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Objective. Hepatocellular carcinoma (HCC) is one of the most lethal malignancies with a poor prognosis. *e AT-rich interaction
domain (ARID) family plays an essential regulatory role in the pathogenesis and progression of cancers. *is study aims to
evaluate the prognostic value and clinical significance of human ARID family genes in HCC. Methods. ONCOMINE and *e
Cancer Genome Atlas (TCGA) databases were employed to retrieve ARIDs expression profile and clinicopathological information
of HCC. Kaplan–Meier plotter and MethSurv were applied to the survival analysis of patients with HCC. CBioPortal was used to
analyze genetic mutations of ARIDs. Gene Expression Profiling Interactive Analysis (GEPIA) and Metascape were used to
perform hub gene identification and functional enrichment. Results. Expression levels of 11 ARIDs were upregulated in HCC, and
2 ARIDs were downregulated. Also, 4 ARIDs and 5 ARIDs were correlated with pathologic stages and histologic grades, re-
spectively. Furthermore, higher expression of ARID1A, ARID1B, ARID2, ARID3A, ARID3B, ARID5B, KDM5A, KDM5B,
KDM5C, and JARID2 was remarkably correlated with worse overall survival of patients with HCC, and the high ARID3C/
KDM5D expression was related to longer overall survival. Multivariate Cox analysis indicated that ARID3A, KDM5C, and
KDM5D were independent risk factors for HCC prognosis. Moreover, ARIDs mutations and 127 CpGs methylation in all ARIDs
were observed to be significantly associated with the prognosis of HCC patients. Besides, our data showed that ARIDs could
regulate tumor-related pathways and distinct immune cells in the HCC microenvironment. Conclusions. ARIDs present the
potential prognostic value for HCC. Our findings suggest that ARID3A, KDM5C, and KDM5Dmay be the prognostic biomarkers
for patients with HCC.

1. Introduction

Liver cancer is the leading cause of mortality among ma-
lignancies according to the statistics from the GLOBOCAN
database [1]. Hepatocellular carcinoma (HCC), the most
prevalent subtype of liver cancer, accounts for 75%–85% of
all liver cancer cases worldwide in 2020 [2]. In addition, the

five-year survival rate of HCC is approximately 18.1% due to
lack of information for early diagnosis and limited thera-
peutic strategy [3]. Most of the patients with HCC are at
stages of an interim or advanced period when they are di-
agnosed, who are not applicable for surgical treatment [4].
Some drugs, such as regorafenib, nivolumab, and lenvatinib,
have been developed for HCC treatment [5]. However, drug
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resistance and adverse effects restrain the overall therapeutic
efficacy of these drugs [6]. *erefore, it is urgently needed to
find effective markers for detection, diagnosis, and prognosis
of patients with HCC in the early stage.

Human AT-rich interaction domain (ARID) family
composes of 15 members, including ARID1A, ARID1B,
ARID2, AIRD3A, ARID3B, ARID3C, ARID4A, ARID4B,
ARID5A, ARID5B, KDM5A (JARID1A), KDM5B (JAR-
ID1B), KDM5C (JARID1C), KDM5D (JARID1D), and
JARID2. According to sequence identity among individual
members, the ARID family was classified into 7 subfamilies,
containing ARID1, ARID2, ARID3, ARID4, ARID5, KDM5,
and JARID2.*eARID family genes have the ability of DNA
binding, which may participate in the modification of
chromatin structure and play a positive or negative role in
regulating the transcription of target genes [7]. As tran-
scriptional regulators, ARIDs have been found to be asso-
ciated with cell growth, differentiation, and development,
which is also closely associated with cancers [8]. For in-
stance, a previous study has found many meaningful ARID
family biomarkers in breast cancer [9]. ARID family is as-
sociated with the immune infiltrate and tumor microenvi-
ronment of digestive cancer [10]. In addition, ARID1A
silencing promotes epithelial-mesenchymal transition and
enhances the sensitivity of pancreatic tumor cells to NVP-
AUY922, which is a promising biomarker for the identifi-
cation of pancreatic ductal adenocarcinomas [11]. ARID
family members are also identified as novel biomarkers for
immune checkpoint inhibitor therapy in malignancies by
pan-cancer analysis [12]. Nevertheless, the prognostic value
of ARIDs in HCC has not been thoroughly studied.

