MINI-REVIEW

Combat phytopathogenic bacteria employing *Argirium-SUNCs*: limits and perspectives

Benedetta Orfei¹ · Chiaraluce Moretti¹ · Anna Scian¹ · Michela Paglialunga¹ · Stefania Loreti² · Giuseppe Tatulli² · Luca Scotti³ · Antonio Aceto³ · Roberto Buonaurio¹

Received: 26 February 2024 / Revised: 13 May 2024 / Accepted: 15 May 2024 / Published online: 1 June 2024 © The Author(s) 2024

Abstract

Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states ($Ag^{2+/3+}$), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture.

Key points

- Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria.
- Argirium-SUNCs are a possible plant protection product.
- Argirium-SUNCs protect tomato plants against bacterial speck disease.

Keywords Silver nanoparticles \cdot *Pseudomonas syringae* pv. tomato \cdot *Xanthomonas vesicatoria* \cdot *Xylella fastidiosa* subsp. pauca \cdot *Clavibacter michiganensis*

- ☐ Chiaraluce Moretti chiaraluce.moretti@unipg.it
- ∠ Luca Scotti luca.scotti@unich.it
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy

Introduction

Plant diseases caused by phytopathogenic bacteria are a constant threat to crop production causing significant annual losses on a global scale, estimated of over 1 billion of dollars (Mansfield et al. 2012; Kannan et al. 2015). In addition, increased global movement of plant products and climate change are exacerbating this situation (Ristaino et al. 2021; IPPC Secretariat 2021). An array of control measures are deployed to combat plant bacterial diseases such as improved cultural practices; application of bactericides, plant activators, and biocontrol agents; and the use of resistant cultivars when available (Sharma et al. 2022). However, effective management of plant bacterial diseases remains a challenge as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations (Sharma et al. 2022). The main measure

adopted worldwide for controlling plant bacterial diseases is the application of copper compounds, which are currently often only partially efficacious for the frequent appearance of copper-resistant bacterial strains (Sundin et al. 2016; Fan et al. 2022). Furthermore, the use of copper compounds at high dosages and application frequency has generated their accumulation in the soil and the contamination of surface and sub-surface water, raising concerns on their use in agriculture (Lamichhane et al. 2018). In fact, for these reasons, the European Commission has included copper compounds in the list of substances as candidates for substitution.

Moreover, the extensive and reiterated use of antibiotics (*e.g.*, streptomycin, oxytetracycline, oxolinic acid, gentamicin) for controlling bacterial plant diseases, permitted in a number of countries but not in the European ones, has often induced the selection of resistance bacterial strains (evolved through the acquisition of a resistance determinant via horizontal gene transfer, presumably been acquired from non-pathogenic epiphytic bacteria cohabiting in plant hosts under antibiotic selection) (Sundin and Wang 2018). The same mechanism has driven the antibiotic resistance crisis currently affecting the human population (Perry and Wright 2013; Smillie et al. 2011).

Therefore, there is an increasing need to develop alternative solutions to manage plant bacterial diseases, which should be durable, sustainable, accessible to farmers, and environmentally friendly. Nanotechnology, recognized as the first of the "Key Enabling Technologies" by the European Commission in Horizon 2020, seems to meet this need (Xu et al. 2022). In fact, in the recent decade, nanotechnology and nanomaterials have received considerable attention in the agriculture field (Prasad et al. 2017; Saritha et al. 2022), plant bacterial disease protection included (Sundin et al. 2016; Elmer and White 2018; Balestra and Fortunati 2022; Sharma et al. 2022, 2023).

The recent results we obtained with the nanomaterial silver ultra nanoclusters (< 2 nm) (*Argirium-SUNCs*®), published in Applied Microbiology and Biotechnology (Orfei et al. 2023a), seem to open up new perspectives in the chemical control of plant bacterial diseases, which will be described in the present minireview.

Silver ultra nano clusters (Argirium-SUNCs): properties and antibacterial applications

Among the nanomaterials used to control plant bacterial diseases, silver nanoparticles (AgNPs) are the most explored (Tariq et al. 2022), probably because they are widely used in medical field for their strong antibacterial activity even against multidrug-resistant human pathogenic bacteria (More et al. 2023). As for other nanomaterials, AgNPs can be synthesized by a plethora of chemical, physical, and

