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Abstract: Rice spotted leaf mutants are helpful to investigate programmed cell death (PCD) and de-
fense response pathways in plants. Using a map-based cloning strategy, we characterized novel rice
spotted leaf mutation splHM143 that encodes a 7-hydroxymethyl chlorophyll a reductase (OsHCAR).
The wild-type (WT) allele could rescue the mutant phenotype, as evidenced by complementation
analysis. OsHCAR was constitutively expressed at all rice tissues tested and its expression products
localized to chloroplasts. The mutant exhibited PCD and leaf senescence with increased H2O2

(hydrogen peroxide) accumulation, increased of ROS (reactive oxygen species) scavenging enzymes
activities and TUNEL (terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling)
-positive nuclei, upregulation of PCD related genes, decreased chlorophyll (Chl) contents, downregu-
lation of photosynthesis-related genes, and upregulation of senescence-associated genes. Besides,
the mutant exhibited enhanced bacterial blight resistance with significant upregulation of defense
response genes. Knockout lines of OsHCAR exhibited spotted leaf phenotype, cell death, leaf senes-
cence, and showed increased resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae
(Xoo) coupled with upregulation of five pathogenesis-related marker genes. The overexpression of
OsHCAR resulted in increased susceptibility to Xoo with decreased expression of pathogenesis-related
marker genes. Altogether, our findings revealed that OsHCAR is involved in regulating cell death
and defense response against bacterial blight pathogen in rice.

Keywords: rice; bacterial blight; defense response; OsHCAR

1. Introduction

Rice bacterial blight is a deadly bacterial disease which is among the most destructive
for cultivated rice (Oryza sativa). Spotted leaf mutants of rice known to provide extensive
resistance to different bacterial pathogens serve as a great material to elucidate disease
resistance mechanisms in rice. Understanding the functions of disease-resistant genes is es-
sential for unraveling the molecular mechanisms of plant capacity to withstand pathogenic
bacteria and improve plant adaptability to stress through genetic programming [1]. In rice,
spotted leaf mutants are known to develop necrotic lesions spontaneously without any
environmental stress intervention. The developed necrotic lesions are mainly observed
on the leaf blade or leaf sheath and are of different sizes (2–10 µm) and multiple colors
such as brown, reddish-brown, dark brown, orange, and white [2,3]. Spotted leaf mutants
are also termed lesion mimic mutants (LMMs) because they display either structural or
uncontrolled cell death initiation similar to the hypersensitive response (HR) induced by
pathogen infection [4]. HR is associated with typical physiological processes that comprise
structural signals such as the initiation of pathogenesis-related (PR) genes, the outburst of
ROS, the aggregation of antimicrobial compounds, and the generation of free radicals [5–7].
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Genetic studies have stated that spotted leaf mutants are commonly governed by
single recessive genes [8,9], single semi-dominant nuclear genes [10] or single dominant
genes [11]. In recent years, many spotted leaf mutant genes have been cloned. They
encode several proteins with distinct functions and signaling pathways associated with
defense response and HR cell death in rice [12]. These proteins include ATP-citrate lyases
(ACL) [13], spastin protein [14], coproporphyrinogen III oxidase [15], mitogen-activated
protein kinase kinase kinase (MAPKKK1) [16], eEF1A-like protein [7] tetratricopeptide
repeats (TPRs)-containing protein [17], and AAA-type ATPase [18]. These findings specify
that several proteins are important regulators of HR cell death and immunity response [13].

