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Abstract: By calculating the Kullback–Leibler divergence between two probability measures be-
longing to different exponential families dominated by the same measure, we obtain a formula
that generalizes the ordinary Fenchel–Young divergence. Inspired by this formula, we define the
duo Fenchel–Young divergence and report a majorization condition on its pair of strictly convex
generators, which guarantees that this divergence is always non-negative. The duo Fenchel–Young
divergence is also equivalent to a duo Bregman divergence. We show how to use these duo diver-
gences by calculating the Kullback–Leibler divergence between densities of truncated exponential
families with nested supports, and report a formula for the Kullback–Leibler divergence between
truncated normal distributions. Finally, we prove that the skewed Bhattacharyya distances between
truncated exponential families amount to equivalent skewed duo Jensen divergences.

Keywords: exponential family; statistical divergence; truncated exponential family; truncated normal
distributions

1. Introduction
1.1. Exponential Families

Let (X , Σ) be a measurable space, and consider a regular minimal exponential fam-
ily [1] E of probability measures Pθ all dominated by a base measure µ (Pθ � µ):

E = {Pθ : θ ∈ Θ}. (1)

The Radon–Nikodym derivatives or densities of the probability measures Pθ with
respect to µ can be written canonically as

pθ(x) =
dPθ

dµ
(x) = exp

(
θ>t(x)− F(θ) + k(x)

)
, (2)

where θ denotes the natural parameter, t(x) the sufficient statistic [1–4], and F(θ) the log-
normalizer [1] (or cumulant function). The optional auxiliary term k(x) allows us to change
the base measure µ into the measure ν such that dν

dµ (x) = ek(x). The order D of the family is
the dimension of the natural parameter space Θ:

Θ =

{
θ ∈ RD :

∫
X

exp
(

θ>t(x) + k(x)
)

dµ(x) < ∞
}

, (3)

where R denotes the set of reals. The sufficient statistic t(x) = (t1(x), . . . , tD(x)) is a vector
of D functions. The sufficient statistic t(x) is said to be minimal when the D + 1 functions
1, t1(x), . . ., tD(x) are linearly independent [1]. The sufficient statistics t(x) are such that
the probability Pr[X|θ] = Pr[X|t(X)]. That is, all information necessary for the statistical
inference of parameter θ is contained in t(X). Exponential families are characterized as
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families of parametric distributions with finite-dimensional sufficient statistics [1]. Expo-
nential families {pλ} include among others the exponential, normal, gamma/beta, inverse
gamma, inverse Gaussian, and Wishart distributions once a reparameterization θ = θ(λ) of
the parametric distributions {pλ} is performed to reveal their natural parameters [1].

When the sufficient statistic t(x) is x, these exponential families [1] are called nat-
ural exponential families or tilted exponential families [5] in the literature. Indeed, the
distributions Pθ of the exponential family E can be interpreted as distributions obtained
by tilting the base measure µ [6]. In this paper, we consider either discrete exponential
families like the family of Poisson distributions (univariate distributions of order D = 1
with respect to the counting measure) or continuous exponential families like the fam-
ily of normal distributions (univariate distributions of order D = 2 with respect to the
Lebesgue measure). The Radon–Nikodym derivative of a discrete exponential family is
a probability mass function (pmf), and the Radon–Nikodym derivative of a continuous
exponential family is a probability density function (pdf). The support of a pmf p(x) is
supp(p) = {x ∈ Z : p(x) > 0} (where Z denotes the set of integers) and the support of
a d-variate pdf p(x) is supp(p) = {x ∈ Rd : p(x) > 0}. The Poisson distributions have
support N ∪ {0} where N denotes the set of natural numbers {1, 2, . . . , }. Densities of an
exponential family all have coinciding support [1].

1.2. Truncated Exponential Families with Nested Supports

In this paper, we shall consider truncated exponential families [7] with nested supports.
A truncated exponential family is a set of parametric probability distributions obtained
by truncation of the support of an exponential family. Truncated exponential families are
exponential families but their statistical inference is more subtle [8,9]. Let ETrunc = {qθ}
be a truncated exponential family of E = {pθ} with nested supports supp(qθ) ⊂ supp(pθ).
The canonical decompositions of densities pθ and qθ have the following expressions:

pθ(x) = exp
(

θ>t(x) + k(x)− F(θ)
)

, (4)

qθ(x) =
pθ(x)

ZXTrunc(θ)
= exp

(
θ>t(x) + k(x)− FTrunc(θ)

)
, (5)

where the log-normalizer of the truncated exponential family is:

FTrunc(θ) = F(θ) + log ZXTrunc(θ), (6)

where ZXTrunc(θ) is a normalizing term that takes into account the truncated support
XTrunc. These equations show that densities of truncated exponential families only differ
by their log-normalizer functions. Let XTrunc denote the support of the distributions of
ETrunc = supp(qθ) and X = supp(pθ) the support of E . Family ETrunc is a truncated
exponential family of E that can be notationally written as EXTrunc . Family E can also
be interpreted as the (un)truncated exponential family EX with densities pXθ = pθ . A
truncated exponential family EXTrunc of E is said to have nested support when XTrunc ⊂ X .
For example, the family of half-normal distributions defined on the support XTrunc = [0, ∞)
is a nested truncated exponential family of the family of normal distributions defined on
the support X = (−∞, ∞).

1.3. Kullback–Leibler Divergence Between Exponential Family Distributions

For two σ-finite probability measures P and Q on (X , Σ) such that P is dominated by
Q (P� Q), the Kullback–Leibler divergence between P and Q is defined by

DKL[P : Q] =
∫
X

log
dP
dQ

dP = EP

[
log

dP
dQ

]
, (7)

where EP[X] denotes the expectation of a random variable X ∼ P [10]. When P 6� Q, we set
DKL[P : Q] = +∞. Gibbs’ inequality [11] DKL[P : Q] ≥ 0 shows that the Kullback–Leibler
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divergence (KLD for short) is always non-negative. The proof of Gibbs’ inequality relies on
Jensen’s inequality and holds for the wide class of f -divergences [12] induced by convex
generators f (u):

I f [P : Q] =
∫
X

f
(

dQ
dP

)
dP ≥ f

(∫
X

dQ
dP

dP
)
≥ f (1). (8)

The KLD is an f -divergence obtained for the convex generator f (u) = − log u.

