

Machine learning
To further study the potential candidate genes for diag-
nosing IBD-related MDD, we used the glmnet pack-
age for the LASSO logistic regression method [19] and 
the randomForest package for the RF algorithm [20]. 
These two machine learning methods were used to nar-
row down the range of candidate biomarkers. Finally, the 
intersection of the results from the two algorithms was 
used as the candidate genes for diagnosis. In the training 
and validation sets, the pROC package was used to plot 
the ROC curves and calculate the AUC values of the fea-
ture genes.

Nomogram construction and model evaluation
To determine the importance of candidate genes in the 
diagnosis of IBD-related MDD, we used the rms pack-
age to plot the nomograms of the feature genes [21]. The 
nomogram consists of a “points” and a “total points” 
scale, the latter of which shows the total score of all 
genes. The nomogram is an important tool for clinical 
prediction of IBD-related MDD. The clinical prediction 
efficiency of the nomogram was then evaluated using 

Table 1  Comparison of basic demographic characteristics 
between IBD and IBD-MDD
Item IBD(n = 20) IBD-MDD(n = 20) Test P
Age (years. 
mean ± SD)

18.50(17.5–
37.00)

46.00(27.50–58.50) z=-1.232 0.218

Gender, (% 
Female)

15% 75% x2 = 14.545 < 0.001

BMI 21.27 ± 5.48 22.00(19.00-23.05) z=-0.271 0.787
HAMD-17 
total score

2.00(1.00-2.75) 19.90 ± 2.43 z=-5.455 < 0.001

HGB (g/L) 131.33 ± 22.70 109.80 ± 30.09 t = 1.953 0.058
ESR 
(mm/h)

10.17 ± 3.49 23.80 ± 14.34 t=-1.057 0.298

CRP (mg/L) 3.53(0.96–
23.90)

3.22 ± 3.01 z=-1.258 0.208

WBC 
(10^9/L)

6.55 ± 1.82 6.73 ± 2.11 t = 1.608 0.116

NEUT 
(10^9/L)

4.64 ± 1.69 4.24 ± 1.54 t = 2.066 0.046

EO 
(10^9/L)

0.14 ± 0.08 0.14 ± 0.80 t = 0.803 0.427

PLT 
(10^9/L)

290.67 ± 26.37 372.80 ± 177.13 t=-0.404 0.689

ALB (g/L) 44.57 ± 5.22 42.10 ± 5.34 t = 1.167 0.250
FCP (ug/g) 444.08 ± 438.00 544.76 ± 591.33 t = 0.164 0.872
25-OH-VD, 
(nmol/L)

18.14 ± 5.53 12.85 ± 7.71 t = 1.452 0.158

Data was shown as number (percentage), Mean ± SD or Median (IQR). Chi-
square test, Mann-Whitney test, and independent samples t-test were used in 
the analysis

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.string-db.org
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calibration curves and decision curve analysis (DCA). 
The ROC curve was used to evaluate the performance 
of the nomogram in predicting IBD-related MDD, and 
the AUC value > 0.7 was considered clinically significant. 
Finally, the external MDD dataset GSE39653 was used to 
validate the predictive efficiency of the nomogram.

Validation of feature gene expression in MDD and IBD
The feature genes obtained from the LASSO regression 
analysis and RF analysis were validated for their expres-
sion in MDD and IBD datasets, respectively. The ggplot2 
package was used to compare and visualize the expres-
sion levels of the feature genes, and the consistently up-
regulated or down-regulated genes in IBD and MDD 
patients were identified.

GSEA
In the MDD dataset GSE39653, we used the org.Hs.eg.db 
and clusterProfiler packages to perform gene set enrich-
ment analysis for each feature gene, to compare the dif-
ferential signaling pathways between MDD and healthy 
control groups. The Enrichplot package was used to dis-
play the top 10 activated and inhibited pathways in MDD.

Immune infiltration analysis
In the MDD dataset GSE39653, we used the CIBER-
SORT package [22] to evaluate the abundance of infiltrat-
ing immune cells in the disease. The Wilcoxon test was 
used to compare the differences in the proportions of 22 
immune cell types between MDD and healthy control 
samples, with p < 0.05 considered statistically significant. 
The ggplot2 package was used to visualize the infiltra-
tion of the 22 immune cells. Spearman’s rank correlation 
coefficients were used to analyze the correlation between 
the expression of diagnostic biomarkers and the infiltra-
tion of immune cells, with p < 0.05 considered statistically 
significant.

