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Abstract
Purpose: Stroke is one of the most prevalent vascular diseases. Non-invasive molecular imaging meth-
ods have the potential to provide critical insights into the temporal dynamics and follow alterations of 
receptor expression and metabolism in ischemic stroke. The aim of this study was to assess the cannabi-
noid type 2 receptor  (CB2R) levels in transient middle cerebral artery occlusion (tMCAO) mouse models 
at subacute stage using positron emission tomography (PET) with our novel tracer  [18F]RoSMA-18-d6 
and structural imaging by magnetic resonance imaging (MRI).
Procedures: Our recently developed  CB2R PET tracer  [18F]RoSMA-18-d6 was used for imaging neuro-
inflammation at 24 h after reperfusion in tMCAO mice. The RNA expression levels of  CB2R and other 
inflammatory markers were analyzed by quantitative real-time polymerase chain reaction using 
brain tissues from tMCAO (1 h occlusion) and sham-operated mice.  [18F]fluorodeoxyglucose (FDG) 
was included for evaluation of the cerebral metabolic rate of glucose (CMRglc). In addition, diffusion-
weighted imaging and  T2-weighted imaging were performed for anatomical reference and delineating 
the lesion in tMCAO mice.
Results: mRNA expressions of inflammatory markers TNF-α, Iba1, MMP9 and GFAP, CNR2 were increased 
to 1.3–2.5 fold at 24 h after reperfusion in the ipsilateral compared to contralateral hemisphere of 
tMCAO mice, while mRNA expression of the neuronal marker MAP-2 was markedly reduced to ca. 
50 %. Reduced  [18F]FDG uptake was observed in the ischemic striatum of tMCAO mouse brain at 24 h 
after reperfusion. Although higher activity of  [18F]RoSMA-18-d6 in ex vivo biodistribution studies and 
higher standard uptake value ratio (SUVR) were detected in the ischemic ipsilateral compared to con-
tralateral striatum in tMCAO mice, the in vivo specificity of  [18F]RoSMA-18-d6 was confirmed only in 
the  CB2R-rich spleen.
Conclusions: This study revealed an increased  [18F]RoSMA-18-d6 measure of  CB2R and a reduced  [18F]
FDG measure of CMRglc in the ischemic striatum of tMCAO mice at subacute stage.  [18F]RoSMA-18-d6 
might be a promising PET tracer for detecting  CB2R alterations in animal models of neuroinflammation 
without neuronal loss.

Key words Cannabinoid type 2 receptor · [18F]RoSMA-18-d6 · Ischemic stroke · 
Neuroinflammation · Magnetic resonance imaging · Positron emission tomography

Correspondence to: Linjing Mu; e‑mail: linjing.mu@
pharma.ethz.ch

(2022) 24:700Y709

Published online: 12 October 2021

https://orcid.org/0000-0002-0793-2113
http://orcid.org/0000-0001-5354-1546
http://crossmark.crossref.org/dialog/?doi=10.1007/s11307-021-01655-4&domain=pdf


Molecular Imaging and Biology

been shown to be neuroprotective and attenuates macrophage/
microglial activation in mouse models of cerebral ischemia 
[34–38].   CB2R was also upregulated in other brain diseases 
with involvement of inflammation/microglia under chronic 
inflammation in neurodegenerative diseases such as Alzhei-
mer’s disease [39–42]  and senescence-accelerated models 
[43]  associated with amyloid-β deposits [33, 44–50]. 

Several structural scaffolds of  CB2R PET tracers have 
recently been developed  [51–55] including pyridine deriva-
tives, oxoquinoline derivatives, thiazole derivatives  [56, 
57], oxadiazole derivatives [58],  carbazole derivatives [59],  
imidazole derivative [60],  and thiophene derivatives [61, 
62].  In this study, our newly developed pyridine derivative 
 [18F]RoSMA-18-d6 (Fig. 3b), which exhibited sub-nanomo-
lar affinity and high selectivity towards  CB2R (Ki: 0.8 nM, 
 CB2R/CB1R > 12′000) [63], was selected for  CB2R-targeted 
neuroinflammation imaging.

The aim of the current study was to evaluate the novel 
 CB2R tracer,  [18F]RoSMA-18-d6, in the transient middle 
cerebral artery occlusion (tMCAO) mouse models of focal 
cerebral ischemia [64–70] using microPET. In addition,  [18F]
FDG was included for evaluation of the cerebral metabolic 
rate of glucose (CMRglc) and as a readily available radi-
otracer benchmark for neuroinflammation [71, 72].  Diffu-
sion-weighted imaging (DWI) and  T2-weighted imaging were 
performed for anatomical reference and for delineating the 
lesion in tMCAO mice.

Methods
Radiosynthesis

[18F]RoSMA-18-d6 was synthesized by nucleophilic substitu-
tion of the tosylate precursor with  [18F]KF/Kryptofix222 in 
acetonitrile [63].  The crude product was purified by reverse 
phase semi-preparative high-performance liquid chromatog-
raphy and formulated with 5 % ethanol in water for intra-
venous injection and for biological evaluations. In a typical 
experiment, a moderate radiochemical yield of ~ 12 % (decay 
corrected) was achieved with a radiochemical purity > 99 %. 
The molar activities ranged from 156 to 194 GBq/μmol at the 
end of synthesis. The identity of the final product was con-
firmed by comparison with the HPLC retention time of the 
non-radioactive reference compound by co-injection.  [18F]
FDG was obtained from a routine clinical production from 
the University Hospital Zurich, Switzerland.

