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Gastric cancer (GC) is the most common malignant tumor in the digestive system, traditional radiotherapy and chemotherapy are
not effective for some patients. The research progress of immunotherapy seems to provide a new way for treatment. However, it is
still urgent to predict immunotherapy biomarkers and determine novel therapeutic targets. In this study, the gene expression
profiles and clinical data of 407 stomach adenocarcinoma (STAD) patients were downloaded from The Cancer Genome Atlas
(TCGA) portal, and the abundance ratio of immune cells in each sample was obtained via the “Cell Type Identification by
Estimating Relative Subsets of RNA Transcripts (CIBERSORT)” algorithm. Five immune cells were obtained as a result of
abundance comparison, and 295 immune-related genes were obtained through differential gene analysis. Enrichment, protein
interaction, and module analysis were performed on these genes. We identified five immune cells associated with infiltration
and 20 hub genes, of which five genes were correlated with overall survival. Finally, we used Real-time PCR (RT-PCR) to
detect the expression differences of the five hub genes in 18 pairs of GC and adjacent tissues. This research not only provides
cellular and gene targets for immunotherapy of GC but also provides new ideas for researchers to explore immunotherapy for
various tumors.

1. Introduction

As a common malignant tumor, the GC has a high incidence
of concealment and a high recurrence rate, which is the sec-
ond cause of cancer death after lung cancer [1]. Approxi-
mately 990,000 people are diagnosed with GC each year
worldwide, and most patients are already in a stage of local
progression at the time of diagnosis, resulting in high mor-
tality [2]. Traditional treatments such as chemotherapy,
radiotherapy, and surgery are difficult for most patients with
advanced GC to completely remove the tumor, and the 5-
year survival rate of advanced GC treated with traditional
methods is always on the low side [3, 4].

In recent years, with the understanding of tumor micro-
environment and immune targets, immunotherapy has
gradually become a new therapeutic method. Immunother-
apy can reduce the pain of patients, improve the quality of

life, and even prolong the survival time. Tumor immuno-
therapy mainly uses the body’s natural defense mechanism
to kill tumor cells, thereby enhancing antitumor immunity
[5, 6]. At present, tumor immunotherapy mainly includes
immune checkpoint inhibitors, adoptive cellular immunity,
and immune vaccines. Immunotherapy is a new type of anti-
tumor therapy, which has achieved certain results in the
treatment of GC [7–9]. However, due to the complexity of
human immune mechanisms, tumor-induced immune
escape is a widespread phenomenon. There are still many
problems that need to be addressed in GC immunotherapy,
especially in predicting immunotherapy biomarkers and
finding new effective therapeutic targets.

Cancer immunotherapy mainly cooperates with some
important proteins to enhance or restore the function of
immune cells in the tumor microenvironment. Therefore,
we first studied the immune cells related to the degree of
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infiltration in STAD, then investigated the genes that are cru-
cial to the level of infiltration of immune cells, and performed
experiments to verify the results. Our study provides ideas
and clues for the immunotherapy of STAD, and the identi-
fied cells and genes can be considered biomarkers for the
prognosis or target of STAD therapy. In addition, this study
also provides a new way for immunotherapy researchers to
explore cellular and gene targets of immunotherapy.

2. Materials and Methods

2.1. Data Source and Preprocessing. Download RNA-Seq
gene expression profiles of 407 STAD patients (including
375 tumor samples and 32 normal samples) from the TCGA
database, including FPKM and COUNT formats. Clinical
data such as gender, age, tumor grade, clinical stage, and sur-
vival time were downloaded from the Genomic Data Com-
mons (GDC) which was retrieved from the TCGA (https://
tcga-data.nci.nih.gov/tcga/) database. Then, the R software
was used to extract and sort the data to obtain the gene

expression matrix and clinical data. This was followed by
an analysis, and all the analytical processes are shown in
Figure 1.