Most spotted leaf mutants show improved defenses against bacterial and fungal
pathogens. For example, rice spl40 mutant displayed increased resistance to bacterial blight
pathogen Xoo [19], whereas Spl12, spl13, spl14 and Spl15 show enhanced resistance to not
only Magnaporthe oryzae but also X. campestris pv. oryzae [20], and spl33 exhibited improved
resistance to Magnaporthe oryzae and Xoo [7]. These data imply that spotted leaf genes
participate in the regulation of the plant defense response. Certain gene products such as
phosphates, G-proteins, and protein kinase, other signal molecules such as lipid peroxides,
ROS, salicylic acid (SA), and jasmonic acid (JA) are produced during the defense response.
In fact, at the beginning of defense response, many biochemical pathways within the
responding cells are immediately activated, followed by the induction of defense-related
genes, including genes encoded by chitinase, phenylalanine ammonia-lyase (PAL), and,
chalcone synthase (CHS) plus protectant genes including genes encoding glutathione S-
transferase (GST), glutathione peroxidase (GP) and peroxidases for activating cell protection
mechanisms [21]. During the last decade, several LMM have been isolated and cloned. It is
now recognized that these mutants are valuable materials for studying various features of
PCD and the disease resistance mechanisms of rice [4].

7-hydroxymethyl chlorophyll a reductase (HCAR) is an enzyme of Chl cycle that
accelerates the modification of 7-hydroxymethyl Chl a (7-HMC a) to Chl a [22]. In rice
and Arabidopsis, HCAR is considered a component of Chl catabolic enzyme (CCE). It
interferes with RCCR, SGR, NOL, and NYC1 in yeast two-hybrid experiments, suggesting
its prominent role in Chl degradation [23,24]. A recent study demonstrated that HCAR acts
as one of the suppressing factors for Chl b turnover when Chl b is overproduced. Analysis
performed on Chl-b-overproducing plants and the lines that overexpress HCAR showed
that the Chl b level was decreased. In contrast, the Chl a/b ratio was elevated from about
0.8–1 to 1.6–2, implying that HCAR activity was not enough to convert HMChl a reduction
in Chl-b-overproducing plants [25]. In rice, HCAR has been reported to play a crucial role
in saving plants from high light-induced cell injury by blocking the aggregation of 7- HMC
a and Pheo a in evolving and mature leaves during plant development [24]. However, an
association between disease resistance and HCAR has not been reported in plants so far.

Previously, a spotted leaf mutant obtained by the EMS (Ethyl methane sulfonate)-
induced IR64 mutant bank (HM143) showed necrotic lesions on the leaf blades and ex-
hibited broad spectrum resistance to different bacterial blight pathogens [9]. To confirm
whether the mutation in HM143 was associated with the spotted leaf phenotype and bac-
terial resistance we carried out functional analysis of this gene which would deepen our
understanding of the molecular mechanisms underlying disease resistance in rice. Here,
we isolated splHM143, which encodes 7-hydroxymethyl chlorophyll a reductase, hereafter
(OsHCAR). A single base exchange in the mutant allele leading to an mRNA splicing is
responsible for the mutant phenotype indicated by complementation test. The OsHCAR
gene is constitutively expressed in all tissues examined and OsHCAR localizes to chloro-
plasts. The mutant displayed cell death, leaf senescence and increased defense response.
The knockout lines of OsHCAR exhibited similar spotted leaf phenotype, leaf senescence,
cell death and strengthened disease resistance. Our results demonstrated that dysfunction
of OsHCAR could activate the defense pathway and lead to enhanced defense response
in rice.
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2. Results
2.1. PCD Is Activated in HM143

A previous study denoted that cell death occurred at every site of necrotic lesions,
followed by the cumulation of hydrogen peroxide in HM143 [9]. To further confirm the
presence of cell death in HM143, we performed TUNEL analysis to detect DNA fragmen-
tation, which indicates cell death. We observed few positive TUNEL nuclei in the WT,
whereas many TUNEL nuclei were positive in HM143 (Figure 1A). We also measured the
levels of malonaldehyde (MDA) and H2O2. Our results revealed that the contents of both
MDA and H2O2 were significantly increased in HM143 compared with WT (Figure 1B,C),
indicating that cell membrane damage caused cell death in HM143.
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Figure 1. Analysis of cell death and ROS accumulation in IR64 and HM143 at tillering stage.
(A) TUNEL assay. Blue signal represents 4′, 6-diamino-phenylindole (DAPI) staining; green color
represents positive result. (i) and (iv) are DAPI staining; (ii) and (v) are TUNEL signal; (iii) and
(vi) are merged images of (i/iv) andrespectively, Bar = 100 µm; (B) Malonaldehyde (MDA) contents;
(C) H2O2 contents; (D–F) CAT, SOD and POD enzyme activities (G) Expression analysis of OsMCs
genes. Data are means ± SD of three biological replicates (Student’s t-test: * ** p < 0.01).

