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Natural infection as a blueprint for rational HIV vaccine design
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ABSTRACT
So far, the development of a human immunodeficiency virus (HIV) vaccine has been unsuccessful.
However, recent progress in the field of broadly neutralizing antibodies (bNAbs) has reinvigorated the
search for an HIV vaccine. bNAbs develop in a minority of HIV infected individuals and passive transfer of
these bNAbs to non-human primates provides protection from HIV infection. Studies in a number of HIV
infected individuals on bNAb maturation alongside viral evolution and escape have shed light on the
features important for bNAb elicitation. Here we review the observations from these studies, and how
they influence the rational design of HIV vaccines.
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Introduction

The development of an effective human immunodeficiency
virus (HIV) vaccine would represent a breakthrough in the
battle against the ongoing HIV pandemic. However, after
decades of research, an effective HIV vaccine remains elu-
sive. Most effective antiviral vaccines currently used rely on
the elicitation of neutralizing antibodies (NAbs) in the
immunized individual.1 These NAbs can prevent virus infec-
tion by direct neutralization of the virus upon entry.
Although there have been 6 large scale HIV vaccine efficacy
trials to date, none of them proved to be fully effective in
preventing HIV transmission.2-9 Nonetheless, modest partial
protection was observed in the RV144 clinical trial, where
non-NAbs were shown to be the correlate of protection,
however the exact mechanism is still under investigation.10-12

To enhance future vaccine efficacy improved vaccine immu-
nogen design strategies should be explored, for instance
those utilizing knowledge obtained from natural HIV
infection.

One of the main features of HIV is its high sequence
variability, which causes a great diversity in the circulating
HIV strains.13,14 As a result, the induction of strain-specific
NAbs will not be adequate to prevent infection by all circu-
lating HIV species and it is therefore highly desirable to
elicit broadly neutralizing antibodies (bNAbs) by vaccina-
tion. These bNAbs are able to neutralize a broad range of
heterologous HIV and several passive transfer studies
have demonstrated that full protection against HIV acquisi-
tion can be achieved by bNAbs in rhesus macaques.15-17

Therefore, bNAbs form important templates for HIV
immunogen design. However, the question remains how to
elicit these bNAbs in HIV naive, healthy individuals
through vaccination.

Antibody responses during HIV infection

HIV infection is usually established by transmission of a single
virus particle, the transmitted/founder (T/F) virus.18 Several
months post-seroconversion, NAbs will be produced, which
can only neutralize autologous virus, making them strains-spe-
cific.19-21 Nevertheless NAbs exert a selective pressure on the
Env proteins of the circulating viruses, resulting in the appear-
ance of HIV escape mutants. These escape viruses trigger new
rounds of NAb affinity maturation, which can eventually lead
to the development of heterologous NAbs that are capable of
neutralizing a broader range of HIV viruses in approximately
20–30% of naturally HIV-1 infected individuals.19,20,22-27 Usu-
ally these bNAbs arise after 2–3 y of persistent HIV infection
and target more conserved areas on the HIV Env protein such
as the CD4 binding site (CD4bs), V1V2 apex, gp120-gp41
interface, gp120 glycan patch, and the membrane proximal
external region (MPER) of gp41.19,25,28-36

In recent years, technologies and methods for isolating and
characterizing Abs from infected individuals have become
more efficient. This has resulted in a dramatic expansion of the
number of bNAbs and their target epitopes that have become
available for the HIV vaccine field.25,33,34,37-40 It is becoming
apparent that almost the entire HIV Env surface can serve as a
target for various bNAbs.41 Nevertheless some areas of the Env
protein are targeted more often and therefore are designated as
(super)sites of vulnerability. bNAbs possess a number of often-
shared characteristics. For example, bNAbs are usually highly
mutated. The mutation frequency in the variable region of the
heavy chain (Vh) is 20–50%, which is 2–5 times more than typi-
cal Abs against other pathogens.37,42 This suggests that multiple
rounds of affinity maturation are necessary to acquire sufficient
breadth. Second, bNAbs frequently have unusually long heavy
chain complementary-determining region 3 regions (HCDR3s)
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of up to 38 amino acids.43,44 Possessing longer HCDR3s is
thought to provide bNAbs with the ability to penetrate the gly-
can shield that surrounds the conserved HIV Env protein
domains.45,46 Lastly, bNAbs are often auto- or polyreactive.47-50