1.4. Kullback–Leibler Divergence Between Exponential Family Densities

It is well-known that the KLD between two distributions Pθ1 and Pθ2 of E amounts to
computing an equivalent Fenchel–Young divergence [13]:

DKL[Pθ1 : Pθ2 ] =
∫
X

pθ1(x) log
pθ1(x)
pθ2(x)

dµ(x) = YF,F∗(θ2, η1), (9)

where η = ∇F(θ) = EPθ
[t(x)] is the moment parameter [1] and

∇F(θ) =
[

∂

∂θ1
F(θ), . . . ,

∂

∂θD
F(θ)

]>
, (10)

is the gradient of F with respect to θ = [θ1, . . . , θD]
>. The Fenchel–Young divergence is

defined for a pair of strictly convex conjugate functions [14] F(θ) and F∗(η) related by the
Legendre–Fenchel transform by

YF,F∗(θ1, η2) := F(θ1) + F∗(η2)− θ>1 η2. (11)

Amari (1985) first introduced this formula as the canonical divergence of dually flat
spaces in information geometry [15] (Equation 3.21), and proved that the Fenchel–Young
divergence is obtained as the KLD between densities belonging to the same exponential
family [15] (Theorem 3.7). Azoury and Warmuth expressed the KLD DKL[Pθ1 : Pθ2 ] using
dual Bregman divergences in [13] (2001):

DKL[Pθ1 : Pθ2 ] = BF(θ2 : θ1) = BF∗(η1 : η2), (12)

where a Bregman divergence [16] BF(θ1 : θ2) is defined for a strictly convex and differen-
tiable generator F(θ) by:

BF(θ1 : θ2) := F(θ1)− F(θ2)− (θ1 − θ2)
>∇F(θ2). (13)

Acharyya termed the divergence YF,F∗ the Fenchel–Young divergence in his PhD
thesis [17] (2013), and Blondel et al. called such divergences Fenchel–Young losses (2020) in
the context of machine learning [18] (Equation (9) in Definition 2). This term was also used
by the author the Legendre–Fenchel divergence in [19]. The Fenchel–Young divergence
stems from the Fenchel–Young inequality [14,20]:

F(θ1) + F∗(η2) ≥ θ>1 η2, (14)

with equality if and only if η2 = ∇F(θ1).
Figure 1 visualizes the 1D Fenchel–Young divergence and gives a geometric proof

that YF,F∗(θ1, η2) ≥ 0 with equality if and only if η2 = F′(θ1). Indeed, by considering the
behavior of the Legendre–Fenchel transformation under translations:

• if Ft(θ) = F(θ + t) then F∗t (η) = F∗(η)− η>t for all t ∈ R, and
• if Fλ(θ) = F(θ) + λ then F∗λ(η) = F∗(η)− λ for all λ ∈ R,
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we may assume without loss of generality that F(0) = 0. The function F′(θ) is strictly
increasing and continuous since F(θ) is a strictly convex and differentiable convex function.
Thus we have F(θ) =

∫ θ
0 F′(θ)dθ and F∗(η) =

∫ η
0 F∗′(η)dη =

∫ η
0 F′−1(η)dη.

θ

η = ∇F (θ)

∇F = (∇F ∗)−1

θ1 θ2

η1

η2

(0, 0)

F (θ1)

F ∗(η2)

YF,F∗ (θ1, η2)

YF,F∗(θ1, η2) = F (θ1) + F ∗(η2)− θ1η2

+ − =

F (θ1) F ∗(η2) θ1η2 YF,F ∗(θ1, η2)

Figure 1. Visualizing the Fenchel–Young divergence.

The Bregman divergence BF(θ1 : θ2) amounts to a dual Bregman divergence [13]
between the dual parameters with swapped order: BF(θ1 : θ2) = BF∗(η2 : η1) where
ηi = ∇F(θi) for i ∈ {1, 2}. Thus the KLD between two distributions Pθ1 and Pθ2 of E can be
expressed equivalently as follows:

DKL[Pθ1 : Pθ2 ] = YF,F∗(θ2 : η1) = BF(θ2 : θ1) = BF∗(η1 : η2) = YF∗ ,F(η1 : η2). (15)

The symmetrized Kullback–Leibler divergence DJ [Pθ1 : Pθ2 ] between two distributions
Pθ1 and Pθ2 of E is called Jeffreys’ divergence [21] and amounts to a symmetrized Bregman
divergence [22]:

DJ [Pθ1 : Pθ2 ] = DKL[Pθ1 : Pθ2 ] + DKL[Pθ2 : Pθ1 ], (16)

= BF(θ2 : θ1) + BF(θ1 : θ2), (17)

= (θ2 − θ1)
>(η2 − η1) := SF(θ1, θ2). (18)

Note that the Bregman divergence BF(θ1 : θ2) can also be interpreted as a surface area:

BF(θ1 : θ2) =
∫ θ1

θ2

(F′(θ)− F′(θ2))dθ. (19)

Figure 2 illustrates the sided and symmetrized Bregman divergences.

θ = ∇F ∗(η)

η = ∇F (θ)

θ2 θ1

η2

η1
BF∗(η1 : η2)

=
BF (θ2 : θ1)

∇F (θ) = ∇F ∗−1(η)

BF (θ1 : θ2)

θ1 − θ2

η1 − η2

=+

BF (θ1 : θ2) BF (θ2 : θ1) SF (θ1, θ2)

Figure 2. Visualizing the sided and symmetrized Bregman divergences.
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1.5. Contributions and Paper Outline

We recall in Section 2 the formula obtained for the Kullback–Leibler divergence be-
tween two exponential family densities equivalent to each other [23] (Equation (29)). In-
spired by this formula, we give a definition of the duo Fenchel–Young divergence induced
by a pair of strictly convex functions F1 and F2 (Definition 1) in Section 3, and prove that
the divergence is always non-negative provided that F1 upper bounds F2. We then de-
fine the duo Bregman divergence (Definition 2) corresponding to the duo Fenchel–Young
divergence. In Section 4, we show that the Kullback–Leibler divergence between a trun-
cated density and a density of a same parametric exponential family amounts to a duo
Fenchel–Young divergence or equivalently to a duo Bregman divergence on swapped
parameters (Theorem 1). That is, we consider a truncated exponential family [7] E1 of an
exponential family E1 such that the common support of the distributions of E1 is contained
in the common support of the distributions of E2 and both canonical decompositions of
the families coincide (see Equation (2)). In particular, when E2 is also a truncated expo-
nential family of E , then we express the KLD between two truncated distributions as a
duo Bregman divergence. As examples, we report the formula for the Kullback–Leibler
divergence between two densities of truncated exponential families (Corollary 1), and
illustrate the formula for the Kullback–Leibler divergence between truncated exponential
distributions (Example 6) and for the Kullback–Leibler divergence between truncated
normal distributions (Example 7).

In Section 5, we further consider the skewed Bhattacharyya distance between densities
of truncated exponential families and prove that it amounts to a duo Jensen divergence
(Theorem 2). Finally, we conclude in Section 6.

2. Kullback–Leibler Divergence Between Different Exponential Families

Consider now two exponential families [1] P andQ defined by their Radon–Nikodym
derivatives with respect to two positive measures µP and µQ on (X , Σ):

P = {Pθ : θ ∈ Θ}, (20)

Q =
{

Qθ′ : θ′ ∈ Θ′
}

. (21)

The corresponding natural parameter spaces are

Θ =

{
θ ∈ RD :

∫
X

exp(θ>tP (x) + kP (x))dµP (x) < ∞
}

, (22)

Θ′ =

{
θ′ ∈ RD′ :

∫
X

exp(θ′>tQ(x) + kQ(x))dµQ(x) < ∞
}

, (23)

The order of P is D, tP (x) denotes the sufficient statistics of Pθ , and kP (x) is a term to
adjust/tilt the base measure µP . Similarly, the order ofQ is D′, tQ(x) denotes the sufficient
statistics of Qθ′ , and kQ(x) is an optional term to adjust the base measure µQ. Let pθ

and qθ′ denote the Radon–Nikodym derivatives with respect to the measures µP and µQ,
respectively:

pθ =
dPθ

dµP
= exp(θ>tP (x)− FP (θ) + kP (x)), (24)

qθ′ =
dQθ′

dµQ
= exp(θ′>tQ(x)− FQ(θ′) + kQ(x)), (25)

where FP (θ) and FQ(θ′) denote the corresponding log-normalizers of P andQ, respectively.

