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ABSTRACT

Methods based on propensity score (PS) have become increasingly popular as a tool for causal inference. A better understanding of
the relative advantages and disadvantages of the alternative analytic approaches can contribute to the optimal choice and use of a
specific PS method over other methods. In this article, we provide an accessible overview of causal inference from observational
data and two major PS-based methods (matching and inverse probability weighting), focusing on the underlying assumptions and
decision-making processes. We then discuss common pitfalls and tips for applying the PS methods to empirical research and
compare the conventional multivariable outcome regression and the two alternative PS-based methods (ie, matching and inverse
probability weighting) and discuss their similarities and differences. Although we note subtle differences in causal identification
assumptions, we highlight that the methods are distinct primarily in terms of the statistical modeling assumptions involved and the
target population for which exposure effects are being estimated.
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INTRODUCTION

One of the central goals of clinical and epidemiologic research is
to estimate the effects of exposure (eg, medical treatment, clinical
practice, lifestyles and health behaviors, socioeconomic factors,
and environmental factors) on population health.1 While
randomized control trials’ role remains critical in assessing
causal effects, causal inference based on observational data is
essential and has evolved as an alternative approach to generating
scientific evidence.2

Propensity score (PS) methods are among the most popular
approaches for causal inference in clinical and epidemiologic
research.3 The PS methods, as any statistical method does, have
advantages and disadvantages and should be used when the
application is helpful. However, confusions and misunderstand-
ing appear to remain concerning what the PS methods can or
cannot do compared to the conventional multivariable regression
approach and when they become advantageous. Moreover, the
differences and relative advantages of each alternative PS method
are often not sufficiently understood among applied users,
although such understanding can facilitate the choice of the most
appropriate PS-method.

Thus, this paper aims to offer an accessible overview of causal
inference using the PS methods and address some common
pitfalls and provide tips for applied users. Specifically, this paper
is structured as follows. First, we will give a brief overview of
causal inference based on observational data. We divide causal
inference into three steps and discuss what decisions and

assumptions need to be made in each step. Second, we introduce
how PS works in causal inference and provide a concise review of
the two common methods that use PS—matching and inverse
probability weighting (IPW). Third, we discuss the “pitfalls and
tips” of the PS methods focusing on 1) the application of the PS
methods, 2) comparison of the PS methods in general and a
conventional multivariable regression model, and 3) comparison
of PS matching and IPW.

BACKGROUND ON THE TOPIC

Basics of causal inference
Under the influential potential outcome framework proposed by
Rubin,4 the causal effect of an exposure on an outcome is defined
as follows:

E½Ya � Ya� �
where a and a� are the different levels of exposure A, and Ya is
a potential outcome under A = a (ie, the value of outcome that
would have been observed had the person received A = a,
potentially contrary to the fact). In this paper, we will focus on a
binary treatment. That is, we will discuss the PS methods as a tool
for estimating E[Ya=1 − Ya=0], where a = 1 and a = 0 indicate
being exposed and unexposed, respectively. The goal of causal
inference is to make inferences about this unobservable causal
effect using statistical associations with a series of (often
unverifiable) assumptions. By simplifying the guideline proposed
previously,5 we will divide causal inference into the following
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three steps; 1) specifying causal estimand, 2) causal identification,
and 3) estimation. For each step, we will briefly review its role
and discuss what assumptions and decisions need to be made.
More detailed introduction to causal inference is available in
eMaterials 1.
Step 1. Specifying causal estimand
The first step of causal inference involves defining a causal effect
of interest that we wish to estimate (causal estimand). The key
ingredient to consider in determining causal estimand is whether
the goal of an analysis is to estimate an effect among everyone
in the population that the study sample represents versus its
sub-populations. An effect in the entire population is called a
marginal effect (ie, average treatment effect). Effects among sub-
populations are called conditional effects because the sub-
populations are defined by conditioning on specific characteristics
of the population (eg, gender). Conditional effects will diverge
from the marginal effects in the presence of effect measure
modification by characteristics defining the sub-population.6,7