Auto- or polyreactivity could be advantageous to bNAbs since
it might assist in increased virion binding through enhancing
avidity.51 However, autoreactivity would not be a desired prop-
erty of bNAbs induced by vaccination, since this reactivity
against self-antigens could potentially result in adverse effects.
In general, all these characteristics are associated with negative
selection during B cell development. Yet, in HIV infected indi-
viduals, Abs with either of these properties are not subjected to
negative selection in early development or after maturation of
the bNAbs. This is probably due to an impaired immune sys-
tem in these individuals.47,52,53 Therefore, it will be challenging
to induce a bNAb response that displays these features in an
uninfected individual with a fully functional immune system.
Knowledge about the development of bNAbs in natural infec-
tion can guide rational vaccine design.54

Co-evolution of virus and antibody

In general there are 2 different ways in which bNAbs can
develop during natural infection. Both mechanisms depend on
continuous virus evolution alongside Ab maturation. Either
Abs evolve from the autologous neutralizing response, acquir-
ing more breadth over time,33,39 or they are established as an
independent Ab lineage after escape from an early autologous
neutralizing response.25,34,38 An example of the former is the
bNAb VRC26, directed to an N160 glycan dependent epitope
at the V1/V2 apex. The germline of VRC26 was engaged by a
superinfecting (SI) virus possessing the more commonly occur-
ring N160 glycan, in comparison to the T/F virus that lacked
this specific glycan.39 Viral escape from early VRC26 Abs facili-
tated affinity maturation mainly in the CDRH3 of this lineage,
increasing binding and neutralization properties. Recombina-
tion between the SI and T/F virus resulted in high diversity,
especially in the V1/V2 apex, of circulating viruses further
increasing Ab affinity maturation and thereby increasing
breadth.

In the other process, selective pressure exerted by the autolo-
gous NAb response will result in the appearance of a new epi-
tope capable of engaging the germline of an independent bNAb
lineage.34 Emergence of distinctive Ab lineages allows for the
development of different bNAb waves during HIV infection.
Combined, these bNAb waves might contribute to increased
neutralization breadth and potency.25,40,55 In one individual
described by Wibmer et al.,25 3 distinctive bNAb waves, target-
ing the V1V2 apex, CD4bs and a still undefined epitope, con-
tributed to neutralization breadth. Proof that bNAbs
complement each other in generating increased serum breadth
came from a study by Bonsignori et al.55 They demonstrated
that serum neutralization could be recapitulated by combining
2 clones of distinct bNAb lineages, CH01-04 and CH30-34, tar-
geting different epitopes. Indicating that combined, distinct
bNAb lineages can complement each other to eventually create
broad neutralization.25,55 Similar observations were made in
the individual that elicited the CH103 bNAb.33 This individual
also developed a second bNAb, CH235.40,56 In contrast to the

development of different Ab waves with multiple specificities,
CH103 and CH235 target the same area on the Env protein
(the CD4 binding site), permitting CH235 specific viral escape
to influence the epitope for CH103. Whether interaction with a
second (or third) NAb lineage, with similar or distinct epitopes,
is crucial for development of fully mature bNAbs remains to be
seen. If so, this might complicate vaccine design considerably.

Interestingly, these studies also reveal that clonal family
members of bNAbs often show limited neutralization capacity
even though they underwent similar levels of affinity matura-
tion.27,44,57 This underlines the importance to guide the Ab
affinity maturation at different steps of the selection process.
Very recently the developmental pathway was mapped for a
bNAb response directed to the N332-glycan on the Env pro-
tein.58 The Ab lineage diverged very early in development in
response to Env escape mutants, overall the extend of SMH
was limited and the N332-directed bNAbs contained few char-
acteristics usually associated with negative selection during B-
cell development. Suggesting a pathway of bNAb development
that could more easily be achieved through vaccination.

Vaccine strategies

On HIV, the only target for NAbs is the Env protein, since this
is the only protein readily accessible on the outside of the virus.
Env is a trimeric protein comprised of proteolytically processed
gp120 and gp41 subunits linked through a non-covalent inter-
action.59-61 The Env protein is covered in a thick layer of gly-
cans which conceal many of its epitopes.61 During infection,
Env can be present in different conformations. In the pre-
fusion conformation, the Env protein has a compact or closed
formation. This conformation is often referred to as the native
form of Env and exposes the epitopes for bNAbs best. Binding
to the CD4-receptor and subsequent conformational changes
to facilitate membrane fusion, result in a more open conforma-
tion. In this state, epitopes for non-NAbs will be more easily
accessible. Because these epitopes are generally immunodomi-
nant, an open Env conformation might divert the Ab elicitation
away from the development of bNAbs. Therefore it is widely
accepted that immunizations should contain Env proteins pre-
sented in the native-like conformation.