biological protocols (Yagoob et al. 2020), using top-down and bottom-up approaches (Shanmuganathan et al. 2019). Between the two approaches, the latter ones, which involve the production of nanoparticles atom-by-atom mainly via biological and chemical synthesis processes, can be preferred over top-down methods because they allow greater control over morphological characteristics such as the size and shape of the produced nanoparticles (Villaverde-Cantizano et al. 2021). Respect to the many AgNPs described in the literature, Argirium-SUNCs are synthetized by a high reproducible electrochemical protocol (Patent EP-18,181,873) (Scotti et al. 2017). In the last years, electrochemical synthesis of nanomaterials has proven to be a valid alternative to the main chemical synthesis methods because it allows greater control over morphological characteristics such as the size and shape of the produced nanoparticles using conventional systems and inexpensive reagents (Singaravelan and Bangaru Sudarsan Alwar 2015). Another advantage provided by this synthesis protocol is that stabilizing agents may not be necessary in the reaction in order to obtain a stable dispersion, cutting down additional costs in the production process (Khaydarov et al. 2009). Specifically, Argirium-SUNCs are prepared in ultra-pure water without reducing agents, stabilizers, and contaminants, which can interfere with efficacy and toxicity of the nanomaterials by altering the expected results (Siddiqi et al. 2018). The data published to date demonstrate the stability of the solutions at pH 2-12 and at temperatures 10-90 °C (Grande et al. 2020; Gasbarri et al. 2021). There are no published data on stability in enzymes, but they are currently in progress and will be the subject of a forthcoming publication.

In the core of the nanoparticle of Argirium-SUNCs, metallic Ag⁰ is present, while in the external shells, due to the electron-attracting action of the water oxygen atoms, Ag⁺, Ag²⁺, and Ag³⁺ silver oxides, never observed in a stable form before (Molina-Hernandez et al. 2023). This configuration ensures them a high anionic salvation surrounding of SUNCs (zeta potential > -50 mV) which explains their stability for several months in ultra-pure water solution without large aggregates, while the presence of silver oxides on the clusters surface explains their enhanced redox properties towards biological targets (Molina-Hernandez et al. 2023). As a consequence, Argirium-SUNCs are capable of a strong broad spectrum antimicrobial activity not only due to their size, but also to their atomic structure. In fact, at very low concentrations (< 1 ppm), Argirium-SUNCs show strong antimicrobial and antibiofilm activities against Gramnegative (Pseudomonas syringae pv. tomato, Xanthomonas vesicatoria and Xylella fastidiosa) and Gram-positive (Clavibacter michiganensis) phytopathogenic bacteria (Orfei et al. 2023a) as well as mammalian pathogenic ones (Pompilio et al. 2018), and common pathogenic and spoilage food bacteria (Mancusi et al. 2024), while, in general, the

antibacterial activity of AgNPs ranges between 10 and 100 ppm (Duval et al. 2019) (Table 1).

Argirium-SUNCs have an even broader spectrum of action as Molina-Hernandez et al. (2023) documented that it shows strong antimicrobial activity (< 1 ppm) against Aspergillus niger, a fungus producing mycotoxins in food and feed (Nielsen et al. 2009). Both in bacteria and in fungi, the main biological target of our nanomaterial is the cell membrane whose depolarization and subsequent loss of function lead to bacterial and fungal death (Molina-Hernandez et al. 2021, 2023). It is worth noting that Ag⁺ in the form of AgNO₃ does not change the membrane potential (Molina-Hernandez et al. 2023). Therefore, the novelty that characterize Argirium-SUNCs respect any other nanomaterial is the presence of stable Ag²⁺ and Ag³⁺ cation forms. Membrane depolarization is one of the observed causes of silver nanoparticle antimicrobial activity (Molina-Hernandez et al. 2021; Xu et al. 2020). In fact, when in ionic form (Ag⁺), silver can modify interactions with sulfhydryl groups on the pathogen membrane, obstructing the hydrogen binding sites. Consequently, this affects cellular respiration and electron transfer, inducing a modification in membrane potential. This alteration leads to a loss of membrane integrity, cell lysis, and potentially culminates in cell death (Barras et al. 2018). Through a transcriptomic approach carried out on the *P. syringae* pv. tomato strain used in the study of Orfei et al. (2023a), whose genome we recently sequenced (Orfei et al. 2023b) to better perform the transcriptomic analysis, we demonstrated that the exposition of bacterial cells for 10 and 30 min at sub-letal doses of Argirium-SUNCs induced change in the expression of genes associated with transporters (e.g., CadA P-type ATPase, the arsenite resistance efflux pump, multidrug resistance proteins), iron homeostasis (e.g. FecR, TonB-dependent and EfeUOB transporters), and stress response and primary and nitrogen metabolism (unpublished results).