Collection of IBD and IBD-MDD patient samples
This study included IBD patients who visited the Depart-
ment of Gastroenterology at Chongqing General Hospi-
tal from January 2024 to June 2024. The control group 
consisted of 20 IBD patients, and the experimental 
group consisted of 20 IBD patients with comorbid MDD, 
for a total of 40 patients. IBD-MDD patientswere diag-
nosed according to the DSM-5 criteria, and the severity 
of depressive symptoms was assessed using the 17-item 
Hamilton Depression Rating Scale (HAMD-17). Patients 
with HAMD-17 > 17 were enrolled into the IBD-MDD 
group. Patients with other psychiatric disorders or who 
had taken antidepressants within 2 weeks were excluded.

Evaluation of the diagnostic model in the external cohort
According to the manufacturer’s protocol, the serum 
levels of HGF, SPARC, ADAM12, and MMP8 were mea-
sured in the serum samples of IBD patients with or with-
out comorbid MDD using ELISA kits (Fine Test, Wuhan, 
China).

Statistical analysis
Statistical analysis was performed using SPSS software 
(version 26.0, Inc., USA). The normality of the data was 
assessed using the Shapiro-Wilk test. Continuous vari-
ables were expressed as mean ± standard deviation or 
median (interquartile range). Categorical variables were 
presented as n (%). Group differences were determined 
using chi-square test, Mann-Whitney test, and indepen-
dent samples t-test. P < 0.05 was considered statistically 
significant.

Results
Demographic characteristics and expression levels of 
routine serum and fecal biomarkers
There were no significant statistical differences in the 
average age and Body Mass Index (BMI) between IBD 
with and without comorbid MDD groups included in 
this study. However, the proportion of females in the 
IBD-MDD group was significantly higher than in the IBD 
group. Except for neutrophil absolute count (NEUT), 
which was significantly higher in the IBD group com-
pared to the IBD-MDD group, the remaining routine 
serum biomarkers such as hemoglobin (HGB), erythro-
cyte sedimentation rate (ESR), C-reactive protein (CRP), 
white blood cell count (WBC), eosinophil count (EO), 
platelets (PLT), albumin (ALB), and 25-hydroxyvitamin 
D (25-OH-VD) showed no statistically significant differ-
ences between the two groups. Fecal calprotectin (FCP) 
also exhibited no statistically significant differences 
between the two groups (Table 1).

Screening of differentially expressed genes (DEGs) in IBD 
and identification of secreted proteins
The analysis workflow of this study is shown in Fig.  1. 
Two raw data sets were collected from the GEO data-
base, including samples from IBD patients and healthy 
controls. After sample merging, batch correction, and 
normalization, a total of 268 intestinal tissue samples (76 
healthy controls vs. 192 IBD) and 98 peripheral blood 
samples (59 healthy controls vs. 39 IBD) were obtained. 
The limma package was used to screen for DEGs between 
the two groups, with the criteria of p < 0.5 and |log2FC| 
>0.585. The results showed that there were 1,403 DEGs 
in the intestinal tissue samples, including 830 upregu-
lated and 573 downregulated genes. In the peripheral 
blood samples, 143 DEGs were identified, including 110 
upregulated and 33 downregulated genes. Volcano plots 
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and heatmaps were used to visualize all the DEGs in the 
intestinal tissue and peripheral blood mononuclear cells 
(PBMC) of IBD (Fig. 2A-B).

To further study the secreted proteins in IBD, 3,946 
secreted protein-coding genes were downloaded from 
the Human Protein Atlas database and intersected with 
the IBD DEG datasets. This resulted in the identification 
of 463 secreted proteins related to IBD intestinal tissue 
and 37 secreted proteins related to IBD-PBMC, totaling 
484 IBD-related secreted protein genes (Fig. 2C).

Construction of a weighted gene co-expression network 
and identification of key modules in MDD
The MDD peripheral blood dataset GSE98793 (64 
healthy controls + 128 MDD) was used to screen 142 
MDD-related DEGs (p < 0.5 and |log2FC| >0.585), includ-
ing 75 upregulated and 67 downregulated genes. Volcano 

plots and heatmaps were used to visualize all the DEGs 
(Supplementary Fig. 1A-B).