Because different analytic methods estimate either marginal or
conditional effects or both, it is crucial to decide which effect is
more of substantive interest before selecting an analytic approach.
Step 2. Identification
Once we define a target causal estimand, we need to consider
what assumptions are required to link the unobservable causal
effect of interest to observable statistical associations and whether
the assumptions hold with the data at hand. This process is
called causal identification. There are three key assumptions for
identification: exchangeability, consistency, and positivity.2

(Marginal) exchangeability assumption, Ya ?? A (a = 0, 1),
means that the exposed group (A = 1) and the unexposed group
(A = 0) have the same distribution of potential outcome that
would be observed if everyone was exposed (Ya=1) and, similarly,
of Ya=0. Exchangeability implies that the exposed versus the
unexposed share equal distributions of outcome predictors, but
such a condition is generally violated in observational studies.8–10

One may feel more confident that the groups are exchangeable
conditional on a vector of covariates L (ie, within strata of the
combinations of covariate values). This assumption is called
conditional exchangeability, Ya ?? AjL (a = 0, 1), and the core of
causal inference from observational data.

Two other identifiability assumptions—consistency and
positivity—often gain less attention than exchangeability but
are likewise central in causal inference. First, the consistency
assumption posits that exposure is sufficiently well-defined and
does not have multiple “versions” that have different impacts on
outcomes. Accessible introduction of this assumption is available
elsewhere.11,12 Second, the positivity assumption means that both
exposed and unexposed individuals need to be present in all sub-
populations defined by the combinations of covariate values.13

We will discuss later how the PS methods address such positivity
violations differently.
Linking potential outcomes to observed data
The causal estimand specified in Step 1 becomes a function of
conditional expectation and=or probabilities that can statistically
be estimated from observed data under the three identifiability
assumptions from Step 2. Quantities that need to be estimated
vary by causal estimands (eg, marginal vs conditional effect) and
analytic approaches (eg, multivariable outcome regression vs PS
methods). As discussed later, causal identification via the PS
methods requires estimating conditional probabilities of exposure
given L. Once we identify the conditional expectations and=or

probabilities needed to quantify the causal effects of interest, the
remaining task is to estimate those values from the observed data.
Step 3. Estimation
Although conditional expectations and probabilities can be
estimated simply by computing stratum-specific averages when
there are only a few covariates to consider, conditioning in causal
inference (eg, adjustment for observed confounders) generally
involves numerous variables, some of which are continuous.
Conditional expectations and probabilities with many possible
strata can be estimated by specifying statistical models, which is
essentially what regression models do.

Statistical models allow the estimation of high-dimensional
conditional expectations by making a series of modeling
assumptions (eg, linearity between a continuous covariate and
outcome, and no effect measure modification by covariates
represented by omitted product terms). When the modeling
assumptions do not hold (model misspecification), estimated
conditional expectations would be generally biased. Note that
these are statistical assumptions and distinct from the identifi-
ability assumptions we discussed in Step 2.

The methods for causal inference, including the PS methods,
generally make different modeling assumptions because they
use different conditional expectations and probabilities to
quantify a causal effect of interest. Thus, to understand the
differences between the PS methods, it is crucial to be mindful of
the statistical models that each analytic approach involves and
their underlying assumptions.

Basics of propensity scores
A PS is a conditional probability of receiving a treatment=
exposure given a set of covariates:

PS ¼ Pr½A ¼ 1jL�
The key property of PS is that exchangeability will hold con-

ditional on PS (ie, Ya ?? AjPS) when the conditional exchange-
ability Ya ?? AjL (a = 0, 1) holds. That is, if conditioning on the
vector of covariates L included in the PS estimation suffices to
control for all confounding, so does conditioning on estimated
PS. Because the PS-based methods can only address observed
confounders L, they are not necessarily advantageous in terms of
confounding adjustment compared to conventional regression
analysis.

