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a b s t r a c t

It has been reported recently that classical, isothermal–isobaric molecular dynamics (NTP MD) simula-
tions at a time step of 1.00 fs of the standard-mass time (Δt¼1.00 fssmt) and a temperature of r340 K
using uniformly reduced atomic masses by tenfold offers better configurational sampling than standard-
mass NTP MD simulations at the same time step. However, it has long been reported that atomic masses
can also be increased to improve configurational sampling because higher atomic masses permit the use
of a longer time step. It is worth investigating whether standard-mass NTP MD simulations at Δt¼2.00
or 3.16 fssmt can offer better or comparable configurational sampling than low-mass NTP MD simulations
at Δt¼1.00 fssmt. This article reports folding simulations of two β-hairpins showing that the config-
urational sampling efficiency of NTP MD simulations using atomic masses uniformly reduced by tenfold
at Δt¼1.00 fssmt is statistically equivalent to and better than those using standard masses at Δt¼3.16
and 2.00 fssmt, respectively. The results confirm that, relative to those using standard masses at routine
Δt¼2.00 fssmt, the low-mass NTP MD simulations atΔt¼1.00 fssmt are a simple and generic technique to
enhance configurational sampling at temperatures of r340 K.

& 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

It has been reported recently that use of uniformly reduced
atomic masses by tenfold (hereafter abbreviated as low masses)
can enhance configurational sampling in classical, isothermal–
isobaric molecular dynamics (NTP MD) simulations at a time step
(Δt) of 1.00 fs of the standard-mass time (fssmt) [1]. The reported
sampling enhancement was determined by the smaller number of
time steps required for the low-mass simulations to capture the
folding of β-hairpin CLN025 [2] than that of the standard-mass
NTP MD simulations performed at the same time step [1]. The
folding of CLN025 in the low-mass simulations [1] was verified by
the native-state conformation of CLN025 that was independently
determined by an NMR spectroscopic study [2].

It has long been reported that increasing atomic masses can
improve configurational sampling because higher atomic masses
can reduce the fastest motions of the system in a molecular dy-
namics (MD) simulation to lengthen the Δt of the simulation and
can gain larger momenta [3–26]. Downscaling the solvent mass
can reportedly enhance the configurational sampling of
B.V. This is an open access article
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oligopeptides in MD simulations through reduction of solvent
viscosity [27,28]. Differentially downscaling the solvent and side-
chain masses also reportedly improved configurational sampling
of a nonapeptide in MD simulations through reduction of solvent
viscosity and adiabatic decoupling of motions of solvent, back-
bone, and side-chain [29].

Further, it has been reported that scaling the total mass by a
factor of 10 for an MD simulation scales the time of the new sys-
tem by a factor of 10 [15,30]. In theory, as explained in Section
2.1, low-mass MD simulations at Δt¼1.00 fssmt are equivalent to
standard-mass MD simulations at Δt¼ 10 fssmt. In practice, it is
reasonable to expect that low-mass NTP MD simulations at
Δt¼1.00 fssmt can be numerically equivalent to a standard-mass
NTP MD simulations at Δt¼3.16 fssmt since MD simulations are
typically performed with the relatively high double-precision
floating-point format. On one hand, because the SHAKE algorithm
for bond constraint tends to fail when using ΔtZ2.00 fssmt[15],
the routine Δt of an MD simulation using AMBER MD programs
with the SHAKE algorithm has long been 2.00 fssmt at a tempera-
ture (T) of r300 K (AMBER 14 reference manual, p289). On the
other hand, according to the results reported in Ref. [1], standard-
mass NTP MD simulations with the SHAKE algorithm could be
performed at Δt¼3.16 fssmt and Tr340 K without the use of the
hydrogen mass repartitioning scheme that is developed to avoid
system instability caused by the use of ΔtZ2.00 fssmt[15,19,26].

In this context, three aims were set to investigate (i) whether
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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standard-mass NTP MD simulations at Δt42.00 fssmt can actually
be performed without the use of the hydrogen mass repartitioning
scheme, (ii) whether the configuration sampling efficiency of
standard-mass NTP MD simulations atΔt¼3.16 fssmt is statistically
equivalent to that of low-mass NTP MD simulations at
Δt¼1.00 fssmt, and (iii) whether low-mass NTP MD simulations at
Δt¼1.00 fssmt can statistically offer better configurational sam-
pling than standard-mass NTP MD simulations at Δt¼2.00 fssmt.