Animals

Twenty-four male C57BL/6 J mice were obtained from Jan-
vier Labs (Le Genest-Saint-Isle, France). The mice were 
scanned at 8–10 weeks of age (20–25 g body weight). Mice 
were randomly allocated to sham-operation (n = 10) or 
tMCAO (n = 14). Mice underwent MRI, µPET/computed 
tomography (CT), and 2,3,5-triphenyltetrazolium chloride 

Introduction
The pathophysiology of ischemic stroke is complex and asso-
ciated with a myriad of cellular and molecular pathways. 
The severe reduction in cerebral blood flow (CBF) initiates 
a cascade of hemodynamic, vascular and inflammatory pro-
cesses in a time-dependent manner in the supplied brain ter-
ritory, and subsequent defensive response for repair related to 
lesion expansion and containment. Irreversible tissue damage 
occurs in the core of the ischemic area, while neurons in the 
ischemic penumbra face excitotoxicity, peri-infarct polariza-
tions, inflammation, and apoptosis, leading to a secondary tis-
sue damage and expansion of the lesion if reperfusion cannot 
be restored within an early time frame [1–3].  Neuroinflam-
mation post stroke has been an important therapeutic tar-
get. Anti-inflammatory, immunomodulatory treatments and 
microglia-targeted therapy were evaluated in clinical stroke 
trials [4–6].  Thus, there is a need for imaging the regional 
neuroinflammatory pattern for understanding disease mecha-
nism and for therapeutic monitoring.

Positron emission tomography (PET) using  [18F]fluorode-
oxyglucose  ([18F]FDG) for cerebral metabolic rate of glucose 
(CMRglc),  [15O]H2O for perfusion imaging, and diffusion 
weighted (DW) magnetic resonance imaging (MRI) are valu-
able tools to support understanding of the pathophysiology 
in patients with ischemic stroke [2, 7–13].  However, in vivo 
imaging of neuroinflammation and gliosis is challenging [11, 
12, 14].  One reason is that the astrocytes and microglia are 
highly dynamic and heterogeneous in their subtypes, loca-
tions, and activation status [15].  Additionally, the identifi-
cation of an ideal target for neuroinflammation imaging is 
highly demanding. Translocator protein (TSPO) is the most 
widely used neuroinflammation target for PET imaging.  [11C]
PK-11195, the first-generation TSPO PET tracer, and sev-
eral second-generation tracers such as  [11C]DAA1106,  [11C]
PBR06,  [11C]PBR28, and  [18F]DPA-713,  [18F]DPA-714, 
and third-generation tracers  [11C]GE180, and  [11C]ER176 
[16–27],  have been evaluated in (pre-)clinical studies. PET 
imaging studies using TSPO tracers have shown increased 
brain uptake in post-stroke, although different time course 
and distribution were detected depending on the animal mod-
els and procedures. A faster time-course is observed in per-
manent compared to temporary ischemic stroke, and a higher 
increase of TSPO ligand uptake in the infarct core in tempo-
rary stroke than in peri-infarct areas in permanent stroke was 
reported [12, 15, 20, 28].  Thus, the development of novel 
PET probes for visualizing alternative targets in neuroinflam-
mation have received great attention in recent years [29–32]. 

Cannabinoid type 2 receptors  (CB2R) are mainly expressed 
by immune cells including monocytes and macrophages. In 
the brain,  CB2Rs are primarily found on microglia and have 
low expression levels under physiological conditions [1, 3, 
33].  Upregulation of brain  CB2R expression is reported 
under acute inflammation such as ischemic stroke, and 
related to lesion extension in the penumbra and subsequent 
functional recovery [34].  Treatment with  CB2R agonists has 
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(TTC) histology staining for validation 24 h or 48 h after 
reperfusion. Animals were housed in ventilated cages inside 
a temperature-controlled room, under a 12-h dark/light cycle. 
Pelleted food (3437PXL15, CARGILL) and water were pro-
vided ad  libitum. Paper tissue and red Tecniplast mouse 
house® (Tecniplast, Milan, Italy) shelters were placed in 
cages as environmental enrichments. All experiments were 
performed in accordance with the Swiss Federal Act on Ani-
mal Protection and were approved by the Cantonal Veterinary 
Office Zurich (permit number: ZH018/14 and ZH264/16).

Surgeries for tMCAO and sham-operation were performed 
using standard-operating procedures as described before 
[73, 74].  Anesthesia was initiated by using 3 % isoflurane 
(Abbott, Cham, Switzerland) in a 1:4 oxygen/air mixture 
and maintained at 2 %. Before the surgical procedure, a local 
analgesic (Lidocaine, 0.5 %, 7 mg/kg, Sintectica S.A., Swit-
zerland) was administered subcutaneously (s.c.). Temperature 
was kept constant at 36.5 ± 0.5 °C with a feedback controlled 
warming pad system. All surgical procedures were performed 
in 15–30 min. After surgery, buprenorphine was adminis-
tered as s.c. injection (Temgesic, 0.1 mg/kg b.w.), and at 4 h 
after reperfusion and supplied thereafter via drinking water 
(1 mL/32 mL of drinking water) until 24 h or 48 h. Animals 
received softened chow in a weighing boat on the cage floor 
to encourage eating. tMCAO animals were excluded from 
the study if they met one of the following criteria: Bederson 
testing was performed 2 h post-reperfusion. Bederson score 
of 0, no reflow after filament removal, and premature death.

mRNA Isolation, Reverse‑Transcription Reaction, 
and Real‑Time Polymerase Chain Reaction

Brain hemispheres of C57BL/6 mouse and tMCAO mice