To further explore the key genes in MDD, weighted 
gene co-expression network analysis (WGCNA) was 
performed to identify the most relevant gene modules in 
the MDD samples. A soft threshold of β = 10 was used to 
ensure the average connectivity and scale-free topology 
of the co-expression network (Fig. 3A-B). Twelve differ-
ent colored co-expression gene modules were obtained 
(Fig.  3C), and correlation analysis showed that the gray 
module had the highest correlation with MDD (r = 0.26, 
p = 3e − 04) (Fig. 3D). Therefore, the 430 key genes in the 
gray module were selected for further analysis (Fig. 3E).

Fig. 1  Flow chart of this study
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Fig. 2  Integration and differential expression analysis of the IBD dataset. A. Volcano plot of DEGs in IBD intestinal tissue samples and heatmap of the top 
50 upregulated and downregulated DEGs. B. Volcano plot of DEGs in IBD peripheral blood samples and heatmap of the top 50 upregulated and down-
regulated DEGs. Upregulated genes are represented by red dots, while downregulated genes are represented by blue dots. C. Venn diagrams showing 
the intersection of intestinal tissue and peripheral blood samples with secreted protein genes, resulting in 463 IBD-related secreted protein genes and 37 
IBD-PBMC-related secreted protein genes. Further intersection yielded 484 IBD-related secreted protein genes

 



Page 7 of 15Hu et al. Journal of Translational Medicine          (2024) 22:997 

Protein-protein interaction network and functional 
enrichment of IBD-related secreted proteins and MDD 
pathogenic genes
Clinical studies have found that IBD patients are more 
likely to develop MDD, suggesting a potential causal 
relationship between the two. To further explore the 
pathogenic genes shared by IBD and MDD, the STRING 
database was used to perform protein-protein interac-
tion analysis between 484 IBD-related secreted proteins 
and 430 key genes in the MDD pathogenic module. Cyto-
scape MCODE identified 27 important modules, and the 
top two most important modules contained 93 genes that 
were identified as IBD-related MDD pathogenic genes 
(Fig. 4A).

To better understand the function and mechanisms of 
these pathogenic genes, the 93 IBD-related MDD patho-
genic genes from the top two important modules were 
imported into the DAVID online database for functional 
enrichment analysis. Gene Ontology (GO) term analysis 
showed that the pathogenic genes were mainly located in 
the extracellular region and were secreted proteins. Bio-
logical process (BP) and molecular function (MF) analy-
ses suggested that the pathogenic genes were associated 
with granulocyte chemotaxis and migration, receptor 
binding, and receptor activity (Fig.  4B). KEGG pathway 
analysis indicated that the IBD-related MDD pathogenic 
genes were closely related to cytokine-cytokine recep-
tor interaction, chemokine signaling pathway, IL-17 

Fig. 3  Identification of key module genes in the MDD dataset using WGCNA. A, B. Determination of the optimal β value using a scale-free topology 
model, with β = 10 selected as the soft threshold based on average connectivity and scale independence. C. Gene dendrogram and module-feature 
gene network heatmap. D. Heatmap revealing the relationship between module-feature genes and MDD status. The gray module, which exhibited the 
highest correlation coefficient with MDD, was identified as the key module for MDD. E. Correlation plot of gray module members and gene significance 
in the gray module
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signaling pathway, TNF signaling pathway, Toll-like 
receptor signaling pathway, JAK-STAT signaling pathway, 
NF-kappa B signaling pathway, Th17 cell differentiation, 
and the intestinal immune network for IgA production 
(Fig. 4C). These results suggest that the secreted proteins 
in IBD may affect the ligand-receptor binding in MDD, 
thereby influencing immune regulation and inflamma-
tory response.

Machine learning screening of diagnostic biomarker genes
Considering the potential key role of IBD-related 
secreted proteins in the development and progression of 
MDD, the intersection of IBD-related secreted proteins 
and MDD key disease genes resulted in 21 candidate 
genes. These 21 candidate genes were used to construct 
a disease diagnostic model for IBD-related MDD, which 
could help distinguish IBD patients with or without 
comorbid MDD (Fig. 5A).