To verify whether anti-oxidative systems, consisting of catalase (CAT), superoxide dis-
mutase (SOD), and peroxidase (POD) enzymes, were elevated to balance ROS production,
we determined the activities SOD, POD and CAT between mutant and WT. We found out
that the all the three enzyme activities were significantly higher in HM143 when compared
with WT (Figure 1D–F). Our results imply that increased activities of ROS scavenging
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enzymes could not lower the elevated H2O2 accumulation. Lastly, we performed the
expression analysis of several metacaspase (MC) genes, which are essential controllers of
PCD [26]. The results revealed that seven MC genes, including OsMC1, OsMC2, OsMC4,
OsMC5, OsMC6, OsMC7, and OsMC8, were highly expressed in HM143 compared to
WT, but no remarkable difference was detected in the expression pattern of 1 MC gene,
i.e., OsMC3 between HM143 and WT (Figure 1G). Our results demonstrated that HM143
triggers the PCD pathway, which led to the formation of HR-like necrotic lesions.

2.2. HM143 Is Deficient in Chlorophyll Metabolism and Photosynthesis

Photosynthetic rate (Pn) and Chl content are the two significant characteristics of leaf
senescence in plants [27]. To examine early leaf senescence, we measured the levels of
Chl contents in mutant and WT plants at the tillering stage (Figure 2A). We found that in
HM143, Chl a, Chl b, and carotenoid (Cart) levels were notably lower than WT (Figure 2C),
suggesting that necrotic lesions’ formation in HM143 might have caused the reduction of
Chl contents. We also observed that the net photosynthetic rate was significantly decreased
in the HM143 plants as opposed to WT (Figure 2B). We also evaluated the expression levels
of eight photosynthesis-related marker genes (rbcL, CHLD, cab2R, CHLH, psbA, CHLI, porA,
HEMA1, rbcS) by qRT-PCR (Quantitative Real-Time Polymerase Chain Reaction) in the
mutant and WT. All the photosynthesis-related genes tested were remarkably downreg-
ulated in the mutant compared to the WT (Figure 2D), providing a shred of molecular
evidence for leaf senescence in the mutant. Our results imply that HM143 is deficient in
Chlmetabolism and photosynthesis.
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three biological replicates (Student’s t-test: * p < 0.05; ** p < 0.01).

2.3. splHM143 Encodes 7-Hydroxymethyl Chlorophyll a Reductase (OsHCAR)

In a previous study, the single recessive gene splHM143 was preliminarily mapped to
chromosome 4 [9]. A sum of 1380 F2 individuals mutant-type obtained from the cross
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HM143/Moroberekan was selected for genotyping to fine map the locus. The candidate
gene was located to a 176Kb region between RM16682 and RM16686 markers (Figure 3A).
Elicited from the Rice Genome Annotation Project database (http://rice.plantbiology.msu.
edu/, accessed on 23 June 2021), the fine mapped region contains 20 putative open reading
frames (ORFs) (Figure 3B). Sequencing and comparing all 20 ORFs from WT and HM143
indicated that the 14th ORF (LOC_Os04g25400) had one nucleotide exchange from T to
A at position 3760 in its 12th intron splicing site (Figure 3D) resulting in mRNA splic-
ing, thus considering LOC_Os04g25400 as the most likely candidate gene. The length of
LOC_Os04g25400 is 5273 bp with 16 exons and 16 introns (Figure 3C). LOC_Os04g25400 is
predicted to encode 7-hydroxymethyl chlorophyll a reductase (HCAR), hence named OsH-
CAR.
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and HM143 on the second nucleotide of 12th intron. Note: The numbers 123-126-4,127-130-1,123-126-8,126-1 indicate
insertion/deletion markers.