2.2. Identifying Immune-Related Cells. The CIBERSORT
(https://cibersort.stanford.edu/) is an analytical tool devel-
oped by Newman that uses gene expression data to estimate
the abundance ratio of member cell types in a mixed cell
population [10]. To quantify the proportion of immune cells
in STAD specimens, we used the CIBERSORT method and
the LM22 gene signature [10]; the latter contains 547 genes,
which can be highly sensitive and specific for the recognition
of 22 human hematopoietic cell phenotypes (including B
cells, T cells, natural killer cells, macrophages, dendritic cells,
and myeloid subpopulations). The CIBERSORT uses the
Monte Carlo sampling to derive a P value for the deconvolu-
tion of each sample, providing a measure of confidence in
the results. At the threshold of P < 0:05, the results of the
inferred part of the immune cell population produced by
the CIBERSORT were considered accurate [11]. 164 samples

407 STAD mRNA data
(FPKM) from TCGA

407 STAD clinical data
from TCGA

�e matrix of 22 immune cells
abundance ratio was calculated

by CIBERSORT
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Figure 1: Flowchart of data acquisition and analysis process. TCGA: The Cancer Genome Atlas (https://portal.gdc.cancer.gov/). FPKM and
counts are two different mRNA data formats in TCGA databases. CIBERSORT is a network tool that uses gene expression data to estimate
the abundance ratio of member cell types in a mixed cell population. DEGs: differentially expressed genes. Metascape is a web-based portal
designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists. PPI: protein-protein
interactions. Cytoscape is a network processing software, and the Cytohubba is a plugin in Cytoscape.
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Figure 2: Continued.
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(including 153 tumor samples and 11 normal samples) were
selected by P < 0:05 for subsequent analysis. The Wilcoxon
test was used to analyze the difference in the proportion of
22 immune cells in tumor samples and normal samples,
and the cells with a significantly higher infiltration degree
in tumor samples were identified as immune-related cells.

2.3. Clinical Relationship with Immune-Related Cells. Com-
bined with the immune cell abundance ratio and clinical
characteristics of 153 tumor samples, the relationship
between immune cell abundance ratio and tumor grade,
clinical stage, T-stage, and N-stage was analyzed by the inde-
pendent samples t-test.

2.4. Identifying Immune-Related Genes. The STAD samples
were grouped (high abundance group and low abundance
group) according to the median abundance of the five
immune cells identified in Section 2.2, by using the edgeR

R software package and controlling ∣ log FC ∣ >1 and P <
0:05 to identify the differentially expressed genes (DEGs).
An R package Venn diagram was used to generate these
immune-related genes.

2.5. Enrichment Analysis of Immune-Related Genes. In order
to elucidate the potential gene functional annotation and path-
way enrichment associated with the 295 DEGs, Gene Ontol-
ogy (GO) [12, 13] terms and Kyoto Encyclopedia of Genes
and Genomes (KEG) [14–16] pathways were performed using
the Metascape (http://metascape.org) [17]. These genes were
assigned to functional groups according to molecular func-
tions, biological processes, and specific pathways.

2.6. Protein-Protein Interaction Network Construction, Hub
Genes, and Module Analysis. To assess the interactions
among DEGs, the 295 immune-related genes were submitted
to the String database (https://string-db.org/), a network tool
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Figure 2: Identifying immune cells in GC. (a) The abundance ratio of immune cells in 164 samples. Each column represents a sample, and
different colors and heights of each column represent the abundance ratio of immune cells in the sample. (b) Abundance ratio of 22 immune
cells in cancer (n = 153) and normal (n = 11) samples. Blue represents normal samples, red represents tumor samples. (c) The relationship
between abundance ratios of 22 immune cells. The value represents the relevant value. Red represents positive correlation, blue represents
negative correlation.
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for studying protein-protein interactions (PPI), and the com-
prehensive score was set to ≥0.4 [18]. An interactive network
consisting of 148 nodes and 142 edges was obtained. The net-
work was reconstructed by Cytoscape software (cytoscape.org)
and a module analysis of the network was performed using the
“MCODE” plugin [19] to search subnetworks of the PPI net-
work. At the same time, important nodes in the network were
predicted by the “Cytohubba” plugin [20], and the top 20
genes generated by Maximal Clique Centrality (MCC) were
screened and identified as hub genes. Finally, we selected the
module with the highest score from MCODE for enrichment
analysis through the Metascape.