This article reports a comparative study of the three aims using
160 unique, independent, all-atom, and classical NTP MD simula-
tions—each of which was performed with the SHAKE algorithm for
500�106 time steps—to determine relative configurational sam-
pling efficiencies of using mass scaling factors of 1.0 and 0.1 and
time steps of 1.00, 2.00, 3.16, and 3.50 fssmt. CLN025 and chignolin
[31] were used as model systems for NTP MD simulations of
miniprotein folding. To investigate the configurational sampling
efficiency in a forcefield independent manner, two forcefields
were used in this study—an up-to-date general-purpose AMBER
forcefield FF14SB [32] (for either explicit or implicit solvation) and
a special-purpose AMBER forcefield FF12MC [33] (for explicit sol-
vation only).
2. Theory and methods

2.1. Equivalence of mass scaling and time-step scaling for sampling
enhancement

Scaling the total mass by a factor of λ for an MD simulation
scales the time of the new system by a factor of λ [15,30]. The
reason is because the sole purpose to scale total mass is to improve
configurational sampling. Therefore, the units of distance [l] and
energy [m]([l]/[t])2 of low-mass simulations are kept identical to
those of standard-mass simulations. This is so that the structure
and energy of the low-mass simulations can be compared to those
of the standard-mass simulations in order to determine relative
configurational sampling efficiencies. Let superscripts lmt and smt

denote the times for the low-mass and standard-mass systems,
respectively. Then [mlmt]¼0.1[msmt], [llmt]¼[lsmt], and
[mlmt]([llmt]/[tlmt])2¼[msmt]([lsmt]/[tsmt])2 lead to 10 [tlmt]¼[tsmt].
It is worth noting that a conventional MD simulation program
takes a time step in the standard-mass time rather than the low-
mass time. Therefore, low-mass MD simulations at Δt¼1.00 fssmt

(viz., 10 fs of the low-mass time) are theoretically equivalent to
standard-mass MD simulations at Δt¼ 10 fssmt (viz., 10 fs of
the standard-mass time), if both standard-mass and low-mass si-
mulations are carried out for the same number of time steps and if
there are no precision issues in performing these simulations.

2.2. Molecular dynamics simulations to autonomously fold chignolin
and CLN025

Chignolin or CLN025 in a fully extended backbone conformation
solvated with the TIP3P water [34] with surrounding counter ions
and NaCl molecules was energy-minimized for 100 cycles of stee-
pest-descent minimization followed by 900 cycles of conjugate-
gradient minimization to remove close van der Waals contacts
using SANDER of AMBER 11 (University of California, San Francisco).
The energy-minimized system was then heated from 0 to 277, 300
or 340 K at a rate of 10 K/ps under constant temperature and con-
stant volume, and finally simulated in 20 unique, independent, all-
atom, and classical NTP MD simulations using PMEMD of AMBER 11
with a periodic boundary condition at 277, 300, or 340 K and 1 atm
employing isotropic molecule-based scaling. The fully extended
backbone conformations (viz., anti-parallel β-strand conformations)
of chignolin and CLN025 were generated by MacPyMOL Version
1.5.0 (Schrödinger LLC, Portland, OR). The numbers of TIP3P waters
and surrounding ions, initial solvation box size, ionizable residues,
and computers used for the NTP MD simulations are provided in
Table S1. The 20 unique seed numbers for initial velocities of Si-
mulations 1–20 were taken from Ref. [35]. All simulations used (i) a
dielectric constant of 1.0, (ii) the Berendsen coupling algorithm [36],
(iii) the Particle Mesh Ewald method to calculate long-range elec-
trostatic interactions [37], (iv) Δt¼1.00, 2.00, 3.16, or 3.50 fssmt, (v)
the SHAKE-bond-length constraints applied to all the bonds invol-
ving hydrogen, (vi) a protocol to save the image closest to the
middle of the “primary box” to the restart and trajectory files, (vii) a
formatted restart file, (viii) the revised alkali and halide ions para-
meters [38], (ix) a cutoff of 8.0 Å for nonbonded interactions, and (x)
default values of all other inputs of the PMEMD module. In-
stantaneous conformations of each simulation were saved at every
105 time steps. The forcefield parameter file of FF12MC is provided
in Appendix A.