PS is estimated by specifying a propensity model (ie, a model
for an exposure), typically via logistic regression. For example, the
following logistic regression can provide estimates of PS (cPS).

logitPr½A ¼ 1jL� ¼ �0 þ L�0

cPS ¼ expitðb�0 þ L�̂0Þ
Other specifications (eg, adding product terms) are available
for the propensity model. PS can even be estimated non-
parametrically (eg, via machine learning algorithms).14 PS can
also be estimated for non-binary treatment, although a propensity
model for a non-binary exposure is generally more complex and
makes stronger assumptions.15 In estimating PS, missing data
need to be handled as it is in a multivariable outcome regression.
Imputing missing data is generally recommended when the
missing at random assumption is plausible because ignoring
missing data can result in selection bias.16,17

After estimating PS, there are several alternative approaches
to control for the estimated PS. These approaches include
stratification, regression adjustment, matching, and inverse
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probability weighting (IPW). We provide R and SAS codes to
implement the alternative PS methods in eMaterials 2. This
article will focus on matching and IPW because they are by far
the most commonly used approaches; however, we provided
discussions on PS stratification and regression adjustment in
eMaterials 3.

Matching
PS matching (PSM) creates pairs of the exposed and the
unexposed subjects with similar estimated PS.18 Several
approaches exist to select such pairs and have been described
with details elsewhere.19 PSM excludes observations from
individuals with extremely large or small PS if they lack
corresponding pairs. In the resulting sample of the matched
pairs, the exposed and unexposed groups are expected to have
comparable distributions of PS and observed confounders that
were used in PS estimation. In the matched sample, one can make
a simple comparison of the outcome among the exposed versus
the unexposed individuals:

Ematched½YjA ¼ 1� � Ematched½YjA ¼ 0�;
where Ematched[Y∣A = a] is the conditional outcome expectation
given A = a among the population that the matched sample
represents. With the identifiability assumptions, this difference in
the conditional expectations corresponds to the causal effect:

Ematched½Ya¼1 � Ya¼0�
Notably, the target population of interest changes after

excluding individuals in the extreme tails of the PS distribution.20

Specifically, PSM estimates the exposure effect in the population
that the matched sample represents (ie, a population where
nobody would always or never be exposed). If the distributions of
effect modifiers in the matched sample differed from those in the
original sample, the two marginal effects would diverge.

Inverse probability weighting (IPW)
IPW for an exposure variable (ie, inverse probability of treatment
weighting [IPTW]) is an alternative use of PS to adjust for
confounding.21,22 Weights for IPW are typically defined as a
function of PS:

•
1

Pr½A¼1jL� ¼ 1
PS

for the exposed individuals with A = 1

•
1

Pr½A¼0jL� ¼ 1
1�PS for the unexposed individuals with A = 0.

IPW essentially duplicates observations from individuals with
large weights to create a pseudo-population in which probabilities
of receiving the exposure A do not depend on the covariates L
included in the PS estimation. For example, assume that male
gender is associated with higher probabilities of both smoking
(exposure) and mortality (outcome). That is, gender confounds
the association between smoking and mortality. IPW addresses
such confounding by assigning larger weights to female smokers
and male non-smokers so that the resulting pseudo-population has
a comparable gender ratio among smokers and non-smokers.
Because there is no confounding by the measured covariates L in
the pseudo population, one can simply compare the weighted
averages of the outcome for the exposed and the unexposed
individuals.22

Alternatively, IPW can be done using an outcome regression.21

Weighted regression via IPW is equivalent to fitting a regression
model to the pseudo-population created by the IPW. Consider the
following weighted linear regression model.

Epseudo½YjA� ¼ �0
� þ �1

�A

where Epseudo[Y∣A] is the weighted average of the outcome Y
given A (ie, conditional outcome expectation in the pseudo-
population). With the identifiability assumptions, this regression
model approximates the model for counterfactual outcomes (ie,
marginal structural model).