In the current study, the expression, mutation, and
methylation of different ARIDs were analyzed, and their
correlation with clinicopathological parameters and survival
of HCC patients was unveiled. Besides, the predicted
functions and immune regulating roles of ARIDs were also
analyzed.

2. Methods

2.1. Gene Expression Analysis of ARIDs. First of all, the
differential expression of ARIDs between HCC and normal
tissues was analyzed using the ONCOMINE (https://www.
oncomine.org) database [13]. We followed the methods of
Wu et al. with some modifications [14]. Screening criteria
were as follows: cancer type� liver cancer; gene�ARID
family members; data type�mRNA; analysis type� cancer
versus normal analysis; threshold values: p value < 0.05, fold
change > 1.5, and gene rank� top 10%. By default, the
difference between normal and HCC tissue groups was
analyzed using the t-test. Subsequently, differences in ARID
family gene expression between HCC and normal samples
were compared. Moreover, *e Cancer Genome Atlas
(TCGA, https://tcga-data.nci.nih.gov/tcga/) [15] dataset was
also used to analyze the mRNA expression of 15 ARID
family members in HCC tissues, and result visualization was
performed with “ggplot2” package in R software (version
3.6.3). In addition, the association between ARID family
members and clinicopathologic parameters (pathologic

stage and histologic grade) was evaluated using the TCGA
HCC dataset. Clinical information for pathological stages I
and II (early stage) and stages III and IV (advanced stage),
and histologic grades of patients with HCC were obtained
from the TCGA database. HCC patients who lacked in-
formation on pathologic stage or histologic grade were
excluded, and results were visualized with violin plots using
the “ggplot2” package in R software.

2.2. Prognostic Value of ARID Family Genes. Association
between the ARIDs expression and HCC prognosis was
evaluated by the online software Kaplan–Meier (KM) plotter
(https://www.kmplot.com) [16, 17]. Patients with HCC in
TCGA dataset were divided into two groups based on the
optimal cutoff value of ARIDs expression, and overall
survival (OS) was selected as the outcome. To evaluate the
independent prognostic factors of ARIDs, univariate and
multivariate Cox analyses were conducted for both ARIDs
and clinicopathological data (age, gender, stage, and T stage)
using the TCGA HCC dataset, and factors with p value < 0.1
were selected for multivariate analysis. Additionally,
MethSurv, an online tool for methylation visualization
(https://biit.cs.ut.ee/methsurv/) [18] was applied to perform
DNA methylation-based survival analysis of ARIDs using
the TCGA dataset.

2.3. Genetic Mutations in ARID Family Genes. Mutations of
ARID family members in HCC were analyzed via the
cBioPortal tool (https://cbioportal.org) [19] by referring to a
previous study [20]. Furthermore, KM plots were utilized to
evaluate the correlation between genetic mutations in ARIDs
and the survival time of HCC patients with cBioPortal. In
cBioPortal analysis, HCC patients were classified into the
altered and unaltered groups. OS, progression-free survival
(PFS), and disease-free survival (DFS) were all considered as
endpoints.