FP (θ) = log
(∫

exp(θ>tP (x) + kP (x))dµP (x)
)

, (26)

FQ(θ) = log
(∫

exp(θ>tQ(x) + kQ(x))dµQ(x)
)

. (27)
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The functions FP and FQ are strictly convex and real analytic [1]. Hence, those func-
tions are infinitely many times differentiable on their open natural parameter spaces.

Consider the KLD between Pθ ∈ P and Qθ′ ∈ Q such that µP = µQ (and hence
Pθ � Qθ′ ). Then the KLD between Pθ and Qθ′ was first considered in [23]:

DKL[Pθ : Qθ′ ] = EP

[
log
(

dPθ

dQθ′

)]
, (28)

= EPθ

(θ>tP (x)− θ′
>tQ(x)− FP (θ) + FQ(θ′) + kP (x)− kQ(x)

) dµP
dµQ︸ ︷︷ ︸
=1

,

= FQ(θ′)− FP (θ) + θ>EPθ
[tP (x)]− θ′

>EPθ
[tQ(x)] + EPθ

[kP (x)− kQ(x)].

Recall that the dual parameterization of an exponential family density Pθ is Pη with
η = EPθ

[tP (x)] = ∇FP (θ) [1], and that the Fenchel–Young equality is F(θ) + F∗(η) = θ>η
for η = ∇F(θ). Thus the KLD between Pθ and Qθ′ can be rewritten as

DKL[Pθ : Qθ′ ] = FQ(θ′) + F∗P (η)− θ′
>EPθ

[tQ(x)] + EPθ
[kP (x)− kQ(x)]. (29)

This formula was reported in [23] and generalizes the Fenchel–Young divergence [17]
obtained when P = Q (with tP (x) = tQ(x), kP (x) = kQ(x), and F(θ) = FP (θ) = FQ(θ)
and F∗(η) = F∗P (η) = F∗Q(η)).

The formula of Equation (29) was illustrated in [23] with two examples: the KLD
between Laplacian distributions and zero-centered Gaussian distributions, and the KLD
between two Weibull distributions. Both these examples use the Lebesgue base measure
for µP and µQ.

Let us report another example that uses the counting measure as the base measure for
µP and µQ.

Example 1. Consider the KLD between a Poisson probability mass function (pmf) and a geometric
pmf. The canonical decompositions of the Poisson and geometric pmfs are summarized in Table 1.
The KLD between a Poisson pmf pλ and a geometric pmf qp is equal to

DKL[Pλ : Qp] = FQ(θ′) + F∗P (η)− EPθ
[tQ(x)] · θ′ + EPθ

[kP (x)− kQ(x)], (30)

= − log p + λ log λ− λ− λ log(1− p)− EPλ
[log x!] (31)

Since Epλ
[− log x!] = −∑∞

k=0 e−λ λk log(k!)
k! , we have

DKL[Pλ : Qp] = − log p + λ log
λ

1− p
− λ−

∞

∑
k=0

e−λ λk log(k!)
k!

. (32)

Note that we can calculate the KLD between two geometric distributions Qp1 and Qp2 as

DKL[Qp1 : Qp2 ] = BFQ(θ(p2) : θ(p1)), (33)

= FQ(θ(p2))− FQ(θ(p1))− (θ(p2)− θ(p1))η(p1), (34)

We obtain:

DKL[Qp1 : Qp2 ] = log
(

p1

p2

)
−
(

1− 1
p1

)
log

1− p1

1− p2
.
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Table 1. Canonical decomposition of the Poisson and the geometric discrete exponential families.

Quantity Poisson Family P Geometric Family Q
support N∪ {0} N∪ {0}

base measure counting measure counting measure
ordinary parameter rate λ > 0 success probability p ∈ (0, 1)

pmf λx

x! exp(−λ) (1− p)x p
sufficient statistic tP (x) = x tQ(x) = x
natural parameter θ(λ) = log λ θ(p) = log(1− p)
cumulant function FP (θ) = exp(θ) FQ(θ) = − log(1− exp(θ))

FP (λ) = λ FQ(p) = − log(p)
auxiliary term kP (x) = − log x! kQ(x) = 0

moment η = E[t(x)] η = λ η = eθ

1−eθ = 1
p − 1

negentropy F∗P (η(λ)) = λ log λ− λ F∗Q(η(p)) =
(

1− 1
p

)
log(1− p) + log p

(F∗(η) = θ · η − F(θ))

3. The Duo Fenchel–Young Divergence and Its Corresponding Duo
Bregman Divergence

Inspired by formula of Equation (29), we shall define the duo Fenchel–Young divergence
using a dominance condition on a pair (F1(θ), F2(θ)) of strictly convex generators.

Definition 1 (duo Fenchel–Young divergence). Let F1(θ) and F2(θ) be two strictly convex
functions such that F1(θ) ≥ F2(θ) for any θ ∈ Θ12 = dom(F1) ∩ dom(F2). Then the duo
Fenchel–Young divergence YF1,F∗2

(θ, η′) is defined by

YF1,F∗2
(θ, η′) := F1(θ) + F∗2 (η

′)− θ>η′. (35)

When F1(θ) = F2(θ) =: F(θ), we have F∗1 (η) = F∗2 (η) =: F∗(η), and we retrieve the
ordinary Fenchel–Young divergence [17]:

YF,F∗(θ, η′) := F(θ) + F∗(η′)− θ>η′ ≥ 0. (36)

Note that in Equation (35), we have η′ = ∇F2(θ
′).

Property 1 (Non-negative duo Fenchel–Young divergence). The duo Fenchel–Young diver-
gence is always non-negative.

Proof. The proof relies on the reverse dominance property of strictly convex and differen-
tiable conjugate functions:

Lemma 1 (Reverse majorization order of functions by the Legendre–Fenchel transform).
Let F1(θ) and F2(θ) be two Legendre-type convex functions [14]. Then if F1(θ) ≥ F2(θ) then we
have F∗2 (η) ≥ F∗1 (η).

Proof. This property is graphically illustrated in Figure 3. The reverse dominance property
of the Legendre–Fenchel transformation can be checked algebraically as follows:

F∗1 (η) = sup
θ∈Θ
{η>θ − F1(θ)}, (37)

= η>θ1 − F1(θ1) (with η = ∇F1(θ1)), (38)

≤ η>θ1 − F2(θ1), (39)

≤ sup
θ∈Θ
{η>θ − F2(θ)} = F∗2 (η). (40)
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Thus we have F∗1 (η) ≤ F∗2 (η) when F1(θ) ≥ F2(θ). Therefore it follows that YF1,F∗2
(θ, η′)

≥ 0 since we have

YF1,F∗2
(θ, η′) := F1(θ) + F∗2 (η

′)− θ>η′, (41)

≥ F1(θ) + F∗1 (η
′)− θ>η′ = YF1,F∗1

(θ, η′) ≥ 0, (42)

where YF1,F∗1
is the ordinary Fenchel–Young divergence, which is guaranteed to be non-

negative from the Fenchel–Young inequality.