2.3. Aggregated native state population calculation

The native conformations of CLN025 in the NMR and crystal
structures have Tyr2 and Trp9 on one side of the β-sheet and Tyr1
and Tyr10 on the other (see Ref. [1, Fig. 1A and B]). However, the
reported NTP MD simulations showed that CLN025 could fold to
native-like β-hairpins with Tyr1, Trp9, and Tyr10 on one side of the
β-sheet and Tyr2 on the other (see Ref. [1 Fig. 1C]), or with Tyr1 and
Trp9 on one side and Tyr2 and Tyr10 on the other (see Ref. [1
Fig. 1D]). Similarly, the reported NTP MD simulations also showed
that chignolin could fold to the native β-hairpin with Tyr2 and Trp9
on the same side of the hairpin [31] and to native-like β-hairpins
with Tyr2 on one side of the hairpin and Trp9 on the other [33].

The lowest Cα and Cβ root mean square deviation (CαβRMSD)
between one of the native-like β-hairpins and the corresponding
NMR structure of CLN025 is 2.08 Å, whereas the corresponding Cα
root mean square deviation is 1.33 Å. The CαβRMSD between one
of the native-like β-hairpins and the NMR structure of chignolin is
1.99 Å, but the corresponding Cα root mean square deviation is
1.58 Å. In this study CαβRMSDs and Cα root mean square devia-
tions were calculated using PTRAJ of AmberTools 1.5 with root
mean square fit all α and β carbon atoms to the corresponding
ones in the β-hairpin NMR structure without mass weighing. To
distinguish the native β-hairpins from the native-like ones, in this
study conformations of chignolin and CLN025 with CαβRMSDs of
r1.96 Å relative to their NMR structures were considered to be at
the native or folded state. The time series of CαβRMSD from native
conformations for chignolin and CLN025 revealed that these β-
hairpins could fold into conformations with CαβRMSDs of �1.5 Å
(Fig. S1). However, the CαβRMSD cutoff for the native state was set
at 1.96 Å rather than 1.50 Å because the CαβRMSD between the
NMR and crystal structures of CLN025 is 1.95 Å. Otherwise, the use
of a CαβRMSD cutoff of r1.50 Å would preclude conformations
determined by crystallographic analysis that are commonly con-
sidered at the native state.

The individual native state population of chignolin or CLN025 in
an MD simulation was calculated as the number of the β-hairpin
conformations with CαβRMSDs of r1.96 Å divided by the number
of all conformations saved at every 105 time steps. Averaging the
individual native state populations of a set of 20 unique and in-
dependent MD simulations gave rise to the aggregated native state
population for the set. The standard deviation (SD) and standard
error (SE) of the aggregated native state population were calculated
according to Eqs. (1) and (2) of Ref. [33], respectively, wherein N is
the number of all simulations, Pi is the individual native state
population of the ith simulation, and P is the aggregated native
state population.



Table 1
Folding of CLN025 in 20 NTP MD simulations using different forcefields, tem-
perature, and time steps.

Forcefield Temp (K) Time
step
(fssmt)

Aggregated si-
mulation time
(μssmt)

Aggregated native
state population (%)

Mean SD SE

FF14SBlm 277 1.00 3.16 0 1 0
FF14SBlm 277 1.00 6.32 0 1 0
FF14SBlm 277 1.00 9.48 4 10 2
FF14SBlm 277 1.00 12.64 6 15 3
FF14SBlm 277 1.00 15.80 9 19 4
FF14SBlm 277 1.00 18.96 12 22 5
FF14SBlm 277 1.00 22.12 14 24 5
FF14SBlm 277 1.00 25.28 15 26 6
FF14SBlm 277 1.00 28.44 16 27 6
FF14SBlm 277 1.00 31.60 17 28 6
FF14SB 277 3.16 3.16 0 0 0
FF14SB 277 3.16 6.32 4 11 3
FF14SB 277 3.16 9.48 6 17 4
FF14SB 277 3.16 12.64 9 21 5
FF14SB 277 3.16 15.80 12 24 5
FF14SB 277 3.16 18.96 15 24 5
FF14SB 277 3.16 22.12 18 25 6
FF14SB 277 3.16 25.28 21 26 6
FF14SB 277 3.16 28.44 23 28 6
FF14SB 277 3.16 31.60 26 29 6
FF14SB 277 2.00 2.00 0 0 0
FF14SB 277 2.00 4.00 0 0 0
FF14SB 277 2.00 6.00 0 1 0
FF14SB 277 2.00 8.00 1 4 1
FF14SB 277 2.00 10.00 3 8 2
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2.4. Folding time estimation using survival analysis