The random forest (RF) machine learning algorithm 
was applied to rank the 21 candidate genes based on 
their mean decrease in Gini index, and genes with Mean-
DecreaseGini > 2 were extracted. Except for CD44, the 
remaining 20 candidate genes were identified as poten-
tial pathogenic genes that significantly impact the diag-
nosis of IBD-related MDD (Fig.  5B-C). Additionally, 
the LASSO regression algorithm identified 4 potential 
pathogenic genes (HGF, SPARC, ADAM12, and MMP8) 
from the 21 candidate genes (Fig.  5D-E). By taking the 
intersection of the candidate genes identified by LASSO 
and RF, 4 common feature genes were finally obtained 
(Fig. 5F).

In the MDD dataset (GSE98793), compared to the 
control group, MDD patients showed significantly 
higher expression levels of HGF and MMP8 (P < 0.05), 
while SPARC and ADAM12 had an increasing trend but 

without statistical significance (Fig.  5G). Furthermore, 
in the IBD dataset, compared to the control group, IBD 
patients exhibited significantly higher expression lev-
els of HGF, MMP8, SPARC, and ADAM12 (P < 0.05) 
(Fig. 5H). Therefore, it can be concluded that MDD and 
IBD patients both have upregulated expression of HGF 
and MMP8.

The prediction model of IBD-related MDD
To better diagnose and predict IBD-related MDD, we 
performed logistic regression analysis on 4 feature genes, 
and then built a nomogram based on this (Fig.  6A). By 
summing the scores corresponding to each feature gene, 
we obtained a total score that corresponds to the disease 
risk of IBD-related MDD. The calibration curve suggests 
that the predictive probability of the nomogram model is 
nearly the same as that of the ideal model (Fig. 6B). The 
decision curve analysis (DCA) plot indicates that the 
nomogram model is beneficial for the diagnosis of IBD-
related MDD (Fig. 6C). ROC curve analysis was used to 
evaluate the area under the curve (AUC) of the nomo-
gram model to determine its sensitivity and specificity 
in diagnosing IBD-related MDD (Fig. 6D), and the AUC 
value was 0.724 in the internal dataset GSE98793. Fur-
thermore, in the external dataset GSE39653, the nomo-
gram showed an AUC value of 0.714 for MDD patients 
(Fig. 6E), suggesting that the nomogram model has good 
diagnostic performance for IBD-related MDD.

Single-gene enrichment analysis and immune infiltration 
analysis
To elucidate the role of the 4 feature genes in the MDD 
dataset GSE98793, we performed GSEA analysis, which 
showed that the KEGG enrichment was mainly in neu-
trophil extracellular trap formation, NOD-like receptor 

Fig. 4  PPI analysis of IBD-related secreted proteins and key genes in MDD. A. PPI network of the top-scoring modules’ genes based on MCODE analysis 
in Cytoscape. B, C. Bubble plots showing the results of GO and KEGG enrichment analysis
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signaling pathway, Toll-like receptor signaling pathway, 
Th1, Th2 and Th17 cell differentiation, and chemokine 
signaling pathway, suggesting that the 4 feature genes are 
involved in the immune regulation of MDD (Fig. 7A).

To further study the relationship between immune 
regulation and diagnostic markers in MDD, we used the 
CIBERSORT algorithm to infer the characteristics of 
immune cells. Analysis of 22 infiltrating immune cells in 
the MDD dataset GSE98793 found that there were only 
significant differences in 2 infiltrating immune cells, with 
MDD showing a higher proportion of monocytes and a 
lower proportion of helper T cells compared to the con-
trol group (Fig.  7B). Furthermore, we further explored 
the relationship between the expression of the 4 feature 
genes and the proportion of different infiltrating immune 
cell types. MMP8 was positively correlated with mono-
cytes, neutrophils, resting NK cells, and CD4+ memory 
T cells, but negatively correlated with activated NK cells, 

CD4 naive T cells, and regulatory T cells; HGF was posi-
tively correlated with M2 macrophages, but negatively 
correlated with CD8 + T cells; ADAM12 was negatively 
correlated with mast cells (Fig. 7C).