Argirium-SUNCs potential in agriculture

Nanomaterials are receiving increasing interest in agriculture for their contribution in boosting the food crop yield with nanofertilizers and controlling pests and phytopathogens with nanopesticides and nanosensors (Singh et al. 2021). For instance, the use of nanomaterials can render more efficient the delivery mechanisms (Rodrigues et al. 2017; Lowry et al. 2019). Agrochemical delivery is a relevant aspect in sustainable agriculture. The use of agrochemicals is notoriously inefficient as, for example, a large fraction of the 2.5 million tons of pesticides applied per year are either lost to the air and run-off or unable to effectively reach target (Rodrigues et al. 2017). In this context, Orfei et al. (2023a) demonstrated that application of Argirium-SUNCs during the hydroponic grown of tomato significantly protected leaves from bacterial speck disease caused by P. syringae pv. tomato. This suggests that Argirium-SUNCs are able to enter into the plants via roots and exerts its antimicrobial activity reaching the leaf apoplast where P. syringae pv. tomato grown. Root uptake of AgNPs via the apoplastic and symplastic pathways has been well documented (Chavez Soria et al. 2017; Huang et al. 2022) also in tomato plants (Noori et al. 2020). Our results can therefore be exploited for the protection of tomato grown in hydroponics, a system very spread for tomato cultivation (Morgan 2008). The indirect evidence that Argirium-SUNCs entry into tomato plants via roots leads us to suppose that its protective effect can be also exerted against other tomato bacterial diseases, such as those caused by Xanthomonas vesicatoria and Clavibacter michiganensis, pathogens against whom it was demonstrated the antimicrobial activity of Argirium-SUNCs in vitro (Orfei et al. 2023a). P. syringae pv. tomato, X. vesicatoria, and C. michiganensis are seed-transmitted bacteria (Thind 2019) and through infected tomato seeds can be introduced in greenhouses where hydroponic systems are used. Orfei

Table 1 Activity in vitro of *Argirium-SUNCs* against phytopathogenic bacteria (in bold) in comparison with other silver nanoparticles

Average or range size (nm	Zpuls value (mV)	Target bacteria	MIC (ppm)	References
1.97	-50.00	Pst, Xv, Cm, Xf	0.13-0.82	Orfei et al. (2023a)
8.27	-17.08	At, Pc, Ps, Xc	8-256	Trzcińska-Wencel et al. (2023b)
13.19	-11.50	Pc	8	Wei et al. (2022)
15.56	-38.43	At, Pc, Ps, Xc	8-128	Trzcińska-Wencel et al. (2023a)
16.50	-27.00	Xoo	7.5	Namburi et al. (2021)
27.00	-11.80	Xap, Rs	6.25-12.5	Vanti et al. (2020)
35.00	-48.00	Aa	20	Guerrero et al. (2022)
50.00	-27.70	Pc	62.5	Ayisigi et al. (2020)

Aa Acidovorax avenae, At Agrobacterium tumefaciens, Cm Clavibacter michiganensis, Pc Pectobacterium carotovorum, Ps Pseudomonas syringae, Pst Pseudomonas syringae pv. tomato, Rs Ralstonia solanacearum, Xc Xanthomonas campestris, Xoo Xanthomonas oryzae pv. oryzae, Xap Xanthomonas axonopodis pv. punicae, Xv Xanthomonas vesicatoria, Xf Xylella fastidiosa

et al. (2023a) also demonstrated that Argirium-SUNCs strongly inhibited in vitro Xylella fastidiosa, a xylem-limited bacterium which re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy (Sicard et al. 2018; Saponari et al. 2019). Argirium-SUNCs could be applied to olive trees through endo-therapy, that is the systemic delivery of active ingredients via trunk injection: a technology that holds promise of a true step change in sustainable olive crop management (Grandi et al. 2023). Endo-therapy allows reaching vascular diseases inaccessible to foliar treatments and delivers active ingredients in a precise manner with no risks of off-target drifts (Grandi et al. 2023). Argirium-SUNCs could also be applied to plants as seed dressing for its documented growth stimulation activity during tomato seed germination (Orfei et al. 2023a). It is known that delayed and uneven emergence poses a serious problem in the production of horticultural crops, particularly during drought and under adverse weather conditions (Grzesik et al. 2012).

Although spraying agrochemicals directly onto plant leaves is an effective and economic approach in agricultural management (Huang et al. 2022), foliar application of Argirium-SUNCs to tomato leaves did not protect tomato plants against P. syringae pv. tomato (Orfei et al. 2023a). To explain this failure, we hypothesize that foliar application prevents the nanomaterial from reaching the target (intercellular space where *P. syringae* pv. tomato colonize the host) in sufficient quantity to be effective. The very small size of Argirium-SUNCs (<2 nm) would justify its entry through the cuticle of the leaves, whose pores are about < 5 nm (Schwab et al. 2016) in size and about 2 nm (Huang et al. 2022). After passing the cuticle, Argirium-SUNCs could follow the symplastic and/or the apoplastic pathways. In case of the symplastic pathway, the nanomaterial should cross the cell wall and the plasma membrane, through endocytosis and/or non-endocytic pathway, for reaching the cytoplasm and move from cell to cell via plasmodesmata (Stegemeier et al. 2015; Avellan et al. 2019, 2021; Huang et al. 2022). The presence of AgNPs inside plant cells and plasmodesmata has been documented in *Arabidopsis* (He et al. 2022) and lettuce (Larue et al. 2014) plants.