The folding time (τf) or the reciprocal of the folding rate (kf)
of a β-hairpin was estimated by the mean time of the β-hairpin
to fold from a fully extended backbone conformation to the
native conformation in 20 unique and independent NTP MD si-
mulations, using survival analysis methods [39] from the R
survival package (Therneau T.M., A Package for Survival Analysis
in S, 2015, Version 2.38-3, http://CRAN.R-project.org/package¼
survival). The CαβRMSD cutoff of r1.96 Å was used to identify
conformations at the native state. For each simulation with in-
stantaneous conformations saved at every 105 time steps, the first
time instant at which CαβRMSD reached r1.96 Å was recorded as
an individual folding time (Fig. S1). If a set of 20 full simulations
(each performed for 500 million time steps) all captured a folding
event, this set was used to calculate the mean time-to-folding
using a two-step procedure. The first step used the Kaplan–Meier
estimator [40,41] with the Surv() function in the R survival pack-
age. The second used parametric survival functions—that mostly
fell within the 95% confidence bounds of the Kaplan–Meier esti-
mator—with the Surreg() function. If the mean of the Kaplan–
Meier estimator was identical to the mean derived from a para-
metric survival function, then this survival function was used to
calculate the time-course of the mean time-to-folding of the same
set of simulations. If half or more than half of 20 shortened si-
mulations (each performed for o500 million time steps) did not
capture a folding event, the τf of these simulations was discarded
because of their overly large 95% confidence interval.
FF14SB 277 2.00 12.00 4 11 3
FF14SB 277 2.00 14.00 5 14 3
FF14SB 277 2.00 16.00 6 15 3
FF14SB 277 2.00 18.00 8 17 4
FF14SB 277 2.00 20.00 9 19 4
FF12MCstdm 340 3.16 3.16 29 26 6
FF12MCstdm 340 3.16 6.32 36 16 4
FF12MCstdm 340 3.16 9.48 41 14 3
FF12MCstdm 340 3.16 12.64 41 13 3
FF12MCstdm 340 3.16 15.80 42 12 3
FF12MCstdm 340 3.16 18.96 42 10 2
FF12MCstdm 340 3.16 22.12 41 9 2
FF12MCstdm 340 3.16 25.28 41 9 2
FF12MCstdm 340 3.16 28.44 42 9 2
FF12MCstdm 340 3.16 31.60 41 9 2

Aggregated native state population: number of conformations from 20 simulations
with CαβRMSDs of r1.96 Å divided by number of all conformations from the 20
simulations. All MD simulations were performed for 500 million time steps with
conditions described in Section 2 and Table S1. SD: Standard deviation. SE: Stan-
dard error.
3. Results and discussion

3.1. Equal sampling of simulations using low-mass at 1.00 fssmt and
standard-mass at 3.16 fssmt

It was reported previously that CLN025 did not fold from a fully
extended backbone conformation to its native conformation in 10
unique, independent, all-atom, and classical 500-million–time-
step NTP MD simulations at Δt¼1.00 fssmt using FF14SB at 277 K
and 1 atm [1]. When 20 such simulations were performed under
the same simulation conditions, except that the forcefield was
changed from FF14SB to FF14SBlm, CLN025 folded in 13 of the 20
simulations (Fig. S1A) with an aggregated native state population
with SE of 1776% (Table 1). FF14SBlm has all the parameters of
FF14SB, except that atomic masses are reduced uniformly by ten-
fold. When the FF14SBlm simulations were repeated under the
same simulation conditions, except that FF14SBlm and Δt were
changed to FF14SB and 3.16 fssmt, respectively, CLN025 folded in 16
of the 20 simulations (Fig. S1B), with an aggregated native state
population including SE of 2676% (Table 1). Plotting the ag-
gregated native state population as a function of the number of
time steps shows no significant separation between the curves of
the simulations using FF14SBlm at Δt¼1.00 fssmt and those using
FF14SB at Δt¼3.16 fssmt (Fig. 1), according to the unpaired t-test
two-tailed P value of 0.2465 for the two curves. Both sets of si-
mulations using FF14SB and FF14SBlm did not converge well, ac-
cording to (i) the large SDs relative to the means for FF14SB and
FF14SBlm listed in Table 1 and (ii) the result that some simulations
failed to capture a folding event (Fig. S1A and B). Therefore, the τfs
of CLN025 were not calculated for the two sets of simulations.
Nevertheless, the aggregated native state populations do show
that the configurational sampling of the NTP MD simulations of
CLN025 using FF14SBlm at Δt¼1.00 fssmt is statistically equivalent
to that using FF14SB at Δt¼3.16 fssmt.