2.7. Survival Analyses of Hub Genes. Overall survival analy-
ses of hub genes were performed using the GEPIA2
[21](http://gepia2.cancer-pku.cn/).

2.8. Patients and Tissue Specimens. Human gastric tissue
samples (18 pairs of GC and adjacent samples) were col-
lected from GC patients who underwent gastrectomy at the
First Affiliated Hospital of Nanchang University. The diag-
noses of GC were confirmed based on histology. All subjects
provided informed consent for obtaining the study speci-
mens. The study protocol was approved by the Clinical
Research Ethics Committee of the First Affiliated Hospital
of Nanchang University. All included cases were recorded
in the Human Genetic Resources Center of the First Affili-
ated Hospital of Nanchang University.

2.9. Real-Time Quantitative PCR Analysis of the Five Hub
Genes. TRIzol (Invitrogen) was then used to extract total tis-
sue RNA, after which SYBR® Premix Ex Taq (TaKaRa) was
used for RT–PCR. The primers used for the detection of
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Figure 3: The relationship between the abundance ratio of immune cells and clinical characteristics. (a–e) The relationship between the
abundance ratio of each immune cell and tumor grade, clinical stage, T-stage, and N-stage. The upper and lower sides of the boxplot are
75% and 25% quantiles. The line in the middle of the box indicates the median.
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human specimens are as follows: β-actin forward primer
5′-TGACGTGGACATCCGCAAAG-3′ and reverse primer
5′-CTGGAAGGTGGACAGCGAGG-3′; ADRA1B, forward

primer 5′-CTTTCACGAGGACACCCTTAGC-3′ and
reverse primer 5′-GCCCAACGTCTTAGCTGCTT-3′; BRS3
forward primer 5′-CTGCGTCTGGATCGTGTCTAT-3′
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Figure 4: Identification of DEGs associated with immune cells. (a–e) Volcano plots of the GC gene expression profiles grouping by T cell
CD4 memory activated, monocytes, macrophages M0, macrophages M1, and macrophages M2. Red represents upregulated genes, blue
represents downregulated genes. ∣Log 2 FC ∣ >1 and P value < 0:05. (f) Venn calculation results using an online tool to obtain genes
involved in the infiltration of five immune cells. The numbers in different color blocks represent the number of genes related to immune
cell infiltration. A total of 295 genes are related to the five immune cells.
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Figure 5: Metascape analysis. (a) Bar graph of enriched terms across input gene lists, colored by P values. (b) Network of enriched sets
colored by cluster ID, where nodes that share the same cluster ID are typically close to each other.
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and reverse primer 5′-AGGGTCCTAGCAATCAAGGAAT-
3′; CALCA, forward primer 5′-AAGCGGTGCGGTAATC
TGAG-3′ and reverse primer 5′-GGGGAACGTGTGAAAC
TTGTTG-3′; CALCR forward primer 5′-CCTATCCAACA
ATAGAGCCCAAG-3′ and reverse primer 5′-TGCATTCG
GTCATAGCATTTGTA-3′; OPRD1 forward primer 5′-CG
TCCGGTACACTAAGATGAAGA-3′ and reverse primer 5′-
GCCACGTCTCCATCAGGTA-3′. Student’s t-test was used
for comparison between the two groups. P < 0:05 was consid-
ered statistically significant.

3. Results

3.1. Data Source and Preprocessing. The RNA-Seq (including
FPKM and counts) and clinical data of the 407 patients with
STAD were obtained from the TCGA. Figure 1 flowchart
shows the process of data acquisition and subsequent analysis.