(a)

θ

y

F = {(θ, θ log θ) : θ ∈ R+}

θ

F (θ)

F
(θ
)
−
θη

=
−
F
∗ (
η
)

slope η = ∇F (θ)

(b)

F1(θ)
F2(θ)

H1(η) = η>θ − F ∗1 (η)

H2(η) = η>θ − F ∗2 (η)

θ1 θ2

−F ∗1 (η)

−F ∗2 (η)

(0, 0)

Figure 3. (a) Visual illustration of the Legendre–Fenchel transformation: F∗(η) is measured as the
vertical gap (left long black line with both arrows) between the origin and the hyperplane of the
“slope” η tangent at F(θ) evaluated at θ = 0. (b) The Legendre transforms F∗1 (η) and F∗1 (η) of two
functions F1(θ) and F2(θ) such that F1(θ) ≥ F2(θ) reverse the dominance order: F∗2 (η) ≥ F∗1 (η).

We can express the duo Fenchel–Young divergence using the primal coordinate sys-
tems as a generalization of the Bregman divergence to two generators that we term the duo
Bregman divergence (see Figure 4) :

BF1,F2(θ : θ′) := YF1,F∗2
(θ, η′) = F1(θ)− F2(θ

′)− (θ − θ′)>∇F2(θ
′), (43)

with η′ = ∇F2(θ
′).



Entropy 2022, 24, 421 9 of 21

This generalized Bregman divergence is non-negative when F1(θ) ≥ F2(θ). Indeed,
we check that

BF1,F2(θ : θ′) = F1(θ)− F2(θ
′)− (θ − θ′)>∇F2(θ

′), (44)

≥ F2(θ)− F2(θ
′)− (θ − θ′)>∇F2(θ

′) = BF2(θ : θ′) ≥ 0. (45)

F1(θ)

F2(θ)

θ

BF2(θ : θ
′)

BF1,F2(θ : θ
′)

θ′

Figure 4. The duo Bregman divergence induced by two strictly convex and differentiable functions F1

and F2 such that F1(θ) ≥ F2(θ). We check graphically that BF1,F2 (θ : θ′) ≥ BF2 (θ : θ′) (vertical gaps).

Definition 2 (duo Bregman divergence). Let F1(θ) and F2(θ) be two strictly convex functions
such that F1(θ) ≥ F2(θ) for any θ ∈ Θ12 = dom(F1) ∩ dom(F2). Then the generalized Bregman
divergence is defined by

BF1,F2(θ : θ′) = F1(θ)− F2(θ
′)− (θ − θ′)>∇F2(θ

′) ≥ 0. (46)

Example 2. Consider F1(θ) =
a
2 θ2 for a > 0. We have η = aθ, θ = η

a , and

F∗1 (η) =
η2

a
− a

2
η2

a2 =
η2

2a
. (47)

Let F2(θ) = 1
2 θ2 so that F1(θ) ≥ F2(θ) for a ≥ 1. We check that F∗1 (η) = η2

2a ≤ F∗2 (η) when
a ≥ 1. The duo Fenchel–Young divergence is

YF1,F∗2
(θ, η′) =

a
2

θ2 +
1
2

η′
2 − θη′ ≥ 0, (48)

when a ≥ 1. We can express the duo Fenchel–Young divergence in the primal coordinate systems as

BF1,F2(θ, θ′) =
a
2

θ2 +
1
2

θ′
2 − θθ′. (49)

When a = 1, F1(θ) = F2(θ) = 1
2 θ2 := F(θ), and we obtain BF(θ, θ′) = 1

2‖θ − θ′‖2
2, half the

squared Euclidean distance as expected. Figure 5 displays the graph plot of the duo Bregman
divergence for several values of a.
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Figure 5. The duo half squared Euclidean distance D2
a(θ : θ′) := a

2 θ2 + 1
2 θ′2 − θθ′ is non-negative

when a ≥ 1: (a) half squared Euclidean distance (a = 1), (b) a = 2, (c) a = 1
2 , which shows that the

divergence can be negative then since a < 1.

Example 3. Consider F1(θ) = θ2 and F2(θ) = θ4 on the domain Θ = [0, 1]. We have F1(θ) ≥
F2(θ) for θ ∈ Θ. The convex conjugate of F1(η) is F∗1 (η) =

1
4 η2. We have

F∗2 (η) = η
4
3

((
1
4

) 1
3
−
(

1
4

) 4
3
)

=
3

4
4
3

η
4
3 (50)

with η2(θ) = 4θ3. Figure 6 plots the convex functions F1(θ) and F2(θ), and their convex conjugates
F∗1 (η) and F∗2 (η). We observe that F1(θ) ≥ F2(θ) on θ ∈ [0, 1] and that F∗1 (η) ≤ F∗2 (η) on
H = [0, 2].

We now state a property between dual duo Bregman divergences:
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Convex functions F1(θ) ≥ F2(θ) Conjugate functions F∗1 (η) ≤ F∗2 (η)

Figure 6. The Legendre transform reverses the dominance ordering: F1(θ) = θ2 ≥ F2(θ) = θ4 ⇔
F∗1 (η) ≤ F∗2 (η) for θ ∈ [0, 1].

Property 2 (Dual duo Fenchel–Young and Bregman divergences). We have

YF1,F∗2
(θ : η′) = BF1,F2(θ : θ′) = BF∗2 ,F∗1

(η′ : η) = YF∗2 ,F1(η
′ : θ) (51)

Proof. From the Fenchel–Young equalities of the inequalities, we have F1(θ) = θ>η− F∗1 (η)
for η = ∇F1(θ) and F2(θ

′) = θ′>η′ − F∗2 (η
′) with η′ = ∇F2(θ

′). Thus we have

BF1,F2(θ : θ′) = F1(θ)− F2(θ
′)− (θ − θ′)>∇F2(θ

′), (52)

= θ>η − F∗1 (η)− θ′
>

η′ + F∗2 (η
′)− (θ − θ′)>η′, (53)

= F∗2 (η
′)− F∗1 (η)− (η′ − η)>θ, (54)

= BF∗2 ,F∗1
(η′ : η). (55)

Recall that F1(θ) ≥ F2(θ) implies that F∗1 (η) ≤ F∗2 (η) (Lemma 1), θ = ∇F∗1 (η), and
therefore the dual duo Bregman divergence is non-negative:

BF∗2 ,F∗1
(η′ : η) = F∗2 (η

′)− F∗1 (η)− (η′ − η)>θ,

≥ F∗1 (η
′)− F∗1 (η)− (η′ − η)>∇F∗1 (η)︸ ︷︷ ︸

BF∗1
(η′ :η)≥0

.

