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Hearing loss is one of the most common disabilities affecting both children and
adults worldwide. However, traditional treatment of hearing loss has some limitations,
particularly in terms of drug delivery system as well as diagnosis of ear imaging. The
blood–labyrinth barrier (BLB), the barrier between the vasculature and fluids of the inner
ear, restricts entry of most blood-borne compounds into inner ear tissues. Nanoparticles
(NPs) have been demonstrated to have high biocompatibility, good degradation, and
simple synthesis in the process of diagnosis and treatment, which are promising for
medical applications in hearing loss. Although previous studies have shown that NPs
have promising applications in the field of inner ear diseases, there is still a gap
between biological research and clinical application. In this paper, we aim to summarize
developments and challenges of NPs in diagnostics and treatment of hearing loss in
recent years. This review may be useful to raise otology researchers’ awareness of effect
of NPs on hearing diagnosis and treatment.
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INTRODUCTION

Hearing loss is one of the most common disabilities affecting the quality of life. Nowadays,
people’s lifestyle has been changed with longer life expectancy, and the prevalence and the
severity of hearing loss have increased (Cruickshanks et al., 2003; Isaacson, 2010). According
to World Health Organization (WHO), more than 5% of the world’s population suffer from
disabling hearing loss that includes 34 million children (Chadha and Cieza, 2017), and it is
more prevalent in the elderly (≥70 years) (Zahnert, 2011). Hearing loss is divided into three
categories: conductive, sensitive, and mixed hearing loss. Common causes of conductive hearing
loss are earwax embolism, otitis media, cholesteatoma, and otosclerosis, among others (Zahnert,
2011). Sensorineural hearing loss (SNHL) is usually caused by sensory nerve transmission
problems at or behind the cochlea, including presbycusis, inner ear infection (He et al.,
2020), Meniere’s disease (Wang et al., 2015), noise-induced hearing loss (Varela-Nieto et al.,
2020), autoimmune hearing loss (Fan et al., 2019), genetic diseases (Zhu et al., 2018; Cheng
et al., 2021; Fu et al., 2021a; Lv et al., 2021), age-related hearing loss (He et al., 2021),
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and ototoxic material hearing loss (Liu et al., 2016, 2021;
Gao et al., 2019; Liu W. et al., 2019; Zhang Y. et al., 2019;
Zhong et al., 2020; Fu et al., 2021b).

Attention to the treatment of hearing loss has varied, which
is influenced by social status, education, and race. For example,
nearly two-thirds of United States adults aged 70 years and
older are affected by hearing loss, and only 15% of older
people use hearing aids (Mamo et al., 2016). At present, the
traditional treatment of hearing loss includes drug therapy,
hearing aids, and cochlear implant (CI). Systemic administration
and intratympanic (IT) steroid injection are much prevalent
clinical therapy to restore hearing loss (Ermutlu et al., 2017;
Mirian and Ovesen, 2020). Due to the special and complex
anatomical structure of the inner ear, the blood–labyrinth barrier
(BLB) prevents most drugs in the blood from reaching the inner
ear, such as protein, carbohydrate, and other small molecules
(Shi, 2016); most of the hearing loss drug treatment is ineffective
(Nyberg et al., 2019). Compared to systemic administration,
IT injection has been shown to keep high concentrations of
steroids in the perilymph and can be used as a substitute or
supplement for systemic steroid therapy (Chandrasekhar et al.,
2000). However, there are also differences in round window
membrane (RWM) size and permeability in IT injection, which
makes it difficult to accurately determine the drug concentration
for individualized treatment (Goycoolea, 2001).