In clinical HIV vaccine trials to date monomeric, monova-
lent gp120 or gp140 soluble proteins have been used.3,62-64

Although soluble gp120 elicits a weak NAb response against
neutralization sensitive (Tier 1) viruses, it does not induce the
desired bNAbs.3,62-64 One possible reason is that many epitopes
for non-NAbs are exposed that are usually obscured in a tri-
meric conformation and that might interfere with the induction
of bNAbs, while conversely many bNAb epitopes, in particular
those that depend on quaternary structure, are not present on
gp120. Because autologous neutralization might be an impor-
tant starting point for developing bNAbs as indicated by natu-
ral infection, first efforts were directed at eliciting such a
response in immunized animals using improved immunogens.
First attempts to increase NAb responses included the develop-
ment of soluble gp140 Env proteins, truncated at gp41 to
remove the transmembrane domain.65,66 In the early genera-
tions of gp140 proteins cleavage between the gp120 and gp41
subunits was prevented, usually by mutation of the canonical
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furin cleavage site.67 Furthermore, in many cases a trimeriza-
tion motif was added to increase the trimerization propen-
sity.68,69 However, these uncleaved gp140 proteins assume a
heterogeneous aberrant conformation and therefore do not
resemble the native Env protein. Immunogenicity experiments
with such gp140 proteins were disappointing, yielding only
non-NAbs or NAbs against Tier 1 viruses.64,70 Not even the
autologous viruses could be neutralized. Therefore, attention
has shifted to presenting the Env protein in a native-like

conformation. Recently stable and correctly processed
native-like HIV Env trimers have been generated, termed
SOSIP proteins.71,72 These Env trimers contain stabilizing
mutations, keeping them in their closed, native conforma-
tion. In addition to SOSIP trimers, native flexibly linked
trimers (NFL-trimers) form another line of research into
native-like trimers.73 In NFL constructs, the furin cleavage
site is replaced by a flexible GS-linker, rendering the protein
cleavage-independent while maintaining sufficient flexibility for

Figure 1. Schematic of rational HIV immunogen design based on natural infection. Env glycoprotein immunogens are rationally designed based on Abs isolated from an
HIV infected individual that displays broad neutralization. Vaccine strategies entail cocktail vaccination to elicit bNAbs against a conserved site among different Env pro-
teins. Or sequential vaccination with Env immunogens designed based on a developing bNAb lineage. Subsequent animal immunizations with the designed Env proteins
and iterative vaccine design will guide optimization of the immunogen through isolation and characterization of NAbs from immunized animals, providing detailed
knowledge on germline usage and target epitope. Which will in turn improve the Env protein immunogen design, improving it to elicit bNAbs.
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the proteins to ensemble into native-like trimers. Other, more
epitope-focused approaches using gp120 subunits, gp120 outer
domains, or scaffolds are also being tested.74-76 A recent study
by Sanders et al.77 showed that autologous neutralization could
be induced by immunization with stable and native like BG505
SOSIP (subtype A) or B41 SOSIP (subtype B) proteins.77 Autol-
ogous NAb responses were seen in both rabbits and macaques.
However in spite of the high autologous NAb titers, heterolo-
gous neutralization was limited to Tier 1 viruses.77

Because immune activation is relatively weak using single
Env trimers, nanoparticles are being explored.78 Clustering of
Env proteins on the surface of a suitable nanoparticle, such as
liposomes, ferritin or lumazine, might enhance immunogenic-
ity through increased B-cell cross-linking.78-80 Although impor-
tant Env epitopes might be obscured by increased density.
Immunizations with ferritin displayed SOSIP Envs increased
the NAb titers in mice, as well as rabbits compared to soluble
SOSIP Env trimers, however the responses were not broad-
ened.79 Although promising, SOSIP-, NFL-trimers, and nano-
particle display, therefore need to be developed further in order
for them to elicit bNAb responses.