Next, 20 unique, independent, all-atom, and classical NTP MD
simulations of chignolin at 300 K and 1 atm were carried out for
500�106 time steps under two conditions. One used FF12MC with
Δt¼1.00 fssmt, and the other used FF12MCstdm with
Δt¼3.16 fssmt. FF12MCstdm has all the parameters of FF12MC,
except that all atomic masses are changed to standard values.
Consistent with the report that FF12MC can reduce the number of
time steps of all-atom and classical NTP MD simulation required to
capture of the folding of chignolin [33], in this study chignolin
folded at 300 K and 1 atm from a fully extended backbone con-
formation to its native conformation in all 20 NTP MD simulations
atΔt¼1.00 fssmt using FF12MC (Fig. S1C) or atΔt¼3.16 fssmt using
FF12MCstdm (Fig. S1D), respectively. The aggregated native state
populations with SEs of the simulations using FF12MC and
FF12MCstdm are converged to 3573% and 3772%, respectively
(Tables 2A and 2B). The convergences of the two sets of simula-
tions are further supported by the small SDs relative to the means
of the populations (Tables 2A and 2B). Using the Kaplan–Meier
estimator [40,41] (see Section 2.4), the τfs of chignolin were esti-
mated to 79 nssmt (95% confidence interval of 51–123 nssmt) for
FF12MC and 72 nssmt (95% confidence interval of 47–112 nssmt) for
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Fig. 1. Time series of aggregated native state population for chignolin and CLN025. The two-tailed P values were obtained from unpaired t tests using the PRISM 5 program.

Table 2A
Folding of chignolin in 20 NTP MD simulations at 300 K using FF12MC.

Time
step
(fssmt)

Aggregated
simulation
time (μssmt)

Aggregated na-
tive state popu-
lation (%)

Estimated folding time (nssmt)

Mean SD SE Mean LCL UCL Event

1.00 0.632 3 7 2 – – – 4
1.00 1.264 7 17 4 – – – 7
1.00 1.896 14 22 5 87 53 145 15
1.00 2.528 18 25 5 92 56 150 16
1.00 3.160 22 26 6 82 53 129 19
1.00 3.792 26 26 6 79 51 123 20
1.00 4.424 30 26 6 79 51 123 20
1.00 5.056 31 25 6 79 51 123 20
1.00 5.688 33 24 5 79 51 123 20
1.00 6.320 33 23 5 79 51 123 20
1.00 6.952 34 22 5 79 51 123 20
1.00 7.584 35 21 5 79 51 123 20
1.00 8.216 35 21 5 79 51 123 20
1.00 8.848 35 20 5 79 51 123 20
1.00 9.480 36 20 4 79 51 123 20
1.00 12.640 36 14 3 79 51 123 20
1.00 15.800 38 13 3 79 51 123 20
1.00 18.960 36 12 3 79 51 123 20
1.00 22.120 35 13 3 79 51 123 20
1.00 25.280 35 12 3 79 51 123 20
1.00 28.440 35 12 3 79 51 123 20
1.00 31.600 35 12 3 79 51 123 20

Aggregated native state population: number of conformations from 20 simulations
with CαβRMSDs of r1.96 Å divided by number of all conformations from the 20
simulations. All MD simulations were performed for 500 million time steps with
conditions described in Methods and Table S1. SD: Standard deviation. SE: Standard
error. LCL: Lower 95% confidence limit. UCL: Upper 95% confidence limit. Event:
number of simulations that captured a folding event.

Table 2B
Folding of chignolin in 20 NTP MD simulations at 300 K using FF12MCstdm.

Time
step
(fssmt)

Aggregated
simulation
time (μssmt)

Aggregated na-
tive state popu-
lation (%)

Estimated folding time (nssmt)

Mean SD SE Mean LCL UCL Event

3.16 0.632 3 8 2 – – – 4
3.16 1.264 8 17 4 – – – 10
3.16 1.896 16 23 5 95 55 163 13
3.16 2.528 21 22 5 74 47 118 18
3.16 3.160 24 21 5 73 47 114 19
3.16 3.792 28 21 5 74 48 117 19
3.16 4.424 31 20 4 72 47 112 20
3.16 5.056 34 20 4 72 47 112 20
3.16 5.688 36 20 4 72 47 112 20
3.16 6.320 38 19 4 72 47 112 20
3.16 6.952 38 18 4 72 47 112 20
3.16 7.584 37 17 4 72 47 112 20
3.16 8.216 37 17 4 72 47 112 20
3.16 8.848 37 17 4 72 47 112 20
3.16 9.480 37 17 4 72 47 112 20
3.16 12.640 39 15 3 72 47 112 20
3.16 15.800 39 15 3 72 47 112 20
3.16 18.960 38 13 3 72 47 112 20
3.16 22.120 37 12 3 72 47 112 20
3.16 25.280 37 11 2 72 47 112 20
3.16 28.440 37 9 2 72 47 112 20
3.16 31.600 37 7 2 72 47 112 20