Hair cells are the mechanical transduction cells in the cochlea,
which detect sound through the deflection of mechanosensory
stereocilia, and are the most critical cells in the inner ear (He
et al., 2017, 2019; Liu Y. et al., 2019; Qi et al., 2019, 2020; Zhou
et al., 2020). Once damaged, hair cells only have very limited
regeneration ability in mammals, and it is difficult for the new
neuron cell to proliferate in a specific site (Cheng et al., 2019;
Tan et al., 2019; Zhang S. et al., 2019; Zhang et al., 2020b;
Chen et al., 2021). Possibly, hair cells are so fragile that the
generation of inflammation in the inner ear can affect hair cell
survival, and the protection of these cells is the key to the
treatment of hearing loss (Zhang et al., 2020a,c). Because of the
limitations of traditional treatment of hearing loss, nanomaterials
are more and more likely to appear in the treatment of inner
ear diseases as a new type of small medical molecular particles
(Liu et al., 2018; Han et al., 2020; Yuan et al., 2021; Zhao
et al., 2021). Nanoparticles (NPs) with a diameter of 1–1,000 nm
can not only promote the effective concentration time of drugs
in vivo, but also carry drugs to specific parts of the cochlea
(Pyykkö et al., 2016). NPs have been demonstrated to have high
biocompatibility, good degradation, and simple synthesis in the
process of diagnosis and treatment (Zha et al., 2016; Shang
et al., 2018; Yang et al., 2018; Zhao et al., 2019). Because of
this, nanomaterials and their related products have been widely
used in drug delivery applications, including cancer treatment,
diagnosis, molecular imaging, and other applications (Shaikh
et al., 2018; Li D. et al., 2019; Guo J. et al., 2020; Yang et al.,
2021). Also, it is possible for nanomaterials to be used in hearing
loss with many advantages that have been found in many other
diseases’ treatment, such as the regeneration of neural stem cells,
the induced differentiation of neurons, and the transmission of
some specific active substances in inner ear cells (He et al., 2016;

Jiang et al., 2020; Xia et al., 2020; Yang et al., 2020). There are
various kinds of medical nanomaterials for hearing loss, such as
poly(lactic-co-glycolic-acid) NPs, silica NPs, magnetic NPs, and
lipid NPs (Pyykkö et al., 2016). This review aims to summarize
the useful nanomaterials emerging in the diagnosis and treatment
of hearing loss in recent years.

COMPARISON OF TRADITIONAL
MEDICINE TREATMENT AND
NANOMEDICINE IN HEARING LOSS

At present, systemic drug delivery and IT injection (Figure 1)
are the traditional drug treatments for hearing loss caused by
inner ear diseases (Li et al., 2018). Previous studies have reported
that systemic administration has been successfully used in the
treatment of sudden hearing loss (SHL), autoimmune inner ear
disease (AIED), Meniere’s disease, and other inner ear diseases
by intravenous, intramuscular, or oral administration (Li and
Ding, 2020; Liu et al., 2020). Although the drugs can reach
the inner ear through systemic administration, the limited local
blood supply and poor penetration of BLB often lead to the local
drug concentration lower than the treatment criteria (Nyberg
et al., 2019). In order to reach the expected therapeutic effect,
large doses of drugs are needed, which often lead to serious
ototoxicity. However, high dose of systemic glucocorticoids
can lead to hypertension, hyperglycemia, osteoporosis, and
immunosuppression, as well as long-term high-dose adrenal
suppression (McCall et al., 2010; Stout et al., 2019), which is
harmful to human health.

On the other hand, IT injects the drug into the middle ear
space, allowing the drug to diffuse to the inner ear through the
RWM, bypassing the labyrinthine artery and blood inner ear
barrier, which is more efficient than systemic administration and
avoids the side effects of high-dose medication (Buniel et al.,
2009). Schuknecht (1957) first used IT injection as a means to
deliver streptomycin into the inner ear to effectively treat the
hearing loss of Meniere’s disease. The drug concentration of
IT injection in the inner ear fluid, perilymph, and endolymph
was significantly higher than that of oral or non-injection
(Jackson and Silverstein, 2002; Buniel et al., 2009). Although
IT administration is highly efficient and reduces the toxic and
side effects of systemic administration, the concentration of drug
reaching the inner ear depends on the dose of drug contacting
the RWM circular window membrane of the middle ear, and the
difference of RWM permeability will lead to the change of drug
retention and elimination rate (Buniel et al., 2009; Lehner et al.,
2021), which eventually makes it difficult to formulate a standard
for dosing regimen. As a result, it is difficult to achieve precision
therapy for hearing loss with traditional medication.