E½Ya� ¼ �0 þ �1a

In this marginal structural model, θ1 corresponds to the
marginal effect E[Ya=1 − Ya=0]. IPW can also estimate condi-
tional exposure effects, E[Ya=1 − Ya=0∣V ], by incorporating the
information of the effect modifier V in weight calculation and a
weighted regression model.21 IPW generally makes fewer
assumptions for outcome models than multivariable regression
does because it does not condition on numerous confounders. In
fact, the weighted outcome model in IPW for marginal effect is
saturated (ie, no model misspecification) when exposure is binary
and time-fixed, which is the case in most IPW applications.

PITFALLS AND TIPS

We will first discuss pitfalls and tips on the application of the
PS-based methods for applied users. The subsequent section
compares the PS methods with a conventional multivariable
regression approach and discusses their relative advantages. The
last section summarizes the differences and similarities between
PS matching and IPW. Comparison with other PS-based methods
(ie, stratification and regression adjustment) is available in
eMaterials 4. Table 1 summarizes the discussion points. See
eTable 1 for the comparison with PS stratification and regression
adjustment.

On the application of the PS methods
1. The goal of propensity models is not to predict an
exposure perfectly
The goal of the PS methods is to achieve balance in observed
confounders; hence, an optimal propensity model is not the one
that best predicts an exposure. To achieve this goal of the PS
methods as a tool for confounding adjustment, applied users need
to consider the following two aspects of a propensity model
specification: 1) variable selection and 2) model evaluation.

It is recommended that a propensity model include only
variables that affect an outcome.23 If the variables also affect an
exposure, they are confounders and should be adjusted for (L1 in
Figure 1). Even when they do not affect exposure and, thus,
are not confounders (L2 in Figure 1), their distributions are likely
not identical between the exposure groups in a finite sample;
adjusting for these imbalanced variables reduces bias in an effect
estimate and its variance. Importantly, the “variables that affect an
outcome” should be selected based on subject-matter knowledge
about underlying causal structures rather than statistical associa-
tions with the outcome.24 Variables that affect only an exposure
(L3 in Figure 1) should not be included in a propensity model
because such variables can inflate the variance of the effect
estimates.25 Moreover, variables in a propensity model should
ideally be measured prior to the exposure to avoid accidentally
adjusting for potential mediators (M in Figure 1).

Studies using the PS methods often report measures of “model
fit” such as c-statistic (ie, area under the curve), aiming to
evaluate the predictive performance of a propensity model.
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Because the prediction of exposure is not the goal of a propensity
model, reporting the measures of model fit is of limited value.26

For instance, adding exposure predictors that are not confounders
(eg, L3 in Figure 1) increases the c-statistic but does not
necessarily enhance causal inference. To evaluate a propensity
model in terms of confounding adjustment, covariate balance
should instead be checked after PS estimation. Covariate balance
can be assessed by calculating a standardized difference for each
covariate using the matched sample for PSM and the weighted
sample for IPW. The formulas to calculate standardized dif-
ferences are available elsewhere.3,27 Some scholars have used
<0.1 standardized difference as support for covariate balance.28

2. PSM can suffer from residual confounding even when
conditional exchangeability holds
It is generally hard to find pairs with identical PS values because
PS is a continuous variable by definition and can take any value
between 0 and 1. Thus, a common practice is to select an
unexposed individual with a PS value closest to that of an