When inside the plant cells, nanomaterials could undergo physical or chemical transformation such as aggregation, oxidative dissolution, chlorination, sulfidation, and complexation with organic ligands (*e.g.*, glutathione, cysteine), as reported for other AgNPs (Huang et al. 2022). Therefore, these possible transformations of AgNPs inside the plants could prevent the *Argirium-SUNCs* from reaching its target.

In the case of apoplastic pathway, *Argirium-SUNCs* could move through the cell wall and middle lamella considering that its size is smaller than that of the cell wall and middle lamella pores and from here move to the intercellular spaces (Stegemeier et al. 2015). The presence of AgNPs in

cell wall and middle lamella has been documented in *Arabidopsis* (Bao et al. 2016) and tobacco (Cvjetko et al. 2018) plants. It is possible that cell wall retains *Argirium-SUNCs* preventing it to reach the optimal concentration to carry out its antimicrobial activity. As documented by He et al. (2022), AgNPs could reach the intercellular spaces and enter from the stomata. Similar to the results obtained with ZnONPs in rice plants (Khan et al. 2021), we can hypothesize that *Argirium-SUNCs* are not able to enter through the stomata because it provokes their closure.

Before being placed on market, a new plant protection product must be registered, evaluated, and authorized and toxicological and ecotoxicological documentations are essential aspects in this process (Grillo et al. 2021). In vitro studies carried out on human cell lines (HEK-293, HaCaT, and HMEC) and preclinical one on *Galleria mellonella* indicate that *Argirium-SUNCs* are about ten times less toxic in human cells or in *G. mellonella* larvae than that in bacteria and fungi (Pompilio et al. 2018; Grande et al. 2020; Gasbarri et al. 2021; Orfei et al. 2023a; Molina-Hernandez et al. 2023). In addition, *Argirium-SUNCs* are no phytotoxic to tomato plants up to 10 ppm, a concentration about ten times less toxic than in phytopathogenic bacteria attacking tomato plants (Orfei et al. 2023a).

Concluding remarks and future prospects

Chemical control through the use of copper compounds and antibiotics is still an important pillar in controlling bacterial plant diseases worldwide as many of the alternatives to chemical control, when available, are still far from their application. For example, disease resistance through genome editing, which is considered the most effective and eco-friendly measure against bacterial diseases (Sharma et al. 2022), encountered many difficulties in acceptance by consumers (Ishii and Araki 2016). In this context, the developments in the field of nanosized active ingredients and formulations have opened up new avenues for enhancing the delivery and efficacy of pesticides and other agrochemicals (EFSA Scientific Committee 2018). Kah et al. (2018) demonstrated that the effectiveness of the so-called nanopesticides is 20–30% higher respect to the same active ingredient conventionally formulated.

Before marketing and use, a nanopesticide will have to go through stringent regulatory approvals in most countries, and currently, no nanopesticide is listed in the database of active substances approved for use as pesticide in Europe (Grillo et al. 2021). The road to authorization is long and bumpy also because (i) there is no agreement on the definition of nanopesticide; (ii) Scientific Advisory Panel of the US Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) believe that the environmental risks of

nanopesticides may be different from conventional pesticides, and current methods may not be adequate to remediate or predict the environmental fate and effects (Grillo et al. 2021). The European Food Safety Authority (EFSA) considered the term nanopesticide as a synonym for plant protection products (PPP) in a broad way (EFSA Scientific Committee 2018), and PPP are mainly regulated by Regulation (EC) No 1107/2009 before being placed in the market. According to this European Regulation, procedure and criteria for the approval of active substances include scientific investigations on the efficacy, the methods of analysis, the impact on human health, the fate and behavior in the environment, and the ecotoxicology. In a possible registration, evaluation, and authorization process of Argirium-SUNCs as a product for protecting plants from bacterial diseases, we can consider that (i) its efficacy in vitro is very high. The MIC value of Argirium-SUNCs for Pseudomonas syringae pv. tomato is 625 times lower than that of Kocide 3000 (Li et al. 2017; Orfei et al. 2023a), a commercial product containing copper hydroxide as active ingredient, the most used a.i. in the world in protecting plants from bacterial diseases. (ii) The methods of analysis of AgNPs are well documented (Wang et al. 2020). (iii) There are inconsistent reports about the toxicity of engineered nanomaterials on human health typically influenced by several factors that can impact the toxicity study (Asmatulu et al. 2022). These factors include the type of cell line, type of nanomaterial, functionalization, synthesis process of the nanomaterials, dosage, size, method of mixing, exposure method, surface charge, shape, gender of the animal model, and cell medium, thus making it exceedingly complicated to determine the risk of engineered nanomaterials or determine their impact on humans (Asmatulu et al. 2022). (iv) The fate and behavior in the environment of AgNPs has been studied (Fabrega et al. 2011); ecotoxicological studied on AgNPs have been reported (Courtois et al. 2019).