2.4. Functional Enrichment Analyses. Hub genes screening
and functional enrichment analyses were carried out
according to the previously reported methods [21]. Before
functional enrichment analysis, the top 10 similar genes of
each ARID family member were acquired using the Gene
Expression Profiling Interactive Analysis (GEPIA, https://
gepia.cancer-pku.cn/) [22]. Functions of ARID family genes
were identified using the Metascape database (https://
metascape.org) [23]. Additionally, Gene Ontology (GO)
analysis was used to determine the biological functions of
these genes based on three categories, including cellular
components, molecular functions, and biological processes.
Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis was applied to identify signaling pathways related to
ARIDs and their similar genes. Moreover, protein-protein
interaction (PPI) network establishment and independent
functional enrichment analyses of Molecular Complex
Detection (MCODE) components were carried out in
Metascape.
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2.5. Immune Infiltrates Correlation Analysis. Tumor Im-
mune Estimation Resource (TIMER, https://cistrome.
shinyapps.io/timer/), an online tool for comprehensive
analysis of tumor-infiltrating immune cells [24], was used to
assess the correlation between ARID family genes and
immune infiltrates. We followed the methods of Qin et al. to
perform the immune infiltrates correlation analysis [25].*e
relationships of ARIDs expression with tumor-infiltrating
immune cells (B cell, CD4+ T cell, CD8+ cell, macrophage,
neutrophil, and dendritic cell) were identified by purity-
corrected partial Spearman’s correlation (partial-cor) and
statistical significance, and the results were shown in scat-
terplots provided by TIMER.

2.6. Real-TimeQuantitative Reverse Transcription Polymerase
Chain Reaction (RT-qPCR). Total RNA was extracted from
LO2 and HepG2 cells using TRIzol reagent. We synthesized
cDNA from total RNA using the One Step PrimeScript RT-
PCR Kit. Next, RT-qPCR was conducted and analyzed using
the ChamQTMUniversal SYBR qPCRMasterMix (Vazyme,
Nanjing, China) and the ABI 7500 sequence detection
system. *e cycling condition for RT-qPCR was 95°C for
3min, 45 cycles of 95°C for 5 s, 60°C for 30 s, and 72°C for
10 s. Each experiment was conducted in triplicate. Primer
sequences are listed in Table 1.

2.7. Statistical Methods. In the TCGA HCC dataset, dif-
ferences between normal and HCC tissue groups were an-
alyzed by t-test or Mann–Whitney U test. ANOVA test or
Kruskal–Wallis test was used for multiple comparisons.
Correlations among ARIDs were estimated using the
Spearman test. Survival curves were plotted by the KM
method, with hazard ratios (HRs) with 95% confidence
intervals (CIs) and log-rank p values. In this paper, statistical
analyses were conducted using the R software (version 3.6.3)
or online databases. p value < 0.05 are statistically
significant.

3. Results

3.1. Gene Expression Analysis of ARIDs. As displayed in
Figure 1, 15 ARIDs were identified in distinct cancers,
containing breast cancer, liver cancer, brain cancer, and
central nervous system (CNS) cancer. *e expression levels
of ARID1A, ARID2, ARID3A, ARID3B, ARID4B, ARID5B,
KDM5A, KDM5B, KDM5D, and JARID2 were upregulated,
and expression levels of ARID1B, ARID4A, ARID4B, and
KDM5D were downregulated in all types of liver cancers
(including hepatocellular adenoma, liver cell dysplasia,
HCC, and cirrhosis). Furthermore, data from four datasets
[26–28] in ONCOMINE demonstrated that ARID1A,
ARID2, ARID3A, ARID4B, KDM5A, KDM5B, and JARID2
were markedly upregulated in HCC than that in normal
groups (Table 2). Furthermore, based on the TCGA dataset,
mRNA expression of ARID1A, ARID1B, ARID2, ARID3A,
ARID3B, ARID4B, KDM5A, KDM5B, KDM5C, KDM5D,
and JARID2 was remarkably overexpressed, and ARID3C
and ARID4A were underexpressed in HCC (Figure 2). In

addition, no significant difference was found regarding
ARID5A or ARID5B mRNA expression in the TCGA HCC
dataset. Subsequently, obvious correlations among ARIDs
were discovered using the Spearman test (Supplementary
Figure 1).