To confirm the function of the candidate gene, we performed Agrobacterium tumefaciens-
mediated transformation of the wild OsHCAR allele in the mutant calli (Figure 4A). Eight
T0 plants were regenerated; six were positive transformants and displayed the same regular
green leaf color as the WT(Figure 4B); while the other two showed the same lesion mimic
phenotype as the mutant (Supplementary Figure S1A,B). We also measured the total Chl
content in IR64, HM143, and C-HM143. Our results showed that the total Chl level in C-
HM143 recovered to the WT levels while it significantly lowered in HM143 (Supplementary

http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
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Figure S1C). Additionally, when we measured the content of Chl, the mutant showed
decreased levels of Chl a, b, and Cart compared with WT: these parameters rescued WT
levels in complementary plants (Figure 4C). Furthermore, we also measured the enzyme
activities of POD, SOD and, CAT and our results showed that POD and SOD activities in
the complementary plants fully recovered to the WT level (Figure 4D,F). In contrast, the
activity of CAT was decreased compared to WT but higher than that of HM143 (Figure 4E).
Joined together, these findings illustrated that LOC_Os04g25400 is the candidate gene that
regulates the mutant phenotype.
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Figure 4. Genetic complementation of the mutant. (A) Complementation construct. (B) Phenotypes
of IR64, HM143 and complemented transgenic line (C-HM134). (C) Pigment contents in IR64, HM134
and C-HM143 at heading stage. (D–F) Enzyme activities of SOD, CAT and POD in IR64, HM143
and C-HM143 at heading stage. Data are means±SD of three biological replicates. Different letters
indicate significant differences according to One-way ANOVA and Duncan’s test (p ≤ 0.05).

2.4. Overexpression of OsHCAR Enhances Susceptibility to Xoo

To evaluate the biological function of OsHCAR, we produced transgenic rice over-
expressing the WT OsHCAR allele under the control maize (Zea mays) Ubiquitin1 in the
Kitaake background. A total of four OsHCAR T0 overexpression plants (OE) were obtained,
and they displayed no apparent morphological changes compared to Kitaake (Figure 5A).
The expression levels of OsHCAR in the T0 OE plants were significantly increased com-
pared to Kitaake (Figure 5B). For further analysis, T1 OE lines were planted in the field,
and we measured the activities of SOD and CAT, which are increased during oxidative
stress. In SOD activity, the results showed no significant difference between Kitaake and
OE lines (Figure 5C). In contrast, CAT activity was significantly higher in OE lines than
Kitaake (Figure 5D).
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It has been reported that HM143 enhances disease resistance to multiple bacterial blight
pathogens [9]. To access the disease response to bacterial blight pathogens in the OE lines, we
performed bacterial inoculation of five different bacterial blight races, namely C3, C6, JS97-2,
PXO347, and PXO349, between the Kitaake and OE-4 lines. We found that the OE-4 lines
were more susceptible to bacterial blight pathogens compared to Kitaake, except for PXO347
(Figure 5F,G). We examined the expression pattern of three different pathogenesis-related
(PR) genes (WRKY45, WRKY82, and WRKY85). The results showed that these PR genes
were poorly expressed in the OE-4 plants compare with Kitaake (Figure 5E). These findings
demonstrate that the OsHCAR gene is involved in regulating bacterial blight resistance and
that overexpression of OsHCAR enhances disease susceptibility in rice.