Compared with IT injection of dexamethasone, the products
of nanotechnology have great advantages in drug treatment
of hearing loss. For example, hydrogel nanomaterials deliver
poloxamer 407 loaded with micronized dexamethasone (mDex)
to guinea pig round window, which provides sustained release
of drugs, increases the total concentration of peripheral blood
lymphocytes by about 1.6-fold, and increases the residence time
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FIGURE 1 | Applications of nanomaterials in hearing loss. (A) Nanoparticles (NPs) can serve in drug delivery systems to the inner ear with intratympanic (IT) injection.
(B) Nanomaterials can be used as contrast agents in otologic imaging. (C) Application of nanomaterial in cochlear implants (CIs). Part of the material in Figure is from
https://smart.servier.com.

of drugs by about 24-fold. The initial peak concentration of
dexamethasone injection before clearance from the lymphatic
vessels was within 12 h, while the mDex hydrogel sustained
release for 10 days (Wang et al., 2009). This study also
demonstrates that mDex delivery using poloxamer 407 led to
more homogenous distribution of dexamethasone along the
length of the cochlea (Salt et al., 2011; Rathnam et al., 2019). In
addition, some natural substances can also be transformed into
NPs that promotes the growth of nerve cells or protect cells from
inflammatory damage (Lambert et al., 2016), which means there
will be more possibilities to find various natural NPs.

NANOMATERIALS IN OTOLOGY
IMAGING

As a new medical application of nanomaterials, the nano
drug delivery system not only has a wide application in drug
transportation of inner ear hearing loss, but also plays a role in
clinical diagnosis and treatment of inner ear hearing loss diseases
because of its specific penetration, good biocompatibility, and
editability (Rathnam et al., 2019). Due to the special anatomical
structure of BLB and the highly complex separation of the inner
ear region, it is difficult to get enough contrast agents to reach
the inner ear (Kayyali et al., 2017). Therefore, conventional
Computed tomography (CT) and magnetic resonance imaging
(MRI) are not appropriate for the imaging of the microstructure
of the cochlea. However, it is difficult for many novel contrast
agents with certain biocompatibility or targeting to guarantee
the sensitivity and specificity of the inner ear diseases’ diagnosis
(Liu et al., 2021).

Superparamagnetic nanoparticles (SPIONs) with good
physical properties are characterized by nanocrystalline iron
oxide (Fe3O4) or magnetite (γ-Fe2O3) nucleus, with a molecular

diameter of 100–300 nm and with a certain biocompatibility
(Laurent et al., 2008; Salazar-Alvarez et al., 2008). Therefore,
many studies have verified its possibility as a new MRI contrast
agent. Ceric ammonium nitrate oxidant stabilized γ-maghemite
NPs could be detected in the inner ear using MRI after IT
administration in vivo (Zou et al., 2017b). Besides, there are
also some NPs such as superparamagnetic magnetohematite
(γ-Fe2O3) NPs and lipid NPs that are designed to combine
with traditional contrast agents to form chelates that can reflect
the distribution of these contrast agents in the cochlea and
form visual images (Zou et al., 2017a,b). Some metal ion NPs
have great advantages in inner ear structure imaging. For
example, the contrast enhancement rate of the new optical
contrast agent containing nano silver clusters is more than
90%, and the ear veins can be detected much clearly (Chu
et al., 2014; Ray et al., 2014). Interestingly, the nano chelate
containing gold proved that the CT imaging effect of the inner
ear structure was concentration gradient dependent in a certain
range (Zou et al., 2015). These findings may indicate that
they can be used as a potential nano template to visualize the
cochlear structure in the middle ear granule in the future and
to assess whether the drugs reach the designated site by positron
emission tomography and MRI in the application of inner ear
diagnosis and therapy.