exposed individual (nearest neighbor matching), often from a
pool of unexposed individuals within a pre-specified range of PS
differences from their exposed counterpart (caliper distance).
Wider caliper distance may result in pairs with large differences
in PS values, leading to unbalanced confounders and resulting
bias in the matched sample. Austin recommends using calipers
of 0.2 standard deviations of PS in the logit scale as a rule of
thumb29; however, the optimal caliper width should ideally be
determined based on the covariate balance in the matched sample.
3. PSM discards unmatched observations and ad-
dresses potential positivity violations in exchange for a
loss of statistical efficiency
PSM discards unmatched observations with extreme PS values.
This property of PSM has an advantage and a disadvantage. The
advantage is that it can explicitly address potential positivity
violations.13 For example, individuals with extremely high PS
values tend to have covariate patterns in which only exposed
individuals exist. Because PSM discards information from these
individuals and analyzes people within the overlapped range of
the PS distribution (ie, common support), it does not rely on
model extrapolation that other analytic approaches (eg, PS
regression adjustment) might do. The disadvantage is that
discarding information may result in imprecise estimates and
loss of statistical power. Notably, discarding unmatched observa-
tions will change the target population of interest.
4. Post-matching adjustment can sometimes induce bias
Although PSM can achieve balance in observed covariates in
expectation, applying PSM to a finite sample sometimes results in
imbalanced covariates even after matching, which can cause
residual confounding. To address the residual confounding, PSM
is sometimes accompanied by stratification or regression adjust-
ment after matching.30 However, bias can arise if such post-
matching adjustment includes variables that are not used in a
propensity model.31

Table 1. Comparison of multivariable regression, propensity score matching, and inverse probability weighting by the underlying
assumptions

Analytic
Approach

Features

Causal Estimand Identifiability Assumptions
Residual Confounding=Positivity
Violations

Model Specifications

Multivariable
Regression

• Conditional effects within the
covariate strata

• Marginal effect assuming no
effect measure modification by
any of the measured covariates
or via standardization

• Conditional exchangeability based
on the covariates used in the
outcome model

• Consistency for the exposure of
interest

• Positivity conditional on the
covariates

• Positivity violation if only
exposed or unexposed
individuals are present within
the covariate strata

• Outcome model conditional on an
exposure and measured covariates

PS Matching • Marginal effect in the population
represented by the
matched sample, which
excludes individuals with
extreme PS values from the
original sample.

• Conditional exchangeability based
on the covariates used in the
PS estimation

• Consistency for the exposure of
interest

• Positivity conditional on the PS.

• Potential residual confounding
due to wide caliper distance

• Positivity is ensured
by excluding unmatched
individuals.

• Propensity model conditional on
measured covariates.

• Outcome model can be used after
matching with caution.

IPW • Conditional effects by including
an additional
covariate in the weighted
outcome model

• Marginal effect in the target
population

• Conditional exchangeability based
on the covariates used in the
PS estimation

• Consistency for the exposure of
interest

• Positivity conditional on the PS

• Potential positivity violation is
detected as extremely large or
small weights, which can be
discarded before weighting.

• Propensity model conditional on
measured covariates.

• IP-weighted outcome model
conditional on exposure (and an
additional covariate if estimating
conditional effects).

IPW, inverse probability weighting; PS, propensity score.

A Y

L2

L1

L3

M

Figure 1. Causal Diagram Illustrating Variable Selection for
Propensity Score Estimation. A is an exposure, Y
is an outcome, L1, L2, and L3 are covariates,M is a
mediator on the pathway from A to Y.
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5. In IPW, using stabilized weights can sometimes gain
statistical efficiency
The inverse probability weights we described above had the
numerator of one and are called unstabilized weights. Alter-
natively, the stabilized weights can be defined using other
constant numbers for their numerator, often a marginal prevalence
of exposure. Stabilized weights can gain statistical efficiency
when a weighted outcome model makes modeling assumptions
and is unsaturated (eg, a weighted outcome model for non-binary
exposures or conditional effects with baseline covariates).21,32

When IPW was used for a binary treatment to estimate a marginal
effect, a weighted outcome model would be saturated; hence,
unstabilized weights and stabilized weights would give identical
results. There are some cases where unstabilized weights, not
stabilized weights, should be used (eg, estimating an effect of a
dynamic treatment regimen), but these cases are beyond the scope
of this introductory paper.33