2.5. Knockout of OsHCAR Promotes Resistance to Xoo

We used thef CRISPR/Cas9 technique to generate knockout lines of OsHCAR using
the WT as the background. The sequenced CRISPR/Cas9 target sites revealed several
insertions in the cr-12, cr-18, and deletion in the cr-19 (Figure 6A). The three indicative lines
were used for comprehensive characterization. To verify the off-target effect, we obtained
20 off-target sites from the CRISPR-P website (http://cbi.hzau.edu.cn/cgi-bin/CRISPR,
accessed on 23 June 2021) (Supplementary Table S2), and we detected those off sequence in
cr-12, cr-18 and cr-19 by PCR (Polymerase Chain Reaction) amplification and sequencing to
verify whether they resulted in any insertion, deletion or substitution mutation. We did not
detect any change in cr-12, cr-18, and cr-19 regarding the 20 off-target sites (Supplementary
Figures S3–S7), and thus concluded that our guide RNA sequence was only specific to the
OsHCAR gene.

http://cbi.hzau.edu.cn/cgi-bin/CRISPR
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As expected, the knockout lines exhibited a spotted leaf phenotype similar to the
mutant with decreased levels of Chl a, b, and Cart (Figure 6B) and increased expression
levels of senescence-associated genes compared to WT (Figure 6E). We speculated that the
reduction in the Chl content in the knockout lines might cause alterations in photosynthetic
parameters, so we quantified the photosynthesis parameters. We observed a significant
reduction in the Pn and stomatal conductance (GS) in the knockout lines compared to WT
(Figure 6C,D), indicating that the knockout lines had defective photosynthetic capacity,
which possibly led to reductions in Chl content and lesion formation.

To analyze the disease resistance, knockout lines and WT plants were inoculated with
five races of Xoo, i.e., C2, C6, JS97-2, PXO347, and PXO349, and the lesion length was
measured two weeks after inoculation. The knockout plants showed enhanced disease
resistance to each of the five Xoo races compared with WT (Figure 6F,H). PR genes are
frequently enhanced during lesion formation in many rice spotted-leaf mutants. During
pathogen infection, improved disease resistance is accompanied by the elevation of PR
genes [28]. To verify this possibility, we performed an expression analysis of five defense-
related marker genes (PR1A, NPR1, PAL1, WRKY45, WRKY82) by qRT-PCR. We found that
each of these PR marker genes was significantly increased in the knockout plants compared
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to the WT (Figure 6G). Overall, these results indicate that the dysfunction of OsHCAR
results in cell death and activates disease resistance in rice.

2.6. Constitutively Expressed OsHCAR Is Localized to Chloroplasts

To examine the subcellular localization of OsHCAR experimentally, we performed
polyethylene glycol (PEG)-mediated rice transformation in rice protoplasts. When the
pOsHCAR-GFP vector was transformed in rice protoplasts controlled by CaMV 35S pro-
moter, the green fluorescence signals of OsHCAR: GFP were confined to the chloroplasts
(Figure 7A). Our results demonstrated that OsHCAR is a chloroplast-targeted protein.
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To verify the expression system of OsHCAR, we evaluated the expression levels of
total RNA from roots, shoots, stems, nodes, internodes, leaves, leaf sheaths, panicles, and
filling grains by quantitative reverse transcription-polymerase chain reaction at different
developmental stages. Our results indicated that the OsHCAR gene was highly expressed
in all the tissue evaluated, with the highest expression in the filling grains (Figure 7B).
These findings reveal that OsHCAR is a constitutively expressed gene.

3. Discussion

Spotted leaf mutants are essential for comprehending PCD and disease resistance
in plants. Previously, we isolated a spotted leaf mutant (HM143) from an IR64 treated
EMS mutant bank. The target gene was originally termed splHM143. splHM143 exhibited
PCD and improved disease resistance to several races of Xoo [9]. In the present study,
the mutant allele splHM143, which possesses one nucleotide replacement at the splicing
site, was identified as LOC_Os04g25400 after fine mapping; and it encodes for a rice 7-
hydroxymethyl chlorophyll a reductase (OsHCAR) protein. Complementation analysis
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using WT LOC_Os04g25400 could rescue the spotted leaf phenotype. HCAR catalyzes the
conversion of 7-hydroxymethyl Chlorophyll a (7-HMC a) to Chl a; and rice (Oryza sativa)
genome comprises of one HCAR homolog [24]. OsHCAR is highly constitutively expressed
and localizes to chloroplasts.