Activating Ab germline precursors that have the ability to
evolve into bNAbs might be necessary to ensure development
of broad neutralization activity.81 However, the inferred germ-
line versions of bNAbs do not usually bind with high affinity to
native Env proteins or immunogens.13 Thus, in order to acti-
vate desirable germline precursors, Env immunogens should be
designed that are able to engage such germline precursors. Jar-
dine et al.82 designed an engineered gp120 outer domain (eOD)
protein which was able to bind CD4bs directed bNAbs, as well
as their inferred precursors, providing these immunogens with
the ability to potentially engage germline bNAb lineages in
humans, which was confirmed by the use of germline bNAb
knock-in mice.78,82 Although an Ab response was observed
after immunogenicity experiments in these knock-in mice,
there was no neutralizing activity. This confirms that additional
affinity maturation of the Ab is necessary to gain neutralization
activity.

Although it would be optimal if a single vaccination could
induce an adequate protection against HIV infection, it is more
likely that several booster vaccines are necessary to ensure full
protection. From natural infection we know that Env diversity
is positively correlated with the development of bNAbs later on
in infection.38,39,58,83 In addition, increased viral diversity is
observed in HIV infected individuals directly preceding devel-
opment of breadth. Based on this knowledge vaccination with a
cocktail of different HIV variants could potentially be a way to
induce bNAbs (Fig. 1).84 Supporting the concept of a cocktail
vaccine are co-evolution studies showing the importance of
cooperation between different bNAb lineages with similar spe-
cificities.40 In addition, the notion that multiple bNAb lineages
with distinct specificities contribute to extended neutralization
breadth in several HIV infected individuals, underlines the
need for a diverse virus population able to engage several differ-
ent bNAb lineages in a vaccination scheme.25,55 Depending on
the desired developmental pathway, the composition of the
vaccine can vary from including several HIV subtypes, or
immunogens specifically designed to expose a particular epi-
tope, to only comprising virus variations from within the same

HIV infected individual. In contrast, sequential immunizations
with evolving Env proteins, of single or multiple subtypes, has
been proposed as an alternative vaccine strategy (Fig. 1).85

However, it should be noted that each bNAb lineage undergoes
a tailored maturation pathway and the question remains if the
same germline Ab can be activated in different individuals and
if so, whether this would consequently give rise to the same Ab
response.86

Since B-cell interaction with T follicular helper cells (Tfh) is
of great importance for the survival and maturation process of
the B cell in the germinal center, the effect of a potential vaccine
on these specific CD4C T cells should be taken into account.
Tfh cells assist follicular dendritic cells in selecting only high
affinity B-cells for differentiation into plasma cells or long lived
memory cells, and are important for induction of SHM.87 Dur-
ing HIV infection an expansion of the amount of Tfh cells is
observed, possibly due to persistent antigenic stimulation.88

Resulting in increased stimulation of B cells in the germinal
center, including B cells that would usually have been selected
against, thus generating a higher Ab response. A positive corre-
lation between HIV-specific Tfh cells and presence of HIV-spe-
cific NAbs has been observed.89 However, there seems to be a
fine balance in activating Tfh cells as another study suggests
that continuous Tfh cell stimulation induces the upregulation
of inhibitory molecules on B cells, affecting the functionality of
the Tfh cell so that no adequate B cell help can be provided.90

Even though Tfh cells are increasingly studied in relation to
HIV infection, the current knowledge is still very limited.91-93

And although the targeting of Tfh cells by vaccination is defi-
nitely something to consider, more research on this subject is
required.

Conclusion

The relatively short time span in which significant steps have
been made toward an HIV vaccine signifies the rapid progres-
sion of the HIV vaccine field. The studies describing the co-
evolution of bNAbs and virus reviewed here show that there is
not just one way of eliciting bNAbs and that it is very much a
complex interplay of the humoral response and viral escape.
These studies also highlight the importance of viral diversity
and exposure of conserved epitopes on the Env proteins, as
appearance of these features often directly precede bNAb devel-
opment. It also seems likely that cooperation between several
bNAb lineages is important since it generally enhances the neu-
tralization breadth in HIV infected individuals. Whether single
or multiple bNAb specificities are preferable remains unclear,
as both can result in proper cross-neutralizing activity. In addi-
tion, important steps have been made with the development of
stable, native-like trimers and the engagement of germline
bNAbs by specifically designed Env trimers. Putting the knowl-
edge from both natural infection and vaccine immunogen
design together will further the development of improved Env
immunogens and vaccine strategies toward a fully protective
HIV vaccine.
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