4. Kullback–Leibler Divergence between Distributions of Truncated
Exponential Families

Let E1 = {Pθ : θ ∈ Θ1} be an exponential family of distributions all dominated by µ
with Radon–Nikodym density pθ(x) = exp(θ>t(x)− F1(θ) + k(x))dµ(x) defined on the
support X1. Let E2 = {Qθ : θ ∈ Θ2} be another exponential family of distributions all
dominated by µ with Radon–Nikodym density qθ(x) = exp(θ>t(x)− F2(θ) + k(x))dµ(x)
defined on the support X2 such that X1 ⊆ X2. Let p̃θ(x) = exp(θ>t(x) + k(x))dµ(x) be
the common unnormalized density so that

pθ(x) =
p̃θ(x)
Z1(θ)

(56)

and

qθ(x) =
p̃θ(x)
Z2(θ)

=
Z1(θ)

Z2(θ)
pθ(x), (57)

with Z1(θ) = exp(F1(θ)) and Z2(θ) = exp(F2(θ)) being the log-normalizer functions of E1
and E2, respectively.
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We have

DKL[pθ1 : qθ2 ] =
∫
X1

pθ1(x) log
pθ1(x)
qθ2(x)

dµ(x), (58)

=
∫
X1

pθ1(x) log
pθ1(x)
pθ2(x)

dµ(x) +
∫
X1

pθ1(x) log
(

Z2(θ2)

Z1(θ2)

)
dµ(x), (59)

= DKL[pθ1 : pθ2 ] + log Z2(θ2)− log Z1(θ2). (60)

Since DKL[pθ1 : pθ2 ] = BF1(θ2 : θ1) and log Zi(θ) = Fi(θ), we obtain

DKL[pθ1 : qθ2 ] = BF1(θ2 : θ1) + F2(θ2)− F1(θ2), (61)

= F1(θ2)− F1(θ1)− (θ2 − θ1)
>∇F1(θ1) + F2(θ2)− F1(θ2), (62)

= F2(θ2)− F1(θ1)− (θ2 − θ1)
>∇F1(θ1) =: BF2,F1(θ2 : θ1). (63)

Observe that since X1 ⊆ X 2, we have:

F2(θ) = log
∫
X2

p̃θ(x)dµ(x) ≥ log
∫
X1

p̃θ(x)dµ(x) := F1(θ). (64)

Therefore Θ2 ⊆ Θ1, and the common natural parameter space is Θ12 = Θ1 ∩Θ2 = Θ2.
Notice that the reverse Kullback–Leibler divergence D∗KL[pθ1 : qθ2 ] = DKL[qθ2 : pθ1 ] =

+∞ since Qθ2 6� Pθ1 .

Theorem 1 (Kullback–Leibler divergence between truncated exponential family densities).
Let E2 = {qθ2} be an exponential family with support X2, and E1 = {pθ1} a truncated exponential
family of E2 with support X1 ⊂ X2. Let F1 and F2 denote the log-normalizers of E1 and E2 and
η1 and η2 the moment parameters corresponding to the natural parameters θ1 and θ2. Then the
Kullback–Leibler divergence between a truncated density of E1 and a density of E2 is

DKL[pθ1 : qθ2 ] = YF2,F∗1
(θ2 : η1) = BF2,F1(θ2 : θ1) = BF∗1 ,F∗2

(η1 : η2) = YF∗1 ,F2(η1 : θ2). (65)

For example, consider the calculation of the KLD between an exponential distribution
(view as half a Laplacian distribution, i.e., a truncated Laplacian distribution on the positive
real support) and a Laplacian distribution defined on the real line support.

Example 4. Let R++ = {x ∈ R : x > 0} denote the set of positive reals. Let E1 = {pλ(x) =
λ exp(−λx), λ ∈ R++, x > 0} and E2 = {qλ(x) = λ exp(−λ|x|), λ ∈ R++, x ∈ R} denote
the exponential families of exponential distributions and Laplacian distributions, respectively. We
have the sufficient statistic t(x) = −|x| and natural parameter θ = λ so that p̃θ(x) = exp(−|x|θ).
The log-normalizers are F1(θ) = − log θ and F2(θ) = − log θ + log 2 (hence F2(θ) ≥ F1(θ)).
The moment parameter η = ∇F1(θ) = ∇F2(θ) = − 1

θ = − 1
λ . Thus using the duo Bregman

divergence, we have:

DKL[pθ1 : qθ2 ] = BF2,F1(θ2 : θ1), (66)

= F2(θ2)− F1(θ1)− (θ2 − θ1)
>∇F1(θ1), (67)

= log 2 + log
λ1

λ2
+

λ2

λ1
− 1. (68)

Moreover, we can interpret that divergence using the Itakura–Saito divergence [24]:

DIS[λ1 : λ2] :=
λ1

λ2
− log

λ1

λ2
− 1 ≥ 0. (69)

we have
DKL[pθ1 : qθ2 ] = DIS[λ2 : λ1] + log 2 ≥ 0. (70)
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We check the result using the duo Fenchel–Young divergence:

DKL[pθ1 : qθ2 ] = YF2,F∗1
(θ2 : η1), (71)

with F∗1 (η) = −1 + log
(
− 1

η

)
:

DKL[pθ1 : qθ2 ] = YF2,F∗1
(θ2 : η1), (72)

= − log λ2 + log 2− 1 + log λ1 +
λ2

λ1
, (73)

= log
λ1

λ2
+

λ2

λ1
+ log2−1. (74)

Next, consider the calculation of the KLD between a half-normal distribution and a
(full) normal distribution:

Example 5. Consider E1 and E2 to be the scale family of the half standard normal distributions and
the scale family of the standard normal distribution, respectively. We have p̃θ(x) = exp

(
− x2

2σ2

)
with Z1(θ) = σ

√
π
2 and Z2(θ) = σ

√
2π. Let the sufficient statistic be t(x) = − x2

2 so that

the natural parameter is θ = 1
σ2 ∈ R++. Here, we have both Θ1 = Θ2 = R++. For this

example, we check that Z1(θ) = 1
2 Z2(θ). We have F1(θ) = − 1

2 log θ + 1
2 log π

2 and F2(θ) =

− 1
2 log θ + 1

2 log(2π) (with F2(θ) ≥ F1(θ)). We have η = − 1
2θ = − 1

2 σ2. The KLD between two
half scale normal distributions is

DKL[pθ1 : pθ2 ] = BF1(θ2 : θ1), (75)

=
1
2

(
log

σ2
2

σ2
1
+

σ2
1

σ2
2
− 1

)
. (76)

Since F1(θ) and F2(θ) differ only by a constant and the Bregman divergence is invariant under an
affine term of its generator, we have

DKL[qθ1 : qθ2 ] = BF2(θ2 : θ1), (77)

= BF1(θ2 : θ1) =
1
2

(
log

σ2
2

σ2
1
+

σ2
1

σ2
2
− 1

)
. (78)

Moreover, we can interpret those Bregman divergences as half of the Itakura–Saito divergence:

DKL[pθ1 : pθ2 ] = DKL[qθ1 : qθ2 ] = BF2(θ2 : θ1) =
1
2

DIS[σ
2
1 : σ2

2 ]. (79)

It follows that

DKL[pθ1 : qθ2 ] = BF2,F1(θ2 : θ1) = F2(θ2)− F1(θ1)− (θ2 − θ1)
>∇F1(θ1), (80)

=
1
2

(
log

σ2
2

σ2
1
+

σ2
1

σ2
2
+ log 4− 1

)
, (81)

= DKL[qθ1 : qθ2 ] + log 2. (82)

Since log 2 > 0, we have DKL[pθ1 : qθ2 ] ≥ DKL[qθ1 : qθ2 ].