Mutation in many spotted leaf mutants is characterized by the poor performance of
essential agronomic traits and decrease in photosynthetic pigments [29]. Still, our results
revealed that there was a decrease in photosynthetic pigment. On the contrary, the per-
formance of essential agronomic traits was substantially similar in HM143 mutant and
the knockout lines than WT, suggesting that OsHACR may have a potential function in
yield improvement due to enhanced disease resistance. HM143 exhibited a spontaneous
leaf lesions resembling HR that occurs after pathogen infection. Previous studies have
demonstrated that rice and Arabidopsis HCAR proteins regulate cell death and oxidative
stress response. The intensity levels of H2O2 and O2− were much higher in oshcar mutant
leaves indicated by DAB and NBT staining. Additionally, JAmyb, OsNAC4, and OsAPX1
genes that are enhanced during cell death were notably upregulated, suggesting that
HCAR plays a vital role in modulating cell death [24]. In this study, cell death in OsH-
CAR was detected using TUNEL assay, an indicator of DNA fragmentation, which was
reinforced by the upregulation of OsMCs genes which are essential regulators of PCD in
plants [26]. H2O2 is a significant by-product of beta-oxidation and functions as a cue parti-
cle to promote cell death. Thus, over-accumulation of H2O2 is the leading cause of lesion
development [30]. Accumulation of MDA causes cellular membrane damage and indirectly
affects cell death [31]. Similarly, there was an elevated level of H2O2 and MDA in HM143,
indicating an accumulation of cell death which might have contributed to the formation
of necrotic lesions. Promoted level of ROS leads to oxidative damage and activation PCD
pathway. If ROS appears as a damaging or signaling molecule is determined by the balance
between ROS production and scavenging. Detoxing or scavenging of ROS is attained by
an effective antioxidative system consisting of enzymatic antioxidants such as SOD, POD,
and CAT to balance the production and removal of ROS [32]. Interestingly, CAT, SOD, and
POD activities increased significantly in HM143; however, the level of ROS accumulation
remained high. Further evaluation is needed to elucidate the issue.

In rice and Arabidopsis, HCAR participates in preventing cell death signaling during
leaf senescence [23]. In general, leaf senescence is unified with reduction of Chl contents,
defective chloroplast development, altered expression of photosynthesis-related genes,
and elevated levels of Chl biosynthesis genes [27,33,34]. Similarly, in our study, we de-
tected early leaf senescence. Our results revealed a reduction in the content of Chl and
upregulation of Chl biosynthesis genes, and lowered expression of photosynthesis-related
genes in HM143. Besides, we demonstrated decreased Chl content and upregulation of
Chl biosynthesis genes in OsHCAR-knockout lines, indicating its function in leaf senes-
cence. All the results obtained provided evidence that HCAR-like protein is involved in
leaf senescence. It is believed that plant defense responses are regulated by endogenous
plant signaling particles, including SA, JA, ethylene, and abscisic acid. For example, the
bacterial blight resistance in OsPELOTA has been activated by the salicylic acid metabolic
pathway [35], and simultaneously, the enhanced resistance observed in rice spl40 was due
to activation of the SA and JA signaling pathways [19]. The mediated disease resistance of
OsSPL24 was incidentally related to numerous pathways/components involved in heat
shock proteins, vesicle trafficking, transcription factors, and cell wall components [10].
Salicylic acid (SA) and jasmonic acid (JA) are two practical regulators of defense reaction in
plants and are believed to trigger a standard pathogen defense response in rice [36]. This
study revealed that expression levels of PR markers involved in SA/JA were obviously
elevated in the mutant plants, indicating that this gene is involved in defense response
(Supplementary Figure S2A,B). Furthermore, OsHCAR-knockout lines improved resistance
to rice five races of Xoo by inoculation experiments. There was a remarkably increased
level of six PR genes in knockdown lines compared to WT. On the contrary, OsHCAR
overexpressing plants showed susceptibility to five races of Xoo tested. Furthermore, the
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expression levels of three different PR markers were also decreased in the overexpression
plants, suggesting that overexpression of OsHCAR may lead to the loss of function protein
in regulating disease resistance. Previous reports demonstrated the importance of HCAR in
Chl disintegration and cell death during leaf senescence [22,24]. This study demonstrated
the potential role of OsHCAR in controlling bacterial blight pathogens in rice. Currently,
transcriptome analysis is being conducted to uncover the molecular mechanism linking
the Chlmetabolism pathway and disease resistance.