External validation of the four diagnostic markers
To further confirm the accuracy of the above integrated 
bioinformatics analysis, we recruited IBD with and with-
out comorbid MDD patients from our hospital as an 
external validation cohort, and detected the levels of the 
4 candidate diagnostic markers in the patient’s serum by 
ELISA. The results showed that the serum levels of HGF 
and MMP8 were significantly elevated in IBD patients 
with comorbid MDD, SPARC and ADAM12 showed an 
increasing trend (Fig.  8A). Meanwhile, we developed a 
predictive model for IBD-related MDD based on our 
cohort (Fig.  8B). ROC curve analysis of the efficacy of 
each feature gene and the predictive model showed that 

Fig. 5  Identification of potential diagnostic biomarkers for IBD-related MDD using machine learning approaches. A. Venn diagram showing the overlap 
of 21 common genes between IBD-related secreted proteins and key genes in MDD. B, C. MeanDecreaseGini plots of the 21 genes in MDD using the 
Random Forest (RF) algorithm. D, E. Identification of the minimum value and lambda value for diagnostic biomarker selection using the LASSO logistic 
regression algorithm. F. Intersection of candidate genes selected by LASSO and RF algorithms, resulting in four potential pathogenic feature genes: HGF, 
SPARC, ADAM12, and MMP8. G, H. Expression levels of the four feature genes in the MDD dataset (GSE98793) and the IBD dataset
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the AUC values of HGF and MMP8 were > 0.8, suggest-
ing they have strong clinical diagnostic value (Fig.  8C). 
Furthermore, the AUC value of the joint predictive model 
based on the 4 diagnostic markers (AUC = 0.87, 95%CI: 
0.738–0.975) was higher than that of each feature gene, 
indicating that the nomogram may have strong diagnos-
tic value for IBD-related MDD (Fig. 8D).

Discussion
Depression and anxiety are common comorbidities in 
IBD; however, there is currently a lack of large-scale, 
high-quality, prospective population cohort studies to 
elucidate the true prevalence, diagnosis, temporal rela-
tionship, and specific mechanisms of IBD-related MDD. 
Exploring objective predictive biomarkers from a bio-
logical perspective could provide opportunities for ear-
lier and more effective interventions or prevention for 
these patients [23]. For IBD patients with comorbid 
MDD, healthcare providers need to consider comorbid-
ity as part of the background of IBD and recognize the 

importance of addressing mental health in the clinical 
outcomes of IBD. A prospective study published in 2021 
found that, compared to the previous 12 months, the 
number of visits to the emergency department for any 
reason decreased within 12 months after intervention 
for IBD patients at risk of mental health disorders who 
received psychological interventions [24]. In addition to 
benefiting mental illness and quality of life, psychological 
interventions also impact the course of IBD itself. There-
fore, examining quantitative biomarkers that are bidi-
rectionally associated with IBD and MDD can provide 
a more objective assessment of patients’ disease status. 
Integrative bioinformatics analysis has become increas-
ingly common in exploring new genes, potential diagnos-
tic and prognostic biomarkers, underlying mechanisms, 
and therapeutic targets, providing valuable insights into 
various diseases [21]. Through various integrative bio-
informatics methods, this study has for the first time 
identified shared pathogenic genes encoding secreted 
proteins between IBD and MDD. Protein-protein 

Fig. 6  Development and evaluation of the diagnostic nomogram model. A. nomogram constructed based on diagnostic biomarkers. B. Calibration 
curve of the nomogram model predicting MDD in IBD-related MDD. The dashed line labeled “Ideal” represents the standard curve, indicating perfect 
prediction by an ideal model. The dashed line labeled “Apparent” represents the uncalibrated prediction curve, while the solid line labeled “Bias-Corrected” 
represents the calibrated prediction curve. C. Decision curve analysis (DCA) of the nomogram model. The black line labeled “None” represents the net 
benefit assuming no patients have MDD. The gray line labeled “All” represents the net benefit assuming all patients have MDD, while the red line labeled 
“Model” represents the net benefit assuming the identification of IBD-related MDD based on the nomogram model. D. Receiver Operating Characteristic 
(ROC) curve of the diagnostic performance of the nomogram model for predicting MDD in the internal dataset from the GEO database. E. ROC curve of 
the diagnostic performance of the nomogram model for predicting MDD in the external dataset from the GEO database
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interaction analysis and pathway enrichment analy-
sis revealed potential pathogenic mechanisms of IBD-
related MDD, including inflammatory and immune 
processes, as well as signaling pathways such as the IL-17 
signaling pathway, TNF signaling pathway, JAK-STAT 
signaling pathway, NF-kappa B signaling pathway, and 
intestinal immune network for IgA production, including 