3.2. Identifying Immune Cells in GC. By using the CIBER-
SORT, the abundance ratio of 22 immune cells in 164
STAD samples and the difference of the abundance ratios
in cancer and normal samples were analyzed, as shown in
Figures 2(a) and 2(b). The abundance ratio of plasma cell
in normal samples (n = 11) was significantly higher than
in cancer tissues (n = 153), while the contents of T cell
CD4 memory activated, monocytes, macrophages M0, mac-
rophages M1, and macrophages M2 in normal samples were
significantly lower than that of tumor tissues. Besides, we
also analyzed the correlation between the 22 immune cells.
As shown in Figure 2(c), T cell CD4 memory resting was
negatively correlated with T cell CD8 and T cell CD4 mem-
ory activated, while neutrophils and mast cells activated
were significantly correlated. From the above results, it can
be seen that the abundance ratios of T cell CD4 memory
activated, monocytes, macrophages M0, macrophages M1,
and macrophages M2 in GC were significantly higher than
that of normal tissue.
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Figure 6: PPI network construction and module analysis. (a) The module with the highest score obtained using the MCODE plugin. (b and
c) Metascape analysis. (d) Top 20 genes selected based on MCC methods. The darker the color of the node, the higher the score.
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3.3. Clinical Relationship with Immune-Related Cells.
According to the clinical characteristics, 153 tumor samples
were grouped to analyze the relationship between the abun-
dance of five immune cells and the clinical characteristics
(including T-stage, N-stage, clinical stage, and tumor grade),
so as to determine the influence of the abundance ratio of
immune cells on the clinical characteristics of STAD. As
shown in Figure 3, the abundance ratio of macrophages
M0 in the high-grade samples (Grades 1 and2) was signifi-
cantly lower than that in the low-grade group (Grade 3).
The abundance of macrophages M1 increased with the
increase of tumor grade. Although the difference was not
significant, with the increase of tumor grade, clinical stage,
T-stage, and N-stage, the abundance of T cell CD4 memory
activation and monocytes increased (Figures 3(a) and 3(b)).
In addition, the abundance of macrophages M2 in the
N2&N3 group was slightly higher than that of the N1&N2
group (Figure 3(e)).

3.4. Identification of DEGs Related to Immune Cells. In order
to identify immune-related DEGs, the STAD samples were
grouped (high abundance group and low abundance group)
according to the median abundance of the five immune cells.
We found that there were 475 DEGs in T cell CD4 memory
activation, 269 genes with downregulated expression, and

206 genes with upregulated expression. In monocytes, there
were 360 DEGs, including 173 genes were downregulated
and 187 genes were upregulated. There were 488 DEGs,
139 downregulated genes and 349 upregulated genes in mac-
rophages M0. There were 511 DEGs in macrophages M1,
with 313 downregulated genes and 198 upregulated genes.
440 DEGs were identified in macrophages M2, including
272 downregulated genes and 169 upregulated genes. Vol-
cano graphs were used to show the results in Figures 4(a)
and 4(e). The Venn diagram analysis shown in Figure 4(f)
revealed 295 DEGs related to immune cells.

3.5. Enrichment Analysis of Genes Related to Immune Cells.
In order to investigate the functions of the 295 immune-
related DEGs, enrichment analysis was performed by using
the Metascape. The Metascape analysis shows the top 17
clusters of enriched sets (Figure 5). These genes were
enriched in the biological process (BP) categories response
to glucocorticoid, limbic system development, sensory per-
ception of taste, and so on. The KEGG pathway data were
enriched in GPCR ligand binding, G alpha (q) signaling
events, Class B/2 (Secretin family receptors), etc.

3.6. PPI Network Construction, Module Analysis, and
Identification of Hub Genes. In order to explore the correla-
tion of the 295 immune-related genes and obtain hub genes,

Table 1: Functional roles of the 20 hub genes.