3.2. Correlations between Clinical Features and ARIDs Ex-
pression in HCC. To identify correlations of ARIDs ex-
pression with clinicopathological factors, the clinical data of
pathologic stage and histologic grade were analyzed based on
the TCGA database. Results showed that higher expression
levels of ARID1A, ARID2, and KDM5C were closely as-
sociated with advanced pathologic stages of patients with
HCC (Figures 3(a), 3(c), and 3(m)). Increased ARID3C
expression was related to the late pathologic stage
(Figure 3(f)). Moreover, violin plots displayed that the
expression levels of ARID2, ARID3A, ARID3C, ARID5B,
KDM5C, and JARID2 were remarkably related to grades
(Figures 4(a)–4(o). Higher expression levels of ARID2,
ARID3A, ARID5B, KDM5C, and JARID2 tended to be
correlated to higher histologic grade (Figures 4(c), 4(d), 4(j),
4(m), and 4(o)). ARID3C expression was negatively asso-
ciated with the histologic grade of patients with HCC
(Figure 4(f )).

3.3. Prognostic Value of ARIDs Members in HCC. *e
prognostic value of ARID family members in HCC was
identified using a KM plotter. KM plot presented that high
expression levels of 10 ARIDs, including ARID1A, ARID1B,
ARID2, ARID3A, ARID3B, ARID5B, KDM5A, KDM5B,
KDM5C, and JARID2, were associated with the shorter OS
of all patients with HCC (Figures 5(a)–5(d), 5(e), and 5(j)–
5(o)). Conversely, high mRNA expression levels of ARID3C
and KDM5D were obviously associated with better OS time
(Figures 5(f ) and 5(n)). In addition, the association between
ARID4A/ARID5B/ARID5A expression and OS in patients
with HCC did not show statistical significance (Figures 5(g)–
5(i)). Also, the prognostic value of CpGs was analyzed using
MethSurv, and a total of 127 –CpGs in ARIDs were found to
be associated with the prognosis of patients with HCC
(Supplementary Table 1). In univariate Cox analysis, path-
ologic stage, T stage, and some ARIDs (including ARID2,
ARID3A, ARID3B, KDM5B, KDM5C, and KDM5D) were
correlated to OS of HCC patients (Supplementary
Tables 2–16). Furthermore, multivariate Cox analysis indi-
cated that high expression levels of ARID3A, KDM5C, and
KDM5D were independently correlated with worse OS in
patients with HCC.

3.4. Genetic Mutations of ARIDs in Patients with HCC.
*e genetic alterations of ARID family members in the
TCGA dataset are displayed in Figure 6(a). Among 366
patients with HCC, 288 patients have genetic mutations of
ARID family genes, with 78.69% mutation rate of ARIDs.
*e percentages of genetic mutations of ARIDs in HCC
ranged from 7% to 33%, and the top 3 alteration rates in
ARID family genes were KDM5D (33%), ARID3C (15%),
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Table 1: Primer sequences for RT-qPCR.

Gene Forward (5′-3′) Reverse (5′-3′)
ARID1A GCAGCCAAGGAGAGCAGAGTAATC CTGAGCGAGACTGAGCAACACTG
ARID1B ATGAACCGCACAGACGATATGATGG TGGAGGCTGAGGACGACATATAAGG
ARID2 TACTGCCATGTCGTCGTCCTCTAC GCTGGTGAATGTTGCTGCTGTTG
ARID3B GACGGAGGTTTGGAAGATGAGGATG GGTGCTGGAAGTAGATTGGACATGG
ARID3C GCTCGACCTGTACGCTCTGTTTC TGATGGTGGTGGGTAGGCTGAG
ARID5A AGATGATGCCAGGAAAGACCAAAGC CACAAAGGACACAGAAGACCCAGAG
ARID5B AGCAAGAAATTCAGGAGGGCAAGG TCGGTGTGTCTGTAGAGGCTATGG
KDM5A AATGTGATGGTGGCTGTGATGAGTG AAGGAAGGAGGTGGTGCTGGAC
KDM5B CCGCCTCCTAGATTCCAGCAATTC GTTCTGGCTTCCGTTGTCTCCTC
KDM5C CCGCCTCCTAGATTCCAGCAATTC GTTCTGGCTTCCGTTGTCTCCTC
KDM5D AGAAGCATCCACCAGCCACATTG TCTCATCCACATCAGCAATCCAAGC
JARID2 CGTCGTGTTCTGTCTGGAGTGTG ATCGTAGCGGTACATCAACTTCAGC
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Figure 1: *e mRNA expression of AT-rich interaction domain (ARID) family members in multiple cancers and hepatocellular carcinoma
(HCC) based on ONCOMINE. Blue and red colors, respectively, indicate low and high expression. *e number in each box represents the
number of datasets that fulfill the criteria for this study.