Further studies are necessary to investigate Argirium-SUNCs on the modality of delivery on the doses and timing of treatments.

Acknowledgements We thank Luca Bonciarelli and Maurizio Orfei for technical assistance.

Author contribution Conceptualization: R.B, C.M., L.S., and A.A. Data curation: B.O., C.M., A.A, S.L., and R.B. Writing-review and editing: R.B., B.O., C.M., A.S., M.P., S.L., G.T. L.S., and A.A. Supervision: R.B. and C.M. Funding acquisition: R.B. and C.M. All authors read and approved the manuscript.

Funding Open access funding provided by Università degli Studi di Perugia within the CRUI-CARE Agreement. This work has been funded by the European Union - NextGenerationEU under the Italian Ministry of University and Research (MUR) National Innovation Ecosystem grant ECS00000041 - VITALITY to CM and RB. We acknowledge Università degli Studi di Perugia and MUR for support within the project Vitality.

Data availability Not applicable

Declarations

Ethical approval This article complies with ethical standards and does not contain any studies with human participants or animal performed by any of the authors.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Asmatulu E, Andalib MN, Subeshan B, Abedin F (2022) Impact of nanomaterials on human health: a review. Environ Chem Lett 20:2509-2529. https://doi.org/10.1007/s10311-022-01430-z

Avellan A, Yun J, Zhang Y, Spielman-Sun E, Unrine JM, Thieme J, Li J, Lombi E, Bland G, Lowry GV (2019) Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13(5):5291-5305. https://doi.org/10.1021/acsnano.8b09781

Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV (2021) Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ Sci Technol 55(20):13417-13431. https://doi.org/10.1021/acs.est.

Ayisigi M, Cokislerel A, Kucukcobanoglu Y, Yalcin T, Aktas LY (2020) Green synthesized silver nanoparticles for an effective control on soft rot disease pathogen Pectobacterium carotovorum and growth stimulation in pepper. Bulg J Agric Sci 26(3):574-584

Balestra GM, Fortunati E (2022) Nanotechnology-based sustainable alternatives for the management of plant diseases. Elsevier, Amsterdam

Bao D, Oh ZG, Chen Z (2016) Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front Plant Sci 7:32. https://doi.org/10.3389/fpls.2016. 00032

Barras F, Aussel L, Ezraty B (2018) Silver and antibiotic, new facts to an old story. Antibiotics 7(3):79. https://doi.org/10.3390/antib iotics7030079

Chavez Soria NG, Montes A, Bisson MA, Atilla-Gokcumen GE, Aga DS (2017) Mass spectrometry-based metabolomics to assess uptake of silver nanoparticles by Arabidopsis thaliana. Environ Sci Nano 4(10):1944–1953. https://doi.org/10.1039/c7en00555e

Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Levard C, Vandenbulcke F (2019) Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: a review of effects on microorganisms, plants and animals. Environ Pollut 253:578-598. https://doi.org/10.1016/j.envpol.2019.