No previous reports have suggested the essential role of HCAR in defense response in
rice. Overall, our results indicated that splHM143 encoded by HCAR has a significant role
in promoting cell death and defense response in rice.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The WT IR64 and HM143 mutant obtained from an EMS-induced mutant bank of
IR64 were used in this study. During the summer of 2020, the IR64 and HM143 plants
were grown in the paddy field, whereas transgenic rice, including overexpression plants,
knockout plants, and complementation plants, were maintained in the greenhouse at the
China National Rice Research Institute (CNRRI) in Fuyang, Hangzhou, China during
different seasons of the years 2019 and 2020.

4.2. Physico-Biochemical Parameters Measurement

At tillering stage, the pigment contents, such as Chl a, Chl b, and carotenoid (Cart),
were evaluated in the top second leaves of HM143 and IR64 according to the method
described by [37]. Similarly, the enzymatic activities of CAT, POD, and (SOD; and the levels
of H2O2 andMDA were determined by employing the respective assay Kit of (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) following the manufacturer’s instruc-
tions. The mean value of three biological replicates was employed for analysis by Student’s
t test, one-way ANOVA and Duncan’s test.

4.3. TUNEL Assay

Samples of HM143 and IR64 were selected at the tillering stage for TUNEL assay
following the manufacturer’s requirements of the Fluorescein In Situ Cell Detection kit
(Roche, Basel, Switzerland). Fluorescence labelling and sectioning were conducted as
previously discussed by [38]. Leaf samples were visualized by viewing with laser scanning
confocal microscope (Ceise, Jena, Germany).

4.4. Vector Construction

For complementation test, full-length CDS sequence (1800 bp) and promoter sequence
(2000 bp) from IR64 were, respectively, amplified and inserted between HindIII and KpnI
sites of pCAMBIA1300 vector. The recombinant vector was transformed into embryogenic
calli obtained from HM143 via agrobacterium-mediated transformation. For overexpression
construct, the total length of CDS 1800 bp was amplified from IR64 by PCR and then
cloned into pCAMBIA1300 vector powered by maize (Zea mays) Ubiquitin1 promoter.
The recombinant vector was transformed into the mature calli generated from Kitaake via
Agrobacterium tumefaciens-mediated modification. The CRISPR/Cas9 construct for OsHCAR
was generated according to a previous report [39] and transformed into the calli generated
from WT via Agrobacterium tumefaciens-mediated modification. All genetic transformations
via Agrobacterium tumefaciens were performed using the method described by [40].