Aggregated native state population: number of conformations from 20 simulations
with CαβRMSDs of r1.96 Å divided by number of all conformations from the 20
simulations. All MD simulations were performed for 500 million time steps with
conditions described in Methods and Table S1. SD: Standard deviation. SE: Standard
error. LCL: Lower 95% confidence limit. UCL: Upper 95% confidence limit. Event:
number of simulations that captured a folding event.
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FF12MCstdm (Tables 2A and 2B).
As indicated by the unpaired t-test two-tailed P value of 0.4788



Table 2C
Folding of chignolin in 20 NTP MD simulations at 300 K using FF12MCstdm.

Time
step
(fssmt)

Aggregated
simulation
time (μssmt)

Aggregated na-
tive state popu-
lation (%)

Estimated folding time (nssmt)

Mean SD SE Mean LCL UCL Event

2.00 0.400 1 3 1 – – – 2
2.00 0.800 2 6 1 – – – 4
2.00 1.200 5 10 2 – – – 9
2.00 1.600 8 12 3 – – – 10
2.00 2.000 13 16 4 128 71 231 11
2.00 2.400 16 19 4 122 71 209 13
2.00 2.800 17 20 4 132 76 227 13
2.00 3.200 18 20 4 132 78 222 14
2.00 3.600 19 19 4 114 71 184 17
2.00 4.000 20 18 4 105 67 164 19
2.00 4.400 22 17 4 106 67 165 19
2.00 4.800 24 16 4 107 68 167 19
2.00 5.200 26 16 4 108 69 169 19
2.00 5.600 27 17 4 109 69 171 19
2.00 6.000 28 17 4 110 70 172 19
2.00 8.000 31 17 4 114 73 179 19
2.00 10.000 34 17 4 120 77 188 19
2.00 12.000 34 15 3 125 80 196 19
2.00 14.000 34 14 3 130 83 204 19
2.00 16.000 35 15 3 136 87 212 19
2.00 18.000 35 14 3 141 90 221 19
2.00 20.000 35 13 3 147 94 230 19

Aggregated native state population: number of conformations from 20 simulations
with CαβRMSDs of r1.96 Å divided by number of all conformations from the 20
simulations. All MD simulations were performed for 500 million time steps with
conditions described in Methods and Table S1. SD: Standard deviation. SE: Standard
error. LCL: Lower 95% confidence limit. UCL: Upper 95% confidence limit. Event:
number of simulations that captured a folding event.
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(Fig. 1), there is no significant separation between the two time series
of aggregated native state population for chignolin at 300 K using
FF12MC with Δt¼1.00 fssmt and FF12MCstdm with Δt¼3.16 fssmt,
respectively. The τf of chignolin of the FF12MC simulations is statis-
tically equivalent to that of the FF12MCstdm simulations in terms of
both mean and 95% confidence interval. These results confirm that
the configurational sampling of the NTP MD simulations of chignolin
using FF12MC atΔt¼1.00 fssmt is statistically equivalent to that using
FF12MCstdm at Δt¼3.16 fssmt. As to the first two aims described in
Section 1, these results suggest that standard-mass NTP MD simu-
lations at Δt¼3.16 fssmt can actually be performed without em-
ploying the hydrogen mass repartitioning scheme. The results also
suggest that, regardless of which forcefield is used, configuration
sampling efficiency of standard-mass NTP MD simulations at
Δt¼3.16 fssmt is statistically equivalent to that of low-mass NTP MD
simulations at Δt¼1.00 fssmt.