- Cvjetko P, Zovko M, Štefanić PP, Biba R, Tkalec M, Domijan AM, Vrček IV, Letofsky-Papst I, Šikić S, Balen B (2018) Phytotoxic effects of silver nanoparticles in tobacco plants. Environ Sci Pollut Res 25:5590–5602. https://doi.org/10.1007/s11356-017-0928-8
- Duval RE, Gouyau J, Lamouroux E (2019) Limitations of recent studies dealing with the antibacterial properties of silver nanoparticles: fact and opinion. Nanomaterials 9(12):1775. https://doi.org/10.3390/nano9121775
- Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56(1):111–133. https://doi.org/10.1146/annurev-phyto-080417-050108
- Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. https://doi.org/10.1016/j.envint.2010. 10.012
- Fan XJ, Saleem T, Zou HS (2022) Copper resistance mechanisms in plant pathogenic bacteria. Phytopathol Mediterr 61(1):129–138. https://doi.org/10.36253/phyto-13282
- Gasbarri C, Ronci M, Aceto A, Vasani R, Iezzi G, Florio T, Barbieri F, Angelini G, Scotti L (2021) Structure and properties of electrochemically synthesized silver nanoparticles in aqueous solution by high-resolution techniques. Molecules 26(17):5155. https://doi.org/10.3390/molecules26175155
- Grande R, Sisto F, Puca V, Carradori S, Ronci M, Aceto A, Muraro R, Mincione G, Scotti L (2020) Antimicrobial and antibiofilm activities of new synthesized silver ultra-nanoclusters (SUNCs) against Helicobacter pylori. Front Microbiol 11:1705. https://doi.org/10. 3389/fmicb.2020.01705
- Grandi L, Oehl M, Lombardi T, de Michele VR, Schmitt N, Verweire D, Balmer D (2023) Innovations towards sustainable olive crop management: a new dawn by precision agriculture including endotherapy. Front Plant Sci 14:1180632. https://doi.org/10.3389/fpls. 2023.1180632
- Grillo R, Fraceto LF, Amorim MJ, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q (2021) Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J Hazard Mater 404:124148. https://doi.org/10.1016/j.jhazmat.2020.124148
- Grzesik M, Janas R, Górnik K, Romanowska-Duda Z (2012) Biological and physical methods of seed production and processing. J Res Appl Agric Eng 57(3):147–152
- Guerrero DS, Bertani RP, Ledesma A, Frías MD, Romero CM, Costa JSD (2022) Silver nanoparticles synthesized by the heavy metal resistant strain *Amycolatopsis tucumanensis* and its application in controlling red strip disease in sugarcane. Heliyon 8(5):e09472. https://doi.org/10.1016/j.heliyon.2022.e09472
- He J, Zhang L, He SY, Ryser ET, Li H, Zhang W (2022) Stomata facilitate foliar sorption of silver nanoparticles by *Arabidopsis* thaliana. Environ Pollut 292:118448. https://doi.org/10.1016/j. envpol.2021.118448
- Huang D, Dang F, Huang Y, Chen N, Zhou D (2022) Uptake, translocation, and transformation of silver nanoparticles in plants. Environ Sci Nano 9(1):12–39. https://doi.org/10.1039/d1en00870f
- Ishii T, Araki M (2016) Consumer acceptance of food crops developed by genome editing. Plant Cell Rep 35:1507–1518. https://doi.org/10.1007/s00299-016-1974-2
- Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanatechnol 13(8):677–684. https://doi.org/10.1038/s41565-018-0131-1
- Kannan VR, Bastas KK, Devi RS (2015) Scientific and economic impact of plant pathogenic bacteria. In: Kannan VR, Bastas KK (eds) Sustainable approaches to controlling plant pathogenic bacteria. CRC, Boca Raton, pp 369–392
- Khan AR, Azhar W, Wu J, Ulhassan Z, Salam A, Zaidi SHR, Yang S, Song G, Gan Y (2021) Ethylene participates in zinc oxide

- nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings. Ecotoxicol Environ Saf 226:112844. https://doi.org/10.1016/j.ecoenv.2021.112844
- Khaydarov RA, Khaydarov RR, Gapurova O, Estrin Y, Scheper T (2009) Electrochemical method for the synthesis of silver nanoparticles. J Nanopart Res 11(5):1193–1200. https://doi.org/10.1007/s11051-008-9513-x
- Lamichhane JR, Osdaghi E, Behlau F, Köhl J, Jones JB, Aubertot JN (2018) Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron Sustain Dev 38(3):1–18. https://doi.org/10.1007/s13593-018-0503-9
- Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop *Lactuca sativa* to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazar Mater 264:98–106. https://doi.org/10.1016/j.jhazmat.2013.10.053
- Li Y, Yang D, Cui J (2017) Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against *Pseudomonas syringae* Pv. Tomato. RSC Adv 7(62):38853–38860. https://doi.org/10.1039/c7ra05520j
- Lowry GV, Avellan A, Gilbertson LM (2019) Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat Nanatechnol 14(6):517-522. https://doi.org/10.1038/ s41565-019-0461-7
- Mancusi A, Egidio M, Marrone R, Scotti L, Paludi D, Dini I, Proroga YTR (2024) The *in vitro* antibacterial activity of Argirium SUNc against most common pathogenic and spoilage food bacteria. Antibiotics 13(1):109. https://doi.org/10.3390/antibiotics13010109
- Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13(6):614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
- Molina-Hernandez JB, Aceto A, Bucciarelli T, Paludi D, Valbonetti L, Zilli K, Scotti L, Chaves-López C (2021) The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-00545-7
- Molina-Hernandez JB, Scotti L, Valbonetti L, Gioia L, Paparella A, Paludi D, Aceto A, Ciriolo MR, Lopez CC (2023) Effect of membrane depolarization against *Aspergillus Niger* GM31 resistant by ultra nanoclusters characterized by Ag²⁺ and Ag³⁺ oxidation state. Sci Rep 13(1):2716. https://doi.org/10.1038/s41598-023-29918-w
- More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M (2023) Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 11(2):369. https://doi.org/10.3390/microorganisms11020369
- Morgan L (2008) Hydroponic tomato crop production. Suntec Ltd, Tokomaru
- Namburi KR, Kora AJ, Chetukuri A, Kota V (2021) Biogenic silver nanoparticles as an antibacterial agent against bacterial leaf blight causing rice phytopathogen *Xanthomonas oryzae* Pv. Oryzae. Bioprocess Biosyst Eng 44(9):1975–1988. https://doi.org/10.1007/ s00449-021-02579-7
- Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the *Aspergillus Niger* group. Anal Bioanal Chem 395(5):1225–1242. https://doi.org/10.1007/s00216-009-3081-5
- Noori A, Donnelly T, Colbert J, Cai W, Newman LA, White JC (2020) Exposure of tomato (*Lycopersicon esculentum*) to silver nanoparticles and silver nitrate: physiological and molecular response. Int J Phytorem 22(1):40–51. https://doi.org/10.1080/15226514. 2019.1634000