Table 2: Transcriptional levels of AT-rich interaction domains (ARIDs) between HCC and normal liver tissues (ONCOMINE).

No Gene name Fold change p value T-test Datasets
1 ARID1A 1.903 4.62E-6 5.073 Roessler Liver (22)
2 ARID2 1.645 1.29E-6 6.204 Wurmbach Liver (21)
3 ARID3A 2.320 3.60E-12 7.407 Chen Liver (20)
4 ARID4B 1.541 7.11E-11 6.815 Chen Liver (20)
5 ARID4B 2.115 6.32E-9 7.949 Roessler Liver (22)
6 ARID4B 2.135 1.26E-7 6.917 Wurmbach Liver (21)
7 ARID4B 1.871 2.44E-42 15.272 Roessler Liver 2 (22)
8 KDM5A 1.739 7.49E-6 5.075 Wurmbach Liver (21)
9 KDM5B 2.242 1.84E-8 6.837 Wurmbach Liver (21)
10 KDM5B 2.226 4.12E-41 15.473 Roessler Liver 2 (22)
11 KDM5B 1.579 7.87E-8 5.510 Chen Liver (20)
12 KDM5B 1.625 2.20E-5 4.981 Roessler Liver (22)
13 JARID2 1.583 1.57E-35 13.970 Roessler Liver 2 (22)
14 JARID2 1.909 9.63E-5 4.717 Wurmbach Liver (21)
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and ARID1A (15%). *e KM survival plot of OS indicated
that the mutations of ARIDs were related to the poor
prognosis of patients with HCC (Figure 6(b)). As displayed
in Figures 6(c) and 6(d), genetic alterations in ARID family
genes were related to worse PFS (p � 0.0139) and DFS
(p � 0.0317) of patients with HCC. Collectively, genetic
mutations of ARID family members may remarkably in-
fluence the survival of patients with HCC.

3.5. FunctionalAnalyses ofARIDs inHCC. *e top 10 similar
genes of each ARID family gene were collected from the
GEPIA database (Supplementary Table 17). The functions
of ARIDs were predicted using Metascape with the
thresholds of p -value < 0.05, min overlap = 3, and min
enrichment = 3. Following the removal of the duplicate
genes, 140 genes were collected, including 15 ARID family
genes and 125 similar genes. As shown in Figure 7(a),
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Figure 2: Expression of 15 ARID family members in HCC and normal tissues. (a-o) *e mRNA expression levels of ARIDs were increased
in HCC compared with normal tissues based on*e Cancer Genome Atlas (TCGA) dataset. ns represents p≥ 0.05, ∗ represents p< 0.05, ∗∗
represents p< 0.01, and ∗∗∗ represents p< 0.001.
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KEGG pathways, including transcriptional misregulation in
cancer, mircoRNAs in cancer, ubiquitin-mediated proteolysis,
transforming growth factor (TGF)-beta signaling pathway,
bacterial invasion of epithelial cells, endocytosis, choline
metabolism in cancer, and Wnt signaling, were correlated
with the biological functions of ARIDs in HCC. Moreover,
the enriched GO terms of these genes were classified into
three groups: 9 biological processes, 4 molecular functions,