NO. Gene Full name Function

1 ADRA1B Adrenoceptor alpha 1B
G protein-coupled receptor activity, alpha1-adrenergic receptor

activity, and protein binding

2 AHSG Alpha 2-HS glycoprotein
Cysteine-type endopeptidase inhibitor activity and endopeptidase

inhibitor activity

3 ASCL1 Achaete-scute family bHLH transcription factor 1
DNA-binding transcription factor activity and DNA-binding

transcription factor activity

4 BRS3 Bombesin receptor subtype 3 G protein-coupled receptor activity and bombesin receptor activity

5 C8A Complement C8 alpha chain Encodes the alpha subunit of C8

6 CALB1 Calbindin 1 Calcium ion binding and protein binding

7 CALCA Calcitonin-related polypeptide alpha Calcitonin receptor binding and hormone activity

8 CALCR Calcitonin receptor
G protein-coupled peptide receptor activity and contributes to

amylin receptor activity

9 DLX2 Distal-less homeobox 2
DNA-binding transcription activator activity and RNA polymerase

II-specific

10 GAST Gastrin Hormone activity and protein binding

11 GCG Glucagon Glucagon receptor binding and hormone activity

12 GHRH Growth hormone-releasing hormone
Growth hormone-releasing hormone activity and neuropeptide

hormone activity

13 GNG13 G protein subunit gamma 13 G-protein beta-subunit binding and GTPase activity

14 HTR3A 5-hydroxytryptamine receptor 3A Neurotransmitter receptor activity and protein binding

15 NMS Neuromedin S G protein-coupled receptor binding

16 NPBWR1 Neuropeptides B and W receptor 1 G protein-coupled receptor activity and neuropeptide binding

17 NPBWR2 Neuropeptides B and W receptor 2
G protein-coupled receptor signaling pathway and neuropeptide

signaling pathway

18 OPRD1 Opioid receptor delta 1 G protein-coupled receptor activity and enkephalin receptor activity

19 SAA1 Serum amyloid A1 G protein-coupled receptor binding and chemoattractant activity

20 TAS1R3 Taste 1 receptor member 3 G protein-coupled receptor activity and signaling receptor activity
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Figure 7: Continued.
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PPI and module analysis were conducted. The module with
the highest score was shown in Figure 6(a). To explore the
function of this module, we conducted an enrichment anal-
ysis by using the Metascape and the results showed the genes
were enriched in the BP categories opioid receptor signaling
pathway. For KEGG pathway, these genes showed enrich-
ment in GPCR ligand binding and G alpha (q) signaling
events (Figures 6(b) and 6(c).

The hub genes were determined by the PPI network by
using the Cytohubba plugin. The MCC methods were per-
formed to calculate the top 20 genes, which were considered
as hub genes, as shown in Figure 6(d). Table 1 shows the
information of 20 hub genes, including complete gene
names and main functions.

3.7. Survival Analysis of Hub Genes. These 20 hub genes are
potential immunotherapy targets, and their relationship
with prognosis of GC is of great value for further immune-
related research. Figure 7(a) is a survival map of 20 hub
genes obtained through the online tool GEPIA2.
Figures 7(b)–7(f) show the five hub genes significantly
related to overall survival of STAD, namely, ADRA1B,
BRS3, CALCA, CALCR, and OPRD1.

3.8. Validation of the Five Hub Genes. For validating the five
hub genes related to survival, we detected the expression dif-
ference of these five genes in 18 pairs of cancer and adjacent
tissues by RT-PCR, and the results showed that the expres-
sion of ADRA1B mRNA in the adjacent tissues was higher
than that in the adjacent tissues, while the expression of
BRS3, CALCA, and CALCR mRNA in the cancer tissues
was significantly higher than that in the adjacent tissues. In
addition, the expression of OPRD1 in cancer tissues was also

higher than that in adjacent tissues, with an insignificant dif-
ference (Figure 8).