APPLICATION OF NANOMATERIALS IN
COCHLEAR IMPLANT

There are more than 324,000 CI users in the world. CI has
greatly improved the quality of hearing life of patients with
hearing loss. The mechanism of CI in the treatment of hearing
loss is related to the connection between the CI electrode array
and auditory neurons (Zhao et al., 2020). CI directly injects
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current into surrounding tissues through the implanted electrode
array and maps the frequency of cochlea to location (Danti
et al., 2020). Therefore, the emergence of nanotechnology makes
significant innovation and progress of the CI electrode array. In
order to reduce the damage caused by cochlear implantation,
nanomaterials are applied to the corresponding electrode array
to improve cochlear signal transmission and promote the growth
of auditory nerve cells. Some physical stimulations as well as the
influence of the cellular microenvironment are able to regulate
cell migration and can direct neurite outgrowth in spiral ganglion
neurons (SGNs) preferentially along a certain direction (Guo
et al., 2019; Girão et al., 2020; Hu et al., 2021; Wei et al., 2021).
More importantly, changes in cell culture environment can help
to maintain and promote the electrophysiological properties of
the SGNs, regulate the cells’ polarity, promote the area of growth
cones, or significantly increase the synapse density of the SGNs
(Sun et al., 2016; Yan et al., 2018).

The application of nanomaterials, such as graphene and
MXene, can also promote the proliferation and differentiation of
neural stem cells in the inner ear, and many ultrastructures can
be produced by 3D printing technology or other novel methods,
so as to obtain more satisfactory biological characteristics that
can be applied in hair cells (Waqas et al., 2017; Fang et al.,
2019; Xia et al., 2019; Guo R. et al., 2020; Guo et al., 2021).
These new technological products indicate that the application of
nanomaterials in cochlea may be conducive to hearing recovery
and cell regeneration (Guo et al., 2016; Li G. et al., 2019;
Tang et al., 2019). Similarly, biodegradable calcium phosphate
hollow nanospheres, used as CI electrode coatings and loaded
with neurothrophins, attract the growth of regenerating auditory
neuron dendrites through bioactive gels and finally establish
direct physical contact between the auditory neurons and the
CI electrodes as a result (Li et al., 2017). Carbon nanotubes
(CNTs) and micro-textured nano-crystalline diamond can also
enhance the transmission of inner ear electrical stimulation by
increasing the contact area of the coating, which brings no
additional cell damage (Burblies et al., 2016; Cai et al., 2016;
Choi et al., 2019).

What is more exciting is that there are also nanomaterials
in the cochlea that can be used for a longer time by
spontaneous power supply. Some studies have investigated
the silver NP microcoil with the micro size by aerosol jet
printing. It has been demonstrated that the electromagnetic
field generated by this material is not affected by cochlear
environment (Sarreal and Bhatti, 2020). The eddy current
generated by electromagnetic field can be used to stimulate
the nearby tissues, and to improve the spatial resolution
of cochlear tissues and CI function (Golestanirad et al.,
2018). Some researchers have also developed electrospun
piezoelectric polymer nanofibers that can transform sound
waves into electrical signals through the possible synergistic
effect of piezoelectric and triboelectric, which provides a
basis for the development of self-powered small nano cochlea
(Viola et al., 2020).

These studies may have paved the way for the development
of self-powered nanofibrous implantable auditory sensors, which
suggests that more and more nanomaterials may be used

in the construction of cochlear materials and cochlear signal
transduction technology in the future.