Thus the Kullback–Leibler divergence between a truncated density and another den-
sity of the same exponential family amounts to calculate a duo Bregman divergence on the
reverse parameter order: DKL[pθ1 : qθ2 ] = BF2,F1(θ2 : θ1). Let D∗KL[p : q] := DKL[q : p] be
the reverse Kullback–Leibler divergence. Then D∗KL[qθ2 : pθ1 ] = BF2,F1(θ2 : θ1).
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Notice that truncated exponential families are also exponential families but those
exponential families may be non-steep [25].

Let E1 = {pa1,b1
θ } and E2 = {pa2,b2

θ } be two truncated exponential families of the
exponential family E = {pθ = dPθ

dµ } with log-normalizer F(θ) such that

pai ,bi
θ (x) =

pθ(x)
Zai ,bi

(θ)
, (83)

with Zai ,bi
(θ) = Φθ(bi)− Φθ(ai), where Φθ(x) denotes the CDF of pθ(x). Then the log-

normalizer of Ei is Fi(θ) = F(θ) + log(Φθ(bi)−Φθ(ai)) for i ∈ {1, 2}.

Corollary 1 (Kullback–Leibler divergence between densities of truncated exponential fam-
ilies). Let Ei = {pai ,bi

θ } be truncated exponential families of the exponential family E = {pθ}
with support Xi = [ai, bi] ⊂ X (where X denotes the support of E ) for i ∈ {1, 2}. Then the
Kullback–Leibler divergence between pa1,b1

θ1
and pa2,b2

θ2
is infinite if [a1, b1] 6⊂ [a2, b2] and has the

following formula when [a1, b1] ⊂ [a2, b2]:

DKL[p
a1,b1
θ1

: pa2,b2
θ2

] = DKL[p
a1,b1
θ1

: pa1,b1
θ2

] + log
Za2,b2(θ2)

Za1,b1(θ2)
. (84)

Proof. We have pa1,b1
θ = pθ

Za1,b1
(θ)

and pa2,b2
θ = pθ

Za2,b2
(θ)

. Therefore pa2,b2
θ = pa1,b1

θ

Za1,b1
(θ)

Za2,b2
(θ)

.

Thus we have

DKL[p
a1,b1
θ1

: pa2,b2
θ2

] =
∫
X1

pa1,b1
θ1

(x) log
pa1,b1

θ1
(x)

pa2,b2
θ2

dµ(x), (85)

=
∫
X1

pa1,b1
θ1

(x) log
pa1,b1

θ1
(x)

pa1,b1
θ2

dµ(x) + log
Za2,b2(θ2)

Za1,b1(θ2)
, (86)

= DKL[p
a1,b1
θ1

: pa1,b1
θ2

] + log
Za2,b2(θ2)

Za1,b1(θ2)
. (87)

Thus the KLD between truncated exponential family densities pa1,b1
θ1

and pa2,b2
θ2

amounts
to the KLD between the densities with the same truncation parameter with an additive term
depending on the log ratio of the mass with respect to the truncated supports evaluated
at θ2. We shall illustrate with two examples the calculation of the KLD between truncated
exponential families.

Example 6. Consider the calculation of the KLD between a truncated exponential distribution
pa1,b1

λ1
with support X1 = [a1, b1] (b1 > a1 ≥ 0) and another truncated exponential distribution

pa2,b2
λ2

with support X2 = [a2, b2] (b2 > a2 ≥ 0). We have pλ(x) = λ exp(−λx) (density of
the untruncated exponential family with natural parameter θ = λ, sufficient statistic t(x) = −x
and log-normalizer F(θ) = − log θ), pa1,b1

λ1
= 1

Za1,b1
(λ)

pλ1(x), and pa2,b2
λ2

= 1
Za2,b2

(λ)
pλ2(x).

Let Φλ(x) = 1 − exp(−λx) denote the cumulative distribution function of the exponential
distribution. We have Za,b(λ) = Φb(λ)−Φa(λ) and

Fa,b(λ) = F(λ) + log(Φb(λ)−Φa(λ)) = − log λ + log(e−λa − e−λb). (88)
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If [a1, b1] 6∈ [a2, b2] then DKL[pλ1 : qλ2 ] = +∞. Otherwise, [a1, b1] ∈ [a2, b2], and the exponential
family {pλ} is the truncated exponential family {qλ}. Using the computer algebra system Maxima
(https://maxima.sourceforge.io/ accessed on 15 March 2022), we find that

− Epλ
[x] =

(1 + λb)eλa − (1 + λa)eλb

λ(eλb − eλa)
= F′a,b(λ). (89)

Thus we have:

DKL[p
a1,b1
λ1

: qa2,b2
λ2

] = BF2,F1(θ2 : θ1), (90)

= Fa2,b2(λ2)− Fa1,b1(λ1)− (λ2 − λ1)F′a1,b1
(λ1),

= log
λ1

λ2
+ (λ2 − λ1) Epλ1

[x] + log
e−λ2a2 − e−λ2b2

e−λ1a1 − e−λ1b1
. (91)

When a1 = a2 = 0 and b1 = b2 = +∞, we recover the KLD between two exponential
distributions pλ1 and pλ2 :

DKL[pλ1 : pλ2 ] = BF(λ2 : λ1), (92)

= F(θ2)− F(θ1)− (θ2 − θ1)F′(θ1), (93)

=
λ2

λ1
− log

λ2

λ1
− 1 = DIS[λ2 : λ1]. (94)

Note that the KLD between two truncated exponential distributions with the same truncation
support X = [a, b] is

DKL[p
a,b
λ1

: pa,b
λ2
] = log

λ2

λ1
+ log

Φλ2(b)−Φλ2(a)
Φλ1(b)−Φλ1(a)

+ (λ2 − λ1)Epa,b
1
[x]. (95)

We also check Corollary 1:

DKL[p
a1,b1
λ1

: pa2,b2
λ2

] = DKL[p
a1,b1
λ1

: pa1,b1
λ2

] + log
Za2,b2(λ2)

Za1,b1(λ2)
, (96)

The next example shows how to compute the Kullback–Leibler divergence between
two truncated normal distributions:

Example 7. Let Na,b(m, s) denote a truncated normal distribution with support the open interval
(a, b) (a < b) and probability density function defined by:

pa,b
m,s(x) =

1
Za,b(m, s)

exp
(
− (x−m)2

2s2

)
, (97)

where Za,b(m, s) is related to the partition function [26] expressed using the cumulative distribution
function (CDF) Φm,s(x):

Za,b(m, s) =
√

2πs (Φm,s(b)−Φm,s(a)), (98)

with

Φm,s(x) =
1
2

(
1 + erf

(
x−m√

2s

))
, (99)

where erf(x) is the error function:

erf(x) :=
2√
π

∫ x

0
e−t2

dt. (100)

https://maxima.sourceforge.io/
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Thus we have erf(x) = 2 Φ(
√