4. Discussion

GC is the most common malignant tumor in the digestive
system. Traditional radiotherapy and chemotherapy are
not effective for some patients, so it is imperative to seek
new treatment. In recent years, with the development of
immunotherapy in multiple cancers, PD-1 inhibitors have
received widespread attention in the treatment of GC
[22–24]. However, not all patients can get a considerable
curative effect, so it is particularly important to look for bio-
markers with predictive value and screen the beneficiary
population. The purpose of the study was to screen and
identify immune cells and genes closely related to immune
and clinical outcomes in the STAD microenvironment. This
study has not only identified the potential cells and gene tar-
gets of STAD immunotherapy but also provided new
research ideas for the other tumor immunotherapy.

In the study, we found T cell CD4 memory activated,
monocytes, macrophages M0, macrophages M1, and macro-
phages M2 were highly infiltrated in tumor samples. CD4+
memory T cells play an important role in the occurrence
and development of tumors [25]. CD4+ central memory T
(TCM) cells maintain immune memory and play a protec-
tive role in tumor metastasis [26, 27]. CD4+ effector mem-
ory T (TEM) cells express adhesion molecules and
chemokine receptors, which perform rapid functions [28].
Both of them play an important role in antitumor immunity.
In the peripheral blood of patients with advanced cancer, the
proportion of TCM cells decreased and TEM cells increased,
showing a typical state of T cell exhaustion [29]. In this
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Figure 7: Survival analysis of the hub genes. (a) Survival map of 20 hub genes obtained through the online tool GEPIA2. Red means positive
correlation, blue means negative correlation. (b–f) The five genes closely related to survival of STAD. The red line indicates the group with
high gene expression, and the blue line indicates the group with low gene expression.
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study, it was found that the content of T cell CD4 memory
activated in tumor tissue was significantly increased. Mono-
cytes appear to be recruited to tumor tissue throughout the
tumor progression, including the early stages of tumor
growth [30, 31] and the establishment of distant metastasis
[32, 33], under the influence of the tumor microenviron-
ment, it can differentiate into tumor-related macrophages,
thus promoting tumor growth and metastasis [34]. This
study showed that the content of monocytes in tumor sam-
ples increased significantly, which further proved the role of
monocytes in promoting tumor development. Macrophages
can be divided into classic macrophages M1 and alternative
macrophages M2 according to their functions [35]. Macro-
phages M1 is involved in inflammation and antitumor
immunity, while macrophages M2 have the characteristics
of promoting tumor development [36, 37]. Macrophages
M0 are formed by monocytes and have not been polarized
to M1 or M2 macrophage subtypes in tumors [38]. In the

initial stage of tumor formation, monocytes in peripheral
blood gather around the tumor and are mainly polarized
to macrophages M1, which plays an antitumor immune role.
However, once the tumor has formed, under tumor micro-
environment conditions of partial hypoxia and partial acid,
macrophages are polarized to M2 type, which has the role
of promoting tumor growth, invasion, and angiogenesis
and suppressing the immune response [39, 40]. This
explains that the infiltration of macrophages M0, M1, and
M2 in tumor samples was higher than that in normal sam-
ples. In summary, the five cells identified in this study are
most likely to play an important role in tumor immune infil-
tration and GC immunotherapy, confirming the credibility
of cell-based immune-related gene analysis.

Enrichment analysis of immune-related genes shows
that these genes are mainly related to G protein-coupled
receptors (GPCRs) ligand binding. GPCR, which represents
the largest gene family in the human genome, plays a vital
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Figure 8: Validation of the five hub genes. (a–e) RT-PCR detected the expression of ADRA1B, BRS3, CALCA, CALCR, and OPRD1 in 18
pairs of cancer and adjacent tissues. N represents 18 cases of adjacent tissues, and T represents 18 cases of cancerous tissues.
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role in various physiological functions as well as tumor
growth and metastasis [41]. Crosstalk between different
receptors, including GPCRs, triggers related biological func-
tions of normal and tumor cells [42]. It has been reported
that many GPCRs activate many signaling pathways that
interact with other plasma membrane receptors [42]. For
example, crosstalk between acetylcholine muscarinic recep-
tors (mAChRs), epidermal growth factor (EGFR), and
platelet-derived growth factor (PDGFR) receptors leads to
the activation of mitotic pathway, which mediates cell prolif-
eration, differentiation, and survival [43]. Some GPCR
ligands, such as bradykinin (BK), LPA, gastrin-releasing
peptide (GRP), and bombesin (BN), activate EGFR and then
induce stimulation in different types of tumors, such as pros-
tate cancer, breast cancer, and pancreatic adenocarcinoma
[44] Besides, studies have shown that leukocytes, including
neutrophils, T cells, and dendritic cells, mainly perceive sig-
nals of movement, migration, chemotaxis, and localization
through GPCRs and induce intracellular premigration
response through the combination of agonists [45, 46].
These studies indicate that GPCR is closely related to the
tumor immune microenvironment.