and 7 cellular component terms. As displayed in Figures 7(b)
and 7(c), these genes were mainly related to chromatin
binding, protein polyubiquitination, mRNA transport, and
covalent chromatin modification. Additionally, the two most
crucial MCODE components were identified from PPI
analysis. Results showed that biological functions were mostly
related to ubiquitin-mediated proteolysis (MCODE 1), and
RNA transport (MCODE (2) (Figure 7(e)).
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Figure 3:*e relationship between the expression of different ARIDs and pathologic stages (TCGA dataset). (a–o) Violin plots showing the
expression of the 15 ARID family genes with the pathologic stages (normal, stage I/II, and stageIII/IV). ARID1A, ARID2, and KDM5C were
highly expressed in advanced stage (a, c, m) and lower mRNA expression of ARID3C was detected in the early stage (f ). ∗ indicates p< 0.05,
∗∗ indicates p< 0.01, ∗∗∗ indicates p< 0.001, and ns represents p≥ 0.05.
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3.6. Immune Regulating Roles of ARIDs. As shown in Fig-
ures 8 and Figure 9, results from the TIMER database
showed that the expression of ARID1A, ARID2, and
ARID4A was positively related to tumor purity (p< 0.05),
indicating that these three genes were lowly expressed in the
HCC immune microenvironment. Conversely, a negative
correlation between ARID5A/ARID5B and tumor purity
was found. Moreover, except for ARID3C and KDM5D,
other ARID family members were significantly associated

with all six types of immune cells (B cell, CD4+ T cell, CD8+
T cell, macrophage, neutrophil, and dendritic cell) in HCC
microenvironment.

4. Discussion

Hepatocellular carcinoma (HCC) is a common malignancy
belonging to liver cancer with high mortality. Patients with
HCC are often diagnosed at the middle or advanced stage
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Figure 4: Association between the expression of distinct ARIDs and histologic grades. (a–o) Violin plots showing the expression of the 15
ARID family genes with grades (normal, G1/2, and G3/4). ARID2, ARID3A, ARID3B, ARID5B, KDM5C, and JARID2 were highly
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p< 0.01, and ns represents p> 0.05.
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Figure 5: Continued.
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Figure 5: *e prognostic value of ARID family genes in HCC patients (Kaplan–Meier plotter). (a–o) *e Kaplan–Meier survival curves
comparing HCC patients with high (red) and low (black) expressions of ARIDs were plotted. High expression levels of ARID1A (a),
ARID1B (b), ARID2 (c), ARID3A (d), ARID3B (e), ARID5B (j), KDM5A (k), KDM5B (l), KDM5C (m), and JARID2 (o) were significantly
correlated with shorter overall survival (OS) in HCC patients. High expression levels of ARID3C (f) and KDM5D (n) were remarkably
associated with better OS. Others showed no correlation with OS time.
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with a poor prognosis. *erefore, the identification of novel
prognostic and diagnostic markers is urgently needed. As
transcriptional regulators, ARIDs regulate cellular growth,
differentiation, and development in a variety of cancers [29].
Zhang et al. identified the prognostic value of ARIDs and
provided insight to explore the ARID-targeting regents for
breast cancer treatment [9]. Sun et al. revealed the associ-
ation between ARIDs, prognosis, and the tumor microen-
vironment in HCC, indicating that ARIDs are prospective
therapeutic targets for HCC [30]. Growing evidence dem-
onstrates that ARID family genes act as tumor promoters or
suppressors to regulate the occurrence and development of
cancers [8]. A pan-cancer analysis for ARID family members
exhibits that ARIDs are novel biomarkers for immune
checkpoint inhibitor therapy [12].

ARID1A is highly expressed in primary HCC, and the
overexpression of ARID1A could accelerate tumor initiation
[31]. Consistently, our study found that ARID1A was highly
expressed in HCC and associated with pathologic stage and
OS time. However, loss of homozygous or heterozygous
ARID1A inHCCmay accelerate progression [31].*erefore,
ARID1A plays a context-dependent function in tumor in-
hibition and carcinogenesis in HCC. Hu et al. reported that
ARID1A deficiency could increase tumor mutation burden,
upregulate the programmed cell death ligand 1 (PD-L1)
expression, and modulate the immune microenvironment
[32], which supports our findings. Interestingly, growth-
promoting effect was observed for the knockdown of
ARID1B in HCC [33], which is contrary to our results. *e
abnormality of ARID1B may destroy the function of Switch/
sucrose-nonfermentable (SWI/SNF) complex in the

regulation of gene expression and antioncogenic and on-
cogenic pathways, which are related to the carcinogenesis of
HCC [34]. Additional studies are still needed to explore the
modulatory pathways of ARID1A and ARID1B.