2x)− 1 where Φ(x) = Φ0,1(x).
The pdf can also be written as

pa,b
m,s(x) =

1
s

φ( x−m
s )

Φ( b−m
s )−Φ( a−m

s )
, (101)

where φ(x) denotes the standard normal pdf (φ(x) = p−∞,+∞
0,1 (x)):

φ(x) :=
1√
2π

exp
(
− x2

2

)
, (102)

and Φ(x) = Φ0,1(x) =
∫ x
−∞ φ(t)dt is the standard normal CDF. When a = −∞ and b = +∞,

we have Z−∞,∞(m, s) =
√

2π s since Φ(−∞) = 0 and Φ(+∞) = 1.
The density pa,b

m,s(x) belongs to an exponential family Ea,b with natural parameter θ =(
m
s2 ,− 1

2s2

)
, sufficient statistics t(x) = (x, x2), and log-normalizer:

Fa,b(θ) = −
θ2

1
4θ2

+ log Za,b(θ) (103)

The natural parameter space is Θ = R×R−− where R−− = {x ∈ R : x < 0} denotes the set of
negative real numbers.

The log-normalizer can be expressed using the source parameters (m, s) (which are not the
mean and standard deviation when the support is truncated, hence the notation m and s):

Fa,b(m, s) =
m2

2s2 + log Za,b(m, s), (104)

=
m2

2s2 +
1
2

log 2πs2 + log(Φm,s(b)−Φm,s(a)). (105)

We shall use the fact that the gradient of the log-normalizer of any exponential family distribu-
tion amounts to the expectation of the sufficient statistics [1]:

∇Fa,b(θ) = Epa,b
m,s
[t(x)] = η. (106)

Parameter η is called the moment or expectation parameter [1].
The mean µ(m, s; a, b) = Epa,b

m,s
[x] = ∂

∂θ1
Fa,b(θ) and the variance σ2(m, s; a, b) = Epa,b

m,s
[x2]−

µ2 (with Epa,b
m,s
[x2] = ∂

∂θ2
Fa,b(θ)) of the truncated normal pa,b

m,s can be expressed using the following
formula [26,27] (page 25):

µ(m, s; a, b) = m− s
φ(β)− φ(α)

Φ(β)−Φ(α)
, (107)

σ2(m, s; a, b) = s2

(
1− βφ(β)− αφ(α)

Φ(β)−Φ(α)
−
(

φ(β)− φ(α)

Φ(β)−Φ(α)

)2
)

, (108)

where α := a−m
s and β := b−m

s . Thus we have the following moment parameter η = (η1, η2) with

η1(m, s; a, b) = Epa,b
m,s
[x] = µ(m, s; a, b), (109)

η2(m, s; a, b) = Epa,b
m,s
[x2] = σ2(m, s; a, b) + µ2(m, s; a, b). (110)

Now consider two truncated normal distributions pa1,b1
m1,s1 and pa2,b2

m2,s2 with [a1, b1] ⊆ [a2, b2]

(otherwise, we have DKL[p
a1,b1
m1,s1 : pa2,b2

m2,s2 ] = +∞). Then the KLD between pa1,b1
m1,s1 and pa2,b2

m2,s2 is
equivalent to a duo Bregman divergence:
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DKL[p
a1,b1
m1,s1 : pa2,b2

m2,s2 ] = Fm2,s2(θ2)− Fm1,s1(θ1)− (θ2 − θ1)
>∇Fm1,s1(θ1),

=
m2

2s2
2
− m1

2s2
1
+ log

Za2,b2(m2, s2)

Za1,b1(m1, s1)
−
(

m2

s2
2
− m1

s2
1

)
η1(m1, s1; a1, b1)

−
(

1
2s2

1
− 1

2s2
2

)
η2(m1, s1; a1, b1). (111)

Note that Fm2,s2(θ) ≥ Fm1,s1(θ).
This formula is valid for (1) the KLD between two truncated normal distributions, or for (2) the

KLD between a truncated normal distribution and a (full support) normal distribution. Note that
the formula depends on the erf function used in function Φ. Furthermore, when a1 = a2 = −∞
and b1 = b2 = +∞, we recover (3) the KLD between two univariate normal distributions, since

log
Za2,b2

(m2,s2)

Za1,b1
(m1,s1)

= log σ2
σ1

= 1
2 log σ2

2
σ2

1
:

DKL[pm1,s1 : pm2,s2 ] =
1
2

(
log

s2
2

s2
1
+

σ2
1

σ2
2
+

(m2 −m1)
2

s2
2

− 1.

)
. (112)

Note that for full support normal distributions, we have µ(m, s;−∞;+∞) = m and
σ2(m, s;−∞;+∞) = s2.

The entropy of a truncated normal distribution (an exponential family [28]) is h[pa,b
m,s] =

−
∫ b

a pa,b
m,s(x) log pa,b

m,sdx = −F∗(η) = F(θ)− θ>η. We find that

h[pa,b
m,s] = log

(√
2πes (Φ(β)−Φ(α))

)
+

αφ(α)− βφ(β)

2(Φ(β)−Φ(α))
. (113)

When (a, b) = (−∞, ∞), we have Φ(β)− Φ(α) = 1 and αφ(α)− βφ(β) = 0 since β = −α,
φ(−x) = φ(x) (an even function), and limβ→+∞ βφ(β) = 0. Thus we recover the differential

entropy of a normal distribution: h[pµ,σ] = log
(√

2πeσ
)

.

5. Bhattacharyya Skewed Divergence Between Truncated Densities of an
Exponential Family

The Bhattacharyya α-skewed divergence [29,30] between two densities p(x) and q(x)
with respect to µ is defined for a skewing scalar parameter α ∈ (0, 1) as:

DBhat,α[p : q] := − log
∫
X

p(x)αq(x)1−α dµ(x), (114)

where X denotes the support of the distributions. The Bhattacharyya distance is

DBhat[p, q] = DBhat, 1
2
[p : q] = − log

∫
X

√
p(x)q(x)dµ(x). (115)

The Bhattacharyya distance is not a metric distance since it does not satisfy the triangle
inequality. The Bhattacharyya distance is related to the Hellinger distance [31] as follows:

DH [p, q] =

√
1
2

∫
X

(√
p(x)−

√
q(x)

)2
dµ(x) =

√
1− exp(−DBhat[p, q]). (116)

The Hellinger distance is a metric distance.
Let Iα[p : q] :=

∫
X p(x)αq(x)1−α dµ(x) denote the skewed affinity coefficient so that

DBhat,α[p : q] = − log Iα[p : q]. Since Iα[p : q] = I1−α[q : p], we have DBhat,α[p : q] =
DBhat,1−α[q : p].
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Consider an exponential family E = {pθ} with log-normalizer F(θ). Then it is well-
known that the α-skewed Bhattacharyya divergence between two densities of an exponen-
tial family amounts to a skewed Jensen divergence [30] (originally called Jensen difference
in [32]):

DBhat,α[pθ1 : pθ2 ] = JF,α(θ1 : θ2), (117)

where the skewed Jensen divergence is defined by

JF,α(θ1 : θ2) = αF(θ1) + (1− α)F(θ2)− F(αθ1 + (1− α)θ2). (118)

The convexity of the log-normalizer F(θ) ensures that JF,α(θ1 : θ2) ≥ 0. The Jensen
divergence can be extended to full real α by rescaling it by 1

α(1−α)
, see [33].