3.2. Better sampling of simulations using low-mass at 1.00 fssmt than
standard-mass at 2.00 fssmt

Repeating the above simulations of CLN025 at 277 K using
FF14SB at Δt¼2.00 fssmt showed that CLN025 folded in ten of the
20 simulations (Fig. S1E) with an aggregated native state popula-
tion including SE of 974% (Table 1). As indicated by the unpaired
t-test two-tailed P value of 0.0239 (Fig. 1), there is a significant
separation between the two time series of aggregated native state
population for CLN025 at 277 K using FF14SBlm and FF14SB. These
series are upward and have not reached plateau (Fig. 1). In addi-
tion, the SDs are larger than the means of the FF14SBlm and
FF14SB simulations. These results indicate that both sets of si-
mulations are not well converged. Nevertheless, the unpaired t-
test two-tailed P value of 0.0239 indicates that the configurational
sampling of the MD simulations of CLN025 using FF14SBlm at
Δt¼1.00 fssmt is significantly better than that using FF14SB at
Δt¼2.00 fssmt.

Repeating the above simulations of chignolin at 300 K using
FF12MCstdm at Δt¼2.00 fssmt revealed that chignolin folded in 19
of the 20 simulations (Fig. S1F), with an aggregated native state
population including SE of 3573% (Table 2C) and a τf of 147 nssmt

(95% confidence interval of 94–230 nssmt) that was estimated using
the exponential survival function (see Section 2.4). As indicated by
the unpaired t-test two-tailed P value of 0.0299 (Fig. 1), there is a
significant separation between the two time series of aggregated
native state population for chignolin at 300 K using FF12MC and
FF12MCstdm. Both the mean and 95% confidence interval for the τf
of chignolin estimated from the FF12MCstdm simulations at
Δt¼2.00 fssmt are nearly twice those obtained from the FF12MC
simulations at Δt¼1.00 fssmt (Tables 2A and 2C). These results
confirm that the configurational sampling of the NTP MD simula-
tions of chignolin using FF12MC at Δt¼1.00 fssmt is significantly
better than that using FF12MCstdm at Δt¼2.00 fssmt. As to the last
aim described in Section 1, the results suggest that the low-mass
NTP MD simulations at Δt¼1.00 fssmt offer significantly better
configurational sampling efficiency than the standard-mass NTP
MD simulations at Δt¼2.00 fssmt.

3.3. Low-mass NTP MD simulation for configuration sampling
enhancement

According to the survival analysis of the folding simulations,
the τf of chignolin estimated from the Kaplan–Meier estimator
[40,41] using the simulation data of FF12MC at Δt¼3.16 fslmt (viz.,
Δt¼1.00 fssmt) was identical to the one obtained from the ex-
ponential survival function. This is evident from the linear re-
lationship between simulation time and natural logarithm of the
nonnative state population for chignolin shown in Fig. 2. The τf of
chignolin estimated from the Kaplan–Meier estimator using the
data of FF12MCstdm atΔt¼3.16 fssmt was also the same as the one
obtained from the exponential model (Fig. 2). These observations
of the exponential decay of the nonnative state population over
simulation time indicate that the folding of chignolin observed in
the NTP MD simulations followed a simple two-state kinetics
scheme of Eq. (1), wherein D and N denote the nonnative and
native conformations, respectively. These results are in excellent
agreement with the reported two-state folding kinetics deduced
from experimental studies of chignolin, a ten-residue β-hairpin
[31]. The results also agree with the generalization that a mini-
protein (with residues of o100) folds according to a two-state
kinetics scheme [42]. This implies that the folding rate (kf) of such
a miniprotein follows the first-order rate law, namely, Eq. (2) [43].
Most importantly, the results demonstrate that the folding simu-
lations of chignolin using Δt¼3.16 fslmt and Δt¼3.16 fssmt are
realistic.
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By contrast, the τf of chignolin simulated with FF12MCstdm at
Δt¼2.00 fssmt could not be estimated from the Kaplan–Meier es-
timator because one of the 20 simulations failed to capture a
folding event (Table 2C); the relationship between simulation time
and natural logarithm of the nonnative population of chignolin
simulated with FF12MCstdm at Δt¼2.00 fslmt (r2¼0.8848, Fig. 2)
is not as linear as those with FF12MC at Δt¼3.16 fslmt and



Fig. 2. Plots of natural logarithm of the nonnative population versus simulation
time. The individual folding times were taken from the data provided in Fig. S1. The
linear regression analysis was performed using the PRISM 5 program.
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FF12MCstdm at Δt¼3.16 fssmt (r2¼0.9387 and 0.9039, respec-
tively; Fig. 2A and B). Consequently, the τf of chignolin simulated
with FF12MCstdm at Δt¼2.00 fssmt has to be estimated using the
exponential survival function and has a very large 95% confidence
interval relative to those with Δt¼3.16 fslmt and Δt¼3.16 fssmt