Th17 cell differentiation. Depression is an inflammatory 
disorder characterized by cell-mediated immune activa-
tion. The NF-κB signaling pathway is considered crucial 
for the development of major depressive disorder, regu-
lating numerous genes associated with inflammation 
and neuroplasticity, thereby affecting neurogenesis [25]. 
Th17 cells are involved in the gut-brain axis to mediate 

Fig. 7  Single-gene enrichment analysis and immune infiltration analysis of candidate biomarkers. A. GSEA analysis and KEGG enrichment of the four 
feature genes. B. Violin plots comparing the 22 immune cell types between the MDD group and the control group. C. Heatmap revealing the correlation 
of immune cell infiltration above the p < 0.05 threshold
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stress responses. Th17 cells increased microglial acti-
vation in the hippocampus, amygdala, and prefrontal 
cortex due to mild prenatal stress, and anti-IL-17 treat-
ment rescued depressive and anxious behaviors follow-
ing perinatal stress [26].Furthermore, using machine 
learning, we ultimately identified four diagnostic genes, 
HGF, MMP8, SPARC, and ADAM12. We constructed 
a nomogram prediction model using the training set 
(GSE98793) and assessed the accuracy of the prediction 
model using the ROC curve with an external validation 
dataset (GSE39653). Finally, the diagnostic value of the 
diagnostic genes and model was confirmed in our exter-
nal cohort.

The brain-gut axis is a bidirectional communication 
system between the brain, intestines, autonomic nervous 
system, and hypothalamic-pituitary-adrenal (HPA) axis 
[27]. The vagus nerve, immune and neuroendocrine sys-
tems, neurotransmitters and metabolites, and gut micro-
biota are key nodes that play their respective roles in the 
brain-gut axis pathway [28]. In our study, KEGG pathway 
analysis showed that the pathogenic genes of IBD-related 
MDD are mainly associated with inflammation and 
immune pathways. Similar findings have been reported 
in other literature, where some patients with stress-
related neurobehavioral disorders such as MDD exhibit 
a chronic low-grade inflammatory state characterized by 

increased circulating pro-inflammatory cytokines and 
leukocytes [29]. Therefore, the occurrence of IBD-related 
MDD is closely associated with immune dysregulation in 
the context of intestinal inflammation.

HGF is a heterodimer secreted by mesenchymal cells 
and is found in the lungs, liver, intestines, and central 
nervous system. Literature reports indicated that HGF 
can inhibit inflammatory pathways and improve intes-
tinal symptoms in an IBD animal model [30]. In IBD 
patients, serum levels of HGF are significantly higher 
than in the control group and are correlated with IBD 
activity [31, 32]. HGF is also a key factor in protecting 
neurons, preventing neuronal death, and promoting neu-
ral regeneration. Studies have found that HGF is highly 
expressed at sites of nerve injury and is used for neural 
repair [33]. Furthermore, previous studies have found 
elevated levels of HGF in postpartum depression women 
and MDD patients [34]. Recent literature also reports a 
positive correlation between HGF levels in the cerebro-
spinal fluid of MDD patients and Hamilton Depression 
Rating Scale scores [35].

MMP8, also known as neutrophil collagenase or col-
lagenase-2, is a predominantly inactive enzyme secreted 
by neutrophils and plays an important role in mediat-
ing inflammation under the influence of biologically 
active mediators such as interleukins and complement 

Fig. 8  Validation of the expression patterns of the four candidate diagnostic biomarkers in IBD and IBD-MDD serum samples, and evaluation of the 
diagnostic performance of the nomogram model for differentiating MDD. A. ELISA results showing significant elevation of HGF and MMP8 levels in the 
serum of IBD-MDD patients, with an increasing trend in SPARC and ADAM12. B. Nomogram model developed based on the four diagnostic biomarkers for 
predicting the risk of MDD. C. Calibration curve of the nomogram model predicting MDD in the IBD patients. D. ROC curve of the predictive performance 
of the four candidate biomarkers and the nomogram model. ** P value<0.01, ns: no significance
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system components [36]. A recent study reported that 
MMP8 is increased in the serum of both humans with 
MDD and stressed mice, and this increase is associated 
with neurophysiological changes, behavioral alterations, 
and structural changes in the extracellular space [37]. 
Additionally, stress promotes a new model of immune 
cell-brain interaction to regulate social behavior, where 
MMP8 produced by peripheral immune cells affects 
neuronal function by altering the extracellular space. 
Moreover, elevated serum levels of MMP8 are associated 
with malignant tumors, decreased survival rates, and 
increased systemic inflammation in conditions such as 
colorectal cancer, hepatocellular carcinoma, pancreatic 
cancer, and septic shock [38, 39].