6. IPW can be used to address selection bias too
IPW can also address selection bias.34 Inverse probability weights
for censoring (IPCW) are calculated based on probabilities
of selection=censoring conditional on exposure and common
causes of the censoring and the outcome. Note that the censoring
weights can incorporate variables that are not confounders but
cause selection bias (eg, L2 in the causal diagram in Figure 2).
While IPCW is a useful tool to advance causal inference, the
interpretation of the estimated effects after IPCW may not be
straightforward in the presence of competing risk.35–37 Moreover,
the weight calculation requires the information on exposure and
covariates among the censored individuals, which often is
unavailable.38

7. PSM and IPW both require methods for the analysis of
correlated observations
In PSM, the post-matching analysis needs to take account of the
within-matched pair correlations.39 For example, post-matching
analysis can use paired t-test or Wilcoxon’s rank sum test for
continuous outcomes, and McNemar’s test and conditional
logistic regression for binary outcomes, and cox proportional
hazards regression for survival outcomes.39,40 Similarly, in IPW,
standard errors from the IP-weighted outcome regression need to
be corrected due to the dependent observations in the weighted
data; using robust variance or non-parametric bootstrapping is
recommended to estimate standard errors (R and SAS codes are
available in eMaterials 2).32

PS methods versus multivariable outcome regres-
sion
8. The PS methods and multivariable outcome regres-
sion both assume no unmeasured confounding. How-
ever, there are properties of the PS methods that are
sometimes advantageous
The PS methods and the multivariable outcome regression
approach both assume conditional exchangeability given meas-
ured covariates. Thus, they can only address confounding caused
by measured covariates and are equally prone to bias due to
unmeasured confounders. Nevertheless, the PS methods can
sometimes be preferable for the following five reasons.

First, in theory, the PS methods can result in data analysis with
more integrity and work against p-hacking.41 Most of the PS
methods’ modeling decisions come before looking at outcome
data. Thus, investigators may be less tempted to change model
specifications to make the results align with their expectations. In
PSM, for instance, the investigator first specifies a propensity
model and estimate PS, creates a matched sample, checks the
balance of observed covariates between the exposed and the
unexposed, and, if unbalanced, goes back and re-specifies a
propensity model, all of which can be done without outcome
data. Even for the methods that specify an outcome model (ie,
regression adjustment and IPW), the outcome model generally
makes fewer or even no modeling assumptions than a multi-
variable outcome regression conditioning on numerous cova-
riates. However, this first advantage may not fully be leveraged in
the applied research because careless application of the PS
methods would not yield this theoretical property.

Second, potential positivity violations tend to become more
visible in the PS methods because extreme PS values can signal
covariate patterns in which only the exposed or the unexposed are
present. As we describe below, the PS methods handle potential
positivity violations differently.

Third, when the outcome is rare, conditioning on numerous
covariates via a multivariable regression can result in imprecise
estimation. When the exposure is non-rare, the PS methods can
work better for rare outcomes because they convert the high-
dimensional covariates into a single variable, PS.

Fourth, the PS methods and the multivariable outcome regres-
sion make qualitatively different modeling assumptions. The PS
methods’ primary modeling decisions are for a propensity model.
Although the propensity models and outcome models conditional
on measured covariates are both prone to misspecification, one
may feel more confident of correctly specifying an exposure
model in situations where more knowledge about the relationships
with covariates is available for exposure than for an outcome. A
doubly-robust method (eg, targeted maximum likelihood estima-
tion) can accommodate both models and consistently estimate
conditional expectancies of interest if either a propensity model
or an outcome model is correctly specified.42,43 Notably,
multivariable outcome regression technically estimates condi-
tional effects within the strata of observed covariates. Although a
marginal effect can rigorously be estimated via standardization
(R and SAS codes are available in eMaterials 2),44 a more com-
mon approach for estimating marginal effects with multivariable
outcome regression is to assume no effect measure modification by
ANY of measured covariates (ie, no product term between
exposure and covariates). On the other hand, the PS methods tend
to make no or fewer assumptions for effect measure modification,
although they instead make assumptions for a propensity model.