- Orfei B, Moretti C, Loreti S, Tatulli G, Onofri A, Scotti L, Aceto A, Buonaurio R (2023a) Silver nanoclusters with Ag^{2+/3+} oxidative states are a new highly effective tool against phytopathogenic bacteria. Appl Microbiol Biotechnol 107:4519–4531. https://doi.org/10.1007/s00253-023-12596-z
- Orfei B, Pothier JF, Fenske L, Blom J, Moretti C, Buonaurio R, Smits THM (2023b) Race-specific genotypes of *Pseudomonas syringae* Pv. Tomato are defined by the presence of mobile DNA elements within the genome. Front Plant Sci 14:1197706. https://doi.org/10.3389/fpls.2023.1197706
- Perry JA, Wright GD (2013) The antibiotic resistance mobilome: searching for the link between environment and clinic. Front Microbiol 4:138. https://doi.org/10.3389/fmicb.2013.00138
- Pompilio A, Geminiani C, Bosco D, Rana R, Aceto A, Bucciarelli T, Scotti L, Di Bonaventura G (2018) Electrochemically synthesized silver nanoparticles are active against planktonic and biofilm cells of *Pseudomonas aeruginosa* and other cystic fibrosis-associated bacterial pathogens. Front Microbiol 9:1349. https://doi.org/10.3389/fmicb.2018.01349
- Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/ fmicb.2017.01014
- Ristaino JB, Anderson PK, Bebber DP, Brauman KA, Cunniffe NJ, Fedoroff NV, Finegold C, Garrett KA, Gilligan CA, Jones CM (2021) The persistent threat of emerging plant disease pandemics to global food security. Proc Natl Acad Sci 118(23):e2022239118. https://doi.org/10.1073/pnas.2022239118
- Rodrigues SM, Demokritou P, Dokoozlian N, Hendren CO, Karn B, Mauter MS, Sadik OA, Safarpour M, Unrine JM, Viers J (2017) Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ Sci Nano 4(4):767–781. https://doi.org/10.1039/c6en00573j
- Saponari M, Giampetruzzi A, Loconsole G, Boscia D, Saldarelli P (2019) *Xylella fastidiosa* in olive in Apulia: where we stand. Phytopathology 109(2):175–186. https://doi.org/10.1094/phyto-08-18-0319-fi
- Saritha GNG, Anju T, Kumar A (2022) Nanotechnology- big impact: how nanotechnology is changing the future of agriculture? J Agric Food Res 100457. https://doi.org/10.1016/j.jafr.2022.100457
- Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2016) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicology 10(3):257–278. https://doi.org/10.3109/17435390. 2015.1048326
- Scientific Committee EFSA, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C (2018) Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: part 1, human and animal health. EFSA J 16(7):e05327. https://doi.org/10.2903/j.efsa.2018.5327
- Scotti L, Angelini G, Gasbarri C, Bucciarelli T (2017) Uncoated negatively charged silver nanoparticles: speeding up the electrochemical synthesis. Mater Res Express 4. https://doi.org/10.1088/2053-1591/aa8c39
- Secretariat IPPC, Gullino M, Albajes R, Al-Jboory I, Angelotti F, Chakraborty S, Garrett K, Hurley B, Juroszek P, Makkouk K (2021) Scientific review of the impact of climate change on plant pests. FAO on behalf of the IPPC Secretariat, Rome
- Shanmuganathan R, Karuppusamy I, Saravanan M, Muthukumar H, Ponnuchamy K, Ramkumar VS, Pugazhendhi A (2019) Synthesis of silver nanoparticles and their biomedical applications-a comprehensive review. Curr Pharm Des 25(24):2650–2660. https://doi.org/10.2174/1381612825666190708185506
- Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB (2022) Future of bacterial disease management