Remark 1. The Bhattacharyya skewed divergence DBhat,α[p : q] appears naturally as the negative
of the log-normalizer of the exponential family induced by the exponential arc {rα(x) α ∈ (0, 1)}
linking two densities p and q with rα(x) ∝ p(x)αq(x)1−α. This arc is an exponential family of
order 1:

rα(x) = exp(α log p(x) + (1− α) log q(x)− log Zα(p : q)), (119)

= exp
(

α log
p(x)
q(x)

− Fpq(α)

)
q(x). (120)

The sufficient statistic is t(x) = p(x)
q(x) , the natural parameter α ∈ (0, 1), and the log-normalizer

Fpq(α) = log Zα(p : q) = log
∫

p(x)αq(x)1−αdµ(x) = −DBhat,α[p : q]. This shows that
DBhat,α[p : q] is concave with respect to α since log-normalizers Fpq(α) are always convex. Grün-
wald called those exponential families the likelihood ratio exponential families [34].

Now, consider calculating DBhat,α[pθ1 : qθ2 ] where pθ1 ∈ E1 with E1 a truncated

exponential family of E2 and qθ2 ∈ E2 = {qθ}. We have qθ(x) = Z1(θ)
Z2(θ)

pθ(x), where Z1(θ)

and Z2(θ) are the partition functions of E1 and E2, respectively. Thus we have

Iα[pθ1 : qθ2 ] =

(
Z1(θ2)

Z2(θ2)

)1−α

Iα[pθ1 : pθ2 ], (121)

and the α-skewed Bhattacharyya divergence is

DBhat,α[pθ1 : qθ2 ] = DBhat,α[pθ1 : pθ2 ]− (1− α)(F1(θ2)− F2(θ2)). (122)

Therefore we obtain

DBhat,α[pθ1 : qθ2 ] = JF1,α(θ1 : θ2)− (1− α)(F1(θ2)− F2(θ2)), (123)

= αF1(θ1) + (1− α)F2(θ2)− F1(αθ1 + (1− α)θ2), (124)

=: JF1,F2,α(θ1 : θ2). (125)

We call JF1,F2,α(θ1 : θ2) the duo Jensen divergence. Since F2(θ) ≥ F1(θ), we check that

JF1,F2,α(θ1 : θ2) ≥ JF1,α(θ1 : θ2) ≥ 0. (126)

Figure 7 illustrates graphically the duo Jensen divergence JF1,F2,α(θ1 : θ2).
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θ1
θ2αθ1 + (1− α)θ2

F1(θ)
F2(θ)

JF1,F2,α(θ1 : θ2)
JF1,α(θ1, θ2)

Figure 7. The duo Jensen divergence JF1,F2,α(θ1 : θ2) is greater than the Jensen divergence JF1,α(θ1 : θ2)

for F2(θ) ≥ F1(θ).

Theorem 2. The α-skewed Bhattacharyya divergence for α ∈ (0, 1) between a truncated density of
E1 with log-normalizer F1(θ) and another density of an exponential family E2 with log-normalizer
F2(θ) amounts to a duo Jensen divergence:

DBhat,α[pθ1 : qθ2 ] = JF1,F2,α(θ1 : θ2), (127)

where JF1,F2,α(θ1 : θ2) is the duo skewed Jensen divergence induced by two strictly convex functions
F1(θ) and F2(θ) such that F2(θ) ≥ F1(θ):

JF1,F2,α(θ1 : θ2) = αF1(θ1) + (1− α)F2(θ2)− F1(αθ1 + (1− α)θ2). (128)

In [30], it is reported that

DKL[pθ1 : pθ2 ] = BF(θ2 : θ1), (129)

= lim
α→0

1
α

JF,α(θ2 : θ1) = lim
α→0

1
α

JF,1−α(θ1 : θ2), (130)

= lim
α→0

1
α

DBhat,α[pθ2 : pθ1 ] = lim
α→0

1
α

DBhat,1−α[pθ1 : pθ2 ]. (131)

Indeed, using the first-order Taylor expansion of

F(θ1 + α(θ2 − θ1)) ≈
α→0

F(θ1) + α(θ2 − θ1)
>∇F(θ1) (132)

when α→ 0, we check that we have

1
α

JF,α(θ2 : θ1) :=
F(θ1) + α(F(θ2)− F(θ1))− F(θ1 + α(θ2 − θ1))

α
, (133)

Equation (132)
≈

α→0
��
�HHHF(θ1) + α(F(θ2)− F(θ1))−��

�H
HHF(θ1)− α(θ2 − θ1)

>∇F(θ1)

α
, (134)

= F(θ2)− F(θ1)− (θ2 − θ1)
>∇F(θ1), (135)

=: BF(θ2 : θ1). (136)

Thus we have limα→0
1
α JF,α(θ2 : θ1) = BF(θ2 : θ1).

Moreover, we have

lim
α→0

1
α

DBhat,1−α[p : q] = DKL[p : q]. (137)
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Similarly, we can prove that

lim
α→1

1
1− α

JF1,F2,α(θ1 : θ2) = BF2,F1(θ2 : θ1), (138)

which can be reinterpreted as

lim
α→1

1
1− α

DBhat,α[pθ1 : qθ2 ] = DKL[pθ1 : qθ2 ]. (139)

6. Concluding Remarks

We considered the Kullback–Leibler divergence between two parametric densities
pθ ∈ E1 and qθ′ ∈ E2 belonging to truncated exponential families [7] E1 and E2, and we
showed that their KLD is equivalent to a duo Bregman divergence on swapped param-
eter order (Theorem 1). This result generalizes the study of Azoury and Warmuth [13].
The duo Bregman divergence can be rewritten as a duo Fenchel–Young divergence using
mixed natural/moment parameterizations of the exponential family densities (Definition 1).
This second result generalizes the approach taken in information geometry [15,35]. We
showed how to calculate the Kullback–Leibler divergence between two truncated normal
distributions as a duo Bregman divergence. More generally, we proved that the skewed
Bhattacharyya distance between two parametric densities of truncated exponential families
amounts to a duo Jensen divergence (Theorem 2). We showed asymptotically that scaled
duo Jensen divergences tend to duo Bregman divergences generalizing a result of [30,33].
This study of duo divergences induced by pair of generators was motivated by the for-
mula obtained for the Kullback–Leibler divergence between two densities of two different
exponential families originally reported in [23] (Equation (29)).

It is interesting to find applications of the duo Fenchel–Young, Bregman, and Jensen
divergences beyond the scope of calculating statistical distances between truncated ex-
ponential family densities. Note that in [36], the authors exhibit a relationship between
densities with nested supports and quasi-convex Bregman divergences. However, those
considered parametric densities are not exponential families since their supports depend
on the parameter. Recently, Khan and Swaroop [37] used this duo Fenchel–Young di-
vergence in machine learning for knowledge-adaptation priors in the so-called change
regularizer task.
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