Figure 2. Causal Diagram Illustrating Confounding and
Selection Bias. A is an exposure, Y is an outcome,
C is a censoring status, L1 is a vector of common
causes of A and Y, and L2 is a vector of common
causes of C and Y. L1 confounds the association
between A and Y. When the uncensored sample
(C = 0) is analyzed, the analysis is effectively
conditioning on C = 0 (ie, a collider) and inducing
selection bias through L2.
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Lastly, IPW can be expanded to causal inference for a time-
varying exposure in the presence of time-varying confounding.21,45

Conventional analytic approaches, including other PS methods,
fail to estimate the effects of a time-varying exposure when prior
exposure affects confounders of subsequent exposure.46

Comparison of PSM and IPW
9. The alternative PS methods rely on the same
assumptions for exchangeability and consistency but
deal with the positivity assumption differently
Both PSM and IPW rely on the same identifiability assumptions
of conditional exchangeability and consistency. In contrast, these
methods take different approaches to handle potential positivity
violations. In IPW, individuals will receive substantially large or
small weights when their covariate patterns potentially violate
positivity. Trimming such observations with extreme weights
is often recommended.47 On the other hand, PSM explicitly
addresses potential positivity violations by excluding those who
have extreme PS values and, thus, cannot be matched (so-called
“off-support” individuals). While such explicit handling of
positivity violations is the advantage of the PS methods, one
caveat is that causal estimand of interest generally changes after
excluding individuals who potentially violate positivity.20

10. Although the PS methods both make the same
exchangeability assumption, PSM can suffer from
residual confounding
Both PSM and IPW are based on the same conditional
exchangeability (ie, no confounding conditional on measured
covariates). However, as we noted in #2 above, PSM may result
in an insufficient balance of the measured covariates when the
pre-specified caliper is wide. On the other hand, IPW does not
suffer from residual confounding, assuming the models involved
are correctly specified.
11. The PS methods make different modeling assump-
tions after propensity score estimation
Both PSM and IPW specify a propensity model to estimate PS.
PSM often does not require any further modeling once PS is
estimated although an outcome model is sometimes used to make
post-matching adjustment. IPW specifies a weighted outcome
model to approximate a marginal structural model, but the
outcome model tends to make fewer assumptions than it does in
PSM (when post-matching adjustment via regression is con-
ducted) or even be saturated (no modeling assumption) when
estimating the marginal effect of a single-point binary exposure.
12. The PS methods target different causal estimands
(ie, each method answers a different research question)
PSM and IPW generally target different causal estimands.20,48,49

In other words, when an effect estimate from one PS method
differs from an estimate from another PS method, they can both
be correct but simply answer different questions. PSM estimates a
marginal effect in a population represented by a matched sample.
Because the matched sample excludes individuals with extreme
PS values, PSM does not estimate an exposure effect among
individuals who would always or never be exposed unless they
were intervened and forced to have an alternative exposure level.
PSM often uses all exposed individuals and matches them with
their unexposed pairs. This approach will estimate an exposure
effect among the people who were in fact exposed (ie, average
treatment effect in the treated).3 IPW can estimate both marginal
and conditional effects, depending on the definition of weights
and specification of a marginal structural model.

Summary
Causal inference using PS-based methods has become common,
but the increasing popularity of the PS methods might have been
driven, at least partly, by the hype that the seemingly
“sophisticated” approach somehow leads to more rigorous
analysis. The PS methods should be used when their applications
are truly beneficial (eg, high-dimensional covariates for a rare
outcome). Moreover, even when using the PS methods is
justified, we argue that choosing an optimal PS-based approach
requires a good understanding of the underlying decisions and
assumptions that each PS method makes.

The underlying identifiability assumptions are largely com-
parable across the methods (ie, multivariable outcome regression
and the alternative PS-methods) although we noted some subtle
differences concerning residual confounding and positivity
violation. We argue that the alternative methods differ primarily
in terms of modeling assumptions that they make and, most
importantly, causal estimand (ie, they estimate effects in different
target populations and, thus, answer different research questions).
We recommend the applied users decide which analytic approach
to use considering the relative advantages and disadvantages
discussed in this article.
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