(Table 2).
In addition, the number of time steps required to capture

folding events in the simulations with Δt¼3.16 fslmt or
Δt¼3.16 fssmt can be reduced substantially relative to that with
Δt¼2.00 fssmt. To fold chignolin at 300 K in 20 NTP MD simula-
tions at Δt¼3.16 fslmt, only 120�106 time steps are needed for
each of the 20 simulations to obtain a converged aggregated native
state population. By contrast, 400�106 time steps are needed to
obtain the converged population for the 20 simulations of
chignolin at Δt¼2.00 fssmt using FF12MCstdm (Fig. 1). To run an
NTP MD simulation of chignolin at Δt¼2.00 fssmt, 300 K, and
1 atm using FF12MCstdm and other conditions specified in Section
2.2 on a 12-core Apple Mac Pro with Intel Westmere (2.93 GHz),
the average wall-clock timing is 69.52 nssmt per day. The difference
in number of time steps between the two sets of simulations
(280�106 time steps) translates to a saving of 193.33 hours of
wall-clock computing time if the 20 simulations are performed in
parallel or a saving of 3866.51 hours of wall-clock computing time
if the 20 simulations are done in serial. To fold CLN025 at 277 K in
20 NTP MD simulations, changing Δt from 2.00 fssmt to 3.16 fslmt

can save 210.67 or 4213.48 hours of computing time when the 20
simulations are performed in parallel or serial, respectively, ac-
cording to the average timing of 56.96 nssmt per day to simulate
CLN025 at 277 K under other identical conditions as those for
chignolin at 300 K.

There is a clear incentive from the present work to increase Δt
from 2.00 fssmt to 3.16 fslmt or 3.16 fssmt or perhaps Z3.16 fssmt.
However, the undesired reduction of integration accuracy can
outweigh the desired reduction of computing time when Δt is
Z3.16 fssmt and when the hydrogen mass repartitioning scheme is
not used in an MD simulation. Indeed, additional studies show
that four of 20 unique and independent NTP MD simulations of
chignolin atΔt¼3.50 fssmt using FF12MCstdm at 340 K failed after
7�107 time steps. But, without employing the hydrogen mass
repartitioning scheme, all 20 unique and independent standard-
mass NTP MD simulations of CLN025 at Δt¼3.16 fssmt using
FF12MCstdm at 340 K could be carried out successfully for 5�108

time steps to capture folding events (Fig. S1G), with an aggregated
native state population including SE of 4172% and a τf of 55 nssmt

at 340 K with 95% confidence interval of 35–85 ns (Table 1 and
Fig. 2). No studies have been reported to show that in practice
standard-mass NTP MD simulations of regular and large proteins
do not fail at Δt¼3.16 fssmt and T¼300–340 K. On the other hand,
years of low-mass NTP MD simulations of both regular and large
proteins with biological relevance [44–56] have already been done
by this author to confirm that various proteins can be simulated
successfully at Δt¼1.00 fssmt and Tr340 K. Lastly, it should be
pointed out that uniformly reducing atomic masses of the original
system does not change the physical composition of the new
system. The kinetic properties derived from low-mass NTP MD
simulations can be scaled back to the properties of the original
system by a factor of 10 . For these reasons, low-mass NTP MD
simulations at Δt¼1.00 fssmt are presently preferred over stan-
dard-mass NTP MD simulations at Δt¼3.16 fssmt. Such low-mass
NTP MD simulations can be used as a simple and generic techni-
que to enhance configurational sampling for both kinetic and
thermodynamic investigations of proteins at T r340 K.
4. Conclusions

The present work demonstrates that the configurational sam-
pling efficiency of low-mass NTP MD simulations of β-hairpin
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folding at Δt¼1.00 fssmt is statistically equivalent to and higher
than those using standard masses at Δt¼3.16 and 2.00 fssmt, re-
spectively. This work also shows that, without employing the hy-
drogen mass repartitioning scheme, standard-mass NTP MD si-
mulations at Δt¼3.16 fssmt and T¼277, 300, and 340 K can be
performed to capture the autonomous β-hairpin folding. While
further studies may show that with sufficient computational pre-
cision standard-mass NTP MD simulations at Δt¼3.16 fssmt might
be simpler and equally effective for configurational sampling en-
hancement at T r340 K, the present results together with the
previous results reported by this author confirm that low-mass
NTP MD simulations are a simple and generic technique to en-
hance configurational sampling for both kinetic and thermo-
dynamic investigations of proteins at T r340 K.
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