Our data showed that ARID2 was highly expressed in
HCC and associated with clinicopathological factors and
poor prognosis. ARID2 is an important tumor suppressor in
HCC, but recent genomic studies have found frequent
mutations of ARID2 in HCC [35]. *e nucleotide change of
ARID2 is also considered to be the driver of HCC [36].
Furthermore, inactivating mutations of ARID2 in three
main types of HCC, including hepatitis C virus (HCV)-
related, hepatitis B virus (HBV)-related, and alcohol-related
HCC were found [37]. Combined with previous studies, our
discoveries further confirmed that ARID2 may be a
promising prognostic and therapeutic target for HCC.

ARID3 subfamily, containing ARID3A, ARID3B, and
ARID3C, regulates gene expression by binding to specific
DNA common sites, playing a key role in transcriptional
regulation [38]. Our study found that ARID3A and ARID3B
were overexpressed in HCC and associated with poor OS. In
particular, ARID3A was an independent prognostic factor
for predicting OS of patients with HCC, and HCC patients
with advanced grades tended to have higher mRNA ex-
pression of ARID3A. ARID3A is reportedly involved in a
variety of biological processes and maybe correlated with
tumorigenesis. Also, overexpression of ARID3A could po-
tentiate cancer cell proliferation, migration, and invasion
[39]. In addition, previous research has shown that ARID3A
and ARID3B jointly regulate gene expression in B-cells and
cancers, regulate stem cell-related genes, and promote the
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Figure 6: Alteration frequency of ARID family genes and their correlation with prognosis of HCC patients (cBioPortal database). (a) *e
ARIDs mutation rate was 78.69% (288/366) in patients with clear cell renal cell carcinoma (ccRCC). *e top three highest alteration rates in
ARID family genes were KDM5D (33%), ARID3C (15%), and ARID1A (15%), respectively. (b) Genetic alterations in ARIDs showed no
correlation with OS time. (c) Genetic alterations in ARID family genes were remarkably related to progression-free survival (PFS) of ccRCC
patients (p< 0.05). (d) Genetic alterations in ARID family genes were significantly related to disease-free survival (DFS) of HCC patients
(p< 0.05).
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Figure 7: Functional enrichment analysis of ARID family members and their similar genes in HCC patients (GEPIA and Metascape).
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phenotype of tumor stem cells [38]. Additionally, ARID3C
was observed to be a protective prognostic factor for HCC.
ARID3C has been identified as one of the main downstream
targets of β-catenin, and ARID3C knockdown could inhibit
cell proliferation of ovarian cancer [40]. Studies on ARID3C
in HCC are still limited, but our data provided some light
into this field.

ARID4A plays a dual role in cancer progression. In
patients with prostate cancer, the down-regulation of
ARID4A promotes tumor progression [41]. ARID4A is a
tumor suppressor in breast cancer, the expression of which
indicates better OS in patients with breast cancer [9].
However, our data demonstrated that ARID4A was not
significantly correlated with OS or clinicopathological in
HCC. Moreover, it has been reported that the expression of

ARID4B in HCC tissues was upregulated compared to that
in adjacent normal liver tissues, which is an independent
prognostic factor for predicting OS and DFS of patients with
HCC [42]. Although we also found that ARID4B was
upregulated in HCC, OS is not significantly different be-
tween the low and high ARID4B expression groups. *us,
research with a larger sample size is warranted.

ARID5 subfamily includes ARID5A and ARID5B. *e
research found that ARID5A regulates the inflammatory
process, low expression of which is correlated with poor
prognosis of lung cancer patients [43]. ARID5A is also a
prognostic biomarker for glioma, which is correlated with
immune infiltration [44]. ARID5B is associated with histone
deacetylase-1, thereby affecting cell proliferation and dif-
ferentiation [45]. In our study, KM survival curves displayed
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that high ARID5B expression was associated with worse OS
time, but the association between ARID5A and OS of pa-
tients with HCC did not reach statistical significance.