A total of 20 hub genes were finally identified, five of
which were related to survival, namely, ADRA1B, BRS3,
CALCA, CALCR, and OPRD1. Studies have shown that
these genes are related to the occurrence of certain tumors.
ADRA1B is a member of the GPCRs, and it has been
reported that this gene is closely related to the prognosis of
thyroid papillary carcinoma [47]. Studies have shown that
the methylation of ADRA1B plays a key role in the occur-
rence and development of GC [48, 49]. Our study showed
that the expression of ADRA1B in GC tissues was lower than
that in adjacent tissues, which may be related to methylation.
BRS3 is a G protein-coupled membrane receptor that binds
bombesin-like peptides, it is widely distributed in the
peripheral tissues and central nervous system, as well as
some tumors [50, 51]. It has been reported that BRS3 activa-
tion promotes metastasis formation and drug resistance in
small cell lung cancer cells [52]. In addition, studies have
shown that relative to normal tissue, primary neuroendo-
crine tumor expression of BRS3 was increased by 13-fold
[53]. Similarly, our study also showed that BRS3 expression
in GC tissues was significantly higher than that in adjacent
tissues. CALCA encodes a peptide hormone that plays a
key role in maintaining serum calcium levels and the regula-
tion of T and B cells in some cancers, which are often meth-
ylated in many types of cancer [54, 55]. Multiple studies
have shown that the level of CALCA methylation in GC tis-
sue is significantly higher than that of normal gastric tissue
[56–58]. However, our study suggested that CALCA was
highly expressed in cancer tissues, which may need to be fur-
ther verified by relevant experiments. As a member of
GPCRs, CALCR binds to its ligand and calcitonin and regu-
lates a variety of downstream signaling pathways, thus regu-
lating bone metabolism, calcium flux, and cancer cell
proliferation [59, 60]. It has been reported that CALCR
expression is significantly upregulated in non-small-cell lung
cancer and positively correlated with tumor invasion [61].
And another analysis also showed that CALCR is closely

linked to the survival of GC, which is consistent with the
results of this study [62]. OPRD1 encodes the delta opioid
receptor, which is a member of the opioid GPCRs [63],
and plays an important role in potassium homeostasis [64,
65] and glucose metabolism [66]. In order to satisfy the
needs of rapid proliferation of energy and biosynthesis,
tumor cells use aerobic glycolysis to rapidly supply energy
[67]. Compared with adjacent tissues, OPRD1 expression
was slightly increased in GC tissues in our study. Therefore,
there is an energy competition between tumor cells and
immune cells, and OPRD1 may act as a regulatory role.

In summary, we identified five immune cells and 20 hub
genes, five of which were shown to be related to the overall
survival of STAD patients and were significantly associated
with some immune cell infiltration. These cells and genes
can be considered biomarkers for prognosis as well as
markers for STAD therapy, which may be a focus of STAD
immunotherapy. However, the evidence from bioinformat-
ics and RT-PCR alone seems to be insufficient, and more rel-
evant experiments such as flow cytometry should be used to
verify the results. The potential relationship between tumor
microenvironment, STAD immunotherapy, and prognosis
can be rerecognized through the in-depth study of these cells
and genes.
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