ADAM12, also known as protein 12 with integrin and 
metalloproteinase domains, is widely expressed in vari-
ous tissues and is involved in multiple cellular processes, 
including cell adhesion, cell fusion, protein hydrolysis, 
and signal transduction [40]. The expression level of 
ADAM12 is associated with the progression of various 
diseases, such as cancer, liver fibrosis, and cardiac hyper-
trophy, and has diagnostic and prognostic value [41]. 
ADAM12 is the most extensively studied biomarker for 
diagnosis and prognosis in breast cancer. Studies have 
also reported that the expression level of ADAM12 is 
associated with the diagnosis and differentiation of brain 
tumors from different cell sources [42]. Furthermore, 
recent research has indicated that ADAM12 can serve as 
a prognostic marker for rectal cancer patients after radia-
tion therapy [43]. Our study found a trend of increased 
ADAM12 expression levels in the serum of IBD-MDD 
patients compared to the IBD group, but without sig-
nificant statistical differences. It can serve as a combined 
predictive indicator for the comorbidity of IBD-related 
MDD.

Secreted protein acidic and rich in cysteine (SPARC), 
also known as basement membrane protein 40 (BM-40) 
or osteonectin, is a widely expressed matricellular glyco-
protein [44]. It is involved in various biological processes, 
including regulation of extracellular matrix assembly and 
deposition, anti-adhesion, modulation of extracellular 
proteinase activity, and regulation of growth factor/cyto-
kine signaling pathways [45]. Recent literature has also 
reported the predictive value of the basement membrane 
gene SPARC in inflammatory bowel disease [46].

Based on the immune infiltration results of four hub 
genes, it can be inferred that intestinal diseases may 
involve the migration of immune cells such as CD4 + T 
cells, CD8 + T cells, regulatory T cells, NK cells, and 
mast cells to the central nervous system, leading to neu-
roimmune activation. The occurrence of IBD-related 
MDD is closely related to the interaction of the inflam-
matory immune pathway. Previous studies have also 
found that intestinal immune cells can directly regulate 

neuroimmune homeostasis and the brain’s response to 
inflammation. Autoimmune encephalomyelitis (EAE) 
induces intestinal plasma cells to produce immunoglobu-
lin A (IgA), which migrates extensively to the central ner-
vous system [47]. Antibiotic-induced changes in the gut 
microbiota can regulate IL-17 + γδT cells and regulatory 
T cells through dendritic cells, limiting neuroinflamma-
tory responses and improving brain injuries [48].

This study has certain limitations. (1) The data used in 
our study came from the GEO database, and the sample 
size obtained from the database is limited, which may 
lead to false-positive results. Therefore, further research 
with larger sample sizes is necessary to elucidate the 
exact pathogenesis of IBD-related MDD. (2) The diffi-
culty in obtaining detailed information related to depres-
sive symptoms from the dataset samples, such as the first 
event, exposure, and specific scores from depression 
symptom scales. This limitation may be one reason why 
the AUC value of our diagnostic nomogram’s ROC curve 
is lower in the dataset compared to the results from our 
own cohort validation. (3) The substantial difference in 
gender ratios between the two groups, which may explain 
the lack of significant differences in serum biomarkers 
between IBD and IBD-MDD.

Conclusion
In conclusion, this study identified four candidate bio-
markers for IBD-related MDD, including HGF, SPARC, 
ADAM12, and MMP8. These candidate biomarkers 
not only distinguish MDD but may also contribute to 
the occurrence of MDD through interactions with the 
inflammatory immune pathway. Our research reveals the 
shared pathogenesis of IBD and MDD, providing new 
insights into the diagnosis and therapeutic interventions 
of serum-based IBD-related MDD.
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