4.5. Quantitative RT-PCR

The total RNA from differing rice tissue, including root, shoot, internode1, node1,
internode2, node2, flag leaf sheath, flag leaf, panicle, and filling grain was extracted
following to the manufacturer’s instructions using NucleoZOL Reagent Kit (MACHERY-
NAGEL, Düren, Germany). Briefly, 0.1 g tissue was homogenized with 1 mL Nucleozol
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reagent, then 400 µL DEPC (Diethyl Polycarbonate) water was added to the lysate and
mixed vigorously for 15 s and incubated for 5–15 min at room temperature. The mixture
was centrifuged at 12,000 rpm for 15 min. The supernatant was transferred to a new
test tube and 100 mL of 100% isopropanol was added and incubated for 10 min at room
temperature. After centrifugation for 10 min at 12,000 rpm, the supernatant was discarded
and the pellet was washed twice by adding 500 µL of 75% ethanol and centrifuging for
3 min at 8000 rpm and the total RNA was reconstituted in 20 mL DEPC water. The cDNA
was synthesized using the PrimeScriptTM RT Master Mix (Perfect Real Time) (Takara,
Dalian, China). For the qRT-PCR assay, PowerUpTM SYBRTM Green master Mix kit was
employed and conducted on a Thermal Cycler Dice® Real-Time System (Takara, Dalian,
China) according to the following steps: Hold: 95 ◦C 30 s (one cycle); two steps PCR: 95 ◦C
5 s, 60 ◦C 30 s (40 cycles); dissociation at 95 ◦C for 15 s (40 cycles); 60 ◦C for 30 s, and
95 ◦C for 15 s. For the reference gene rice ubiquitin (LOC_Os03g13170) was utilized. Three
replicates were used for all assays and the means were employed for calculations.

4.6. Disease Evaluation

At tillering stage, five fully expanded leaves of the WT, knockout lines, Kitaake, and
OE-4 plants were inoculated with several bacterial races (C2, C3, C6, JS97-2, PXO347, and
PXO349) of Xoo at the tillering stage following the leaf-clipping method described by [41].
For inoculation, distilled water was used to suspend bacterial cultures and calibrated to
OD600 = 1.0. Disease lesion range was calibrated 14 days after inoculation using a ruler
and the leaves were photographed by HP Scanjet G4010 scanner machine (HP, Shanghai,
China). The mean value of five independent leaves per each bacterial race was used for
analysis by Student’s t test.

4.7. Subcellular Localization

To prepare rice protoplasts, 0.5 g of rice seedlings were sliced into 0.5 mm size and
digested in 10 mL enzyme solution (0.6 M Mannitol, 10 mM MES, 1% Cellulose R10, 0.5%
Maceroezyme R10, 0.1% BSA, 1 mM CaCl2 pH = 7.5) for 6 h in darkness with gentle shaking
(60 rpm). The protoplasts were filtered with a nylon mesh and collected by centrifugation,
then washed twice with 10 mL ice-cold W5 solution (9% NaCl, 125 mM KCl, 5 mM Glucose,
5 mM MES pH = 5.70) followed by MMG solution (0.4 M mannitol, 15 mM MgCl2, 4 mM
MES, pH = 5.8), respectively.

The entire coding sequence of OsHCAR without a stop codon was amplified from
WT (IR64) using specific primers 143CDS-1 and 143CDS-2, respectively (Supplementary
Table S1). The PCR product of OsHCAR was merged with GFP in PAN580 vector controlled
by the CaMV 35S promoter to generate pOsHCAR-GFP construct. The new construct was
then co-transiently expressed into rice protoplasts obtained from IR64 seedlings. The GFP
signal was detected by viewing using a Zeiss lsm710 confocal microscope (Carl Zeiss, Inc.,
Jena, Germany) 48 h after transformation.

4.8. Map-Based Cloning

Previously, the mutation was mapped to the chromosome 4 [9]. For fine mapping, a
total of 1380 F2 individuals of mutant-type derived from the cross HM143/Moroberekan
were used. Simple sequence repeat (SSR) markers were retrieved from the (http://www.
gramene.org/, accessed on 23 June 2021) database whereas insertion/deletion (InDel)
markers were synthesized using primer 5.0 and DNAStar 8.0 software after sequence
comparison between the Indica cultivar 9311 and japonica cultivar Nipponbare from the
Gramene public database (http://gramene.org/genome_browser/index.html, accessed
on 23 June 2021). Sangon Biotech Co. Ltd. (Shanghai, China) was used to synthesize the
primers. PCR reaction and detection were performed as reported before by [8]. The suitable
primer sequences for fine mapping are given in Supplementary Table S1.

http://www.gramene.org/
http://www.gramene.org/
http://gramene.org/genome_browser/index.html
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