DISCUSSION AND OUTLOOK OF
NANOMATERIALS IN THE FIELD OF
HEARING LOSS

Nanomaterials and related technology products may not only
provide diagnosis and treatment strategies for specific and
efficient treatment of hearing loss, but also other inner
ear diseases, such as otology tumors and ear inflammation.
Furthermore, we can foresee that some types of nanomaterials or
nanoproducts may be routinely used in the treatment of hearing
loss and other inner ear diseases in the future (Li et al., 2017).
Among the applications of nanomaterials in the diagnosis and
treatment of hearing loss, researchers pay more attention to the
biodegradability of nanomaterials and the ototoxicity in vivo.
These substances act on the cells or tissues of the inner ear, which
may also have ototoxicity, thus affecting the biological activity of
hair cells and the activity of auditory neurons. Although some
studies have found that NPs may have ototoxicity in vivo, there
is no clear report on the ototoxicity of nanomaterials to humans
(Murugadoss et al., 2021).

Previous studies have reported that positively charged NPs can
enter the inner ear more easily through RWM, as drug carriers
for inner ear diseases or CI materials, but they will produce
certain ototoxicity in the process of biodegradation with cell
membrane damage, production of reactive oxygen species, hair
cell apoptosis, etc. (Yoon et al., 2015; Zhou et al., 2015). The
time required for NPs to enter the body is longer than traditional
drugs, but the possible effects of long-term residues of these
NPs in animals are still unclear (Wang et al., 2009; Ray et al.,
2014; Lehner et al., 2021). Therefore, future studies may need to
determine whether the components of NPs will accumulate in the
inner ear and the effects of these substances on hair cells.

Moreover, the cost of developing and manufacturing NPs for
clinical application in the field of inner ear diseases is significantly
higher than traditional treatments (Mokoena et al., 2019). Many
patients with hearing loss may choose low-cost and convenient
IT injection for treatment. Based on the current development
of manufacturing technology, the manufacturing difficulty and
cost of NPs are greatly overcome by printing technology, and
it makes it easier for researchers to edit and manufacture NPs
(Zhang et al., 2020d). In the future, we may choose to reduce
the manufacturing cost of NPs through 3D printing, reduce the
corresponding treatment costs, and try to produce NPs with
more functions that are more convenient to be preserved or
used. It is difficult to perfectly match the bioactivity of current
nanomaterials to the conditions that are required for hair cell
growth and proliferation in the inner ear, but it is possible that
we may design nanomedicines that can precisely promote the
differentiation of stem cells into auditory synesthesia cells, such
as inner ear stem cells, mesenchymal stem cells, and pluripotent
stem cells. In other words, if these novel nanomaterials can
carry certain stem cells into the inner ear that promote stem cell
differentiation into hair cells at specific structural locations, it will

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 October 2021 | Volume 9 | Article 750185

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-750185 October 1, 2021 Time: 15:34 # 5

Huang et al. Nanomaterials and Hearing Loss

be a great advance in the treatment of hearing loss with significant
hearing recovery.

CONCLUSION

The application of nanomaterials in the diagnosis and treatment
of hearing loss diseases is novel and promising. In the future,
ideal nanomaterials should be more universal, able to load more
therapeutic drugs with various functions, such as preventing
rapid degradation, retaining targeting effects, and prolonging the
action time in the inner ear. This kind of materials should not
only have better efficacy in various diseases of inner ear hearing
loss, but also have stronger ear permeability, and ensure no
impact or side effects on the human body. Many studies have
attempted to deliver drugs, genes, and growth factors to the inner
ear in vivo with nanomaterials, and promising results have also
been reported. However, we do not know the specific effect of
nanomaterials applied in human inner ear. There is still a big gap
between basic research and clinical application of nanomaterials,
so it is necessary to study the safety and effectiveness of
nanomaterials. With the emergence of new biomaterials and the
realization of a deeper understanding of inner ear physiology,

nanomaterials will have a clearer understanding of the diagnosis
and treatment of hearing loss.
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