Our results revealed that KDM5A, KDM5B, KDM5C,
and KDM5D were upregulated in HCC tissues. A previous
study indicates that KDM5A depletion leads to reduced cell
migration, invasion, and proliferation of HCC, which may
promote angiogenesis by activating the PI3K/AKT pathway
[46]. Also, KDM5B is highly expressed in HCC, promoting
the occurrence of HCC by regulating the YTHDF3/ITGA6
axis [47]. Meanwhile, we found that high expression levels of
KDM5A, KDM5B, and KDM5C were associated with
shorter OS, and high expression of KDM5D was correlated
with longer OS time. In particular, patients with HCC at an
advanced stage or grade have higher KDM5C mRNA ex-
pression. Evidence has demonstrated that the over-
expression of KDM5C could predict a poor prognosis of
HCC patients undergoing radical resection and promotes
the HCC cell invasion, metastasis, and epithelial-mesen-
chymal transition, suggesting that KDM5C may be a po-
tential therapeutic target for HCC [48]. Multivariate Cox

analysis showed that KDM5C or KDM5D was an inde-
pendent prognostic factor for the prediction of OS. KDM5D
regulates the epithelial-mesenchymal transformation and
metastasis of gastric cancer, which is a novel target for cancer
treatment [49]. Besides, JARID2 was elevated in HCC, high
expression of which was remarkably related to late grade and
worse prognosis. Preceding research has shown that the
expression of JARID2 in HCC is significantly upregulated,
which is closely associated with the metastasis of HCC.
JARID2 could also promote invasion, metastasis, and epi-
thelial-mesenchymal transition of HCC cells via the PTEN/
AKT pathway [50].

*e frequent mutations of ARIDs have been well-
established using the cBioPortal database, which is sup-
ported by previous studies [8, 33]. ARIDs mutations are
correlated with poor prognosis in patients with HCC. CpGs
methylation in all ARIDs may serve as prognostic markers
for HCC patients. To further study the potential mechanism
of ARIDs in HCC, functional analysis was performed, and
the results showed that ARIDs and their similar genes were
involved in the signaling pathways related to inflammatory
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responses and cancer. Evidence showed that inefficient
proteolysis can lead to the dysregulated cell cycle transition,
which eventually results in tumorigenesis. *erefore,
ubiquitin ligases related to cell cycle regulation are expected
to become a therapeutic strategy for cancer [51]. Addi-
tionally, abnormal activation of the Wnt/β-catenin signal
plays an important role in precancerous dysplasia, malignant
transformation of hepatocytes, and malignant expansion of
tumor cells [52]. According to PPI analysis, ARIDs mostly
interact with UBE2D1, HUWE1, FBXO11, and MED23, and
these hub genes play essential roles in the tumorigenesis and
progression of HCC [53–56]. Several studies focus on the
association between hub genes and HCC, however, the exact
mechanisms remain to be further studied. Most of the ARID
family genes were closely related to immune cells in the HCC
microenvironment, suggesting that ARIDs could regulate
the immune condition of HCC and may be potential pre-
dictors for immune checkpoints during treatment. However,
survival analyses in this study were based on public data-
bases. *erefore, more validations are needed to verify our
discoveries. Besides, the functional analysis also needs to be
verified by in vitro and in vivo experiments.

5. Conclusions

ARIDs mutations, 127 CpGs methylation in all ARIDs, and
the expression levels of ARID1A/B, ARID2, ARID3A/B/C,
ARID5B, KDM5A/B/C/D, and JARID2 were related to the
prognosis of patients with HCC. Moreover, ARID3A,
KDM5C, and KDM5D were also independent risk factors
for the prognostic prediction of HCC. ARIDs may be as-
sociated with the regulation of cancer-associated pathways
and immune function. Our findings revealed that ARIDs are
potential prognostic biomarkers for HCC. ARID family
members can be as promising therapeutic targets for HCC.
Further research is still needed to validate these results and
promote the clinical application of ARID family members in
HCC.
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