- in crop production. Annu Rev Phytopathol 60(1):259–282. https://doi.org/10.1146/annurev-phyto-021621-121806
- Sharma A, Gupta AK, Devi B (2023) Current trends in management of bacterial pathogens infecting plants. Anton Leeuw Int J G 116(4):303–326. https://doi.org/10.1007/s10482-023-01809-0
- Sicard A, Zeilinger AR, Vanhove M, Schartel TE, Beal DJ, Daugherty MP, Almeida RP (2018) *Xylella fastidiosa*: insights into an emerging plant pathogen. Annu Rev Phytopathol 56:181–202. https://doi.org/10.1146/annurev-phyto-080417-045849
- Siddiqi KS, Husen A, Rao RA (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16(1):1–28. https://doi.org/10.1186/s12951-018-0334-5
- Singaravelan R, Bangaru Sudarsan Alwar S (2015) Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles. Appl Nanosci 5(8):983–991. https://doi.org/10.1007/s13204-014-0396-0
- Singh H, Sharma A, Bhardwaj SK, Arya SK, Bhardwaj N, Khatri M (2021) Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ Sci Process Impacts 23(2):213–239. https://doi.org/10.1039/d0em00404a
- Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480(7376):241–244. https://doi.org/10.1038/nature10571
- Stegemeier J, Schwab F, Colman B, Bernhardt E, Wiesner M, Lowry G (2015) Speciation matters bioavailability of silver and silver sulfide nanoparticles to alfalfa (*Medicago sativa*). Environ Sci Technol 49(14):8451–8460. https://doi.org/10.1021/acs.est. 5b01147
- Sundin GW, Wang N (2018) Antibiotic resistance in plant-pathogenic bacteria. Annu Rev Phytopathol 56:161–180. https://doi.org/10.1146/annurev-phyto-080417-045946
- Sundin GW, Castiblanco LF, Yuan XC, Zeng Q, Yang CH (2016) Bacterial disease management: challenges, experience, innovation and future prospects. Mol Plant Pathol 17(9):1506–1518. https://doi.org/10.1111/mpp.12436
- Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J (2022) Biological synthesis of silver nanoparticles and prospects in plant disease management. Molecules 27(15):4754. https://doi. org/10.3390/molecules27154754
- Thind B (2019) Phytopathogenic bacteria and plant diseases. CRC Press, Boca Raton
- Trzcinska-Wencel J, Wypij M, Rai M, Golinska P (2023a) Biogenic nanosilver bearing antimicrobial and antibiofilm activities and its potential for application in agriculture and industry. Front Microbiol 14:1125685. https://doi.org/10.3389/fmicb.2023. 1125685
- Trzcinska-Wencel J, Wypij M, Terzyk AP, Rai M, Golinska P (2023b) Biofabrication of novel silver and zinc oxide nanoparticles from *Fusarium solani* IOR 825 and their potential application in agriculture as biocontrol agents of phytopathogens, and seed germination and seedling growth promoters. Front Chem 11:1235437. https://doi.org/10.3389/fchem.2023.1235437
- Vanti GL, Kurjogi M, Basavesha KN, Teradal NL, Masaphy S, Nargund VB (2020) Synthesis and antibacterial activity of *Solanum torvum* mediated silver nanoparticle against *Xanthomonas axonopodis* Pv. Punicae and *Ralstonia solanacearum*. J Biotech 309:20–28. https://doi.org/10.1016/j.jbiotec.2019.12.009
- Villaverde-Cantizano G, Laurenti M, Rubio-Retama J, Contreras-Cáceres R (2021) In: Mourdikoudis S (ed) Reducing agents in colloidal nanoparticle synthesis. RSC, London, pp 1–27
- Wang X, Yang H, Li K, Xiang Y, Sha Y, Zhang M, Yuan X, Huang K (2020) Recent developments of the speciation analysis methods for silver nanoparticles and silver ions based on atomic

- spectrometry. Appl Spectrosc Rev 55(6):509–524. https://doi.org/10.1080/05704928.2019.1684303
- Wei ZL, Xu SQ, Jia HR, Zhang HM (2022) Green synthesis of silver nanoparticles from *Mahonia fortunei* extracts and characterization of its inhibitory effect on Chinese cabbage soft rot pathogen. Front Microbiol 13:1030261. https://doi.org/10.3389/fmicb.2022. 1030261
- Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H (2020) Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics 10(20):8996–9031. https://doi.org/10.7150/thno.45413
- Xu Z, Tang T, Lin Q, Yu J, Zhang C, Zhao X, Kah M, Li L (2022) Environmental risks and the potential benefits of nanopesticides:

- a review. Environ Chem Lett 20(3):2097–2108. https://doi.org/10.1007/s10311-021-01338-0
- Yaqoob AA, Umar K, Ibrahim MNM (2020) Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications—a review. Appl Nanosci 10:1369–1378. https://doi.org/10.1007/s13204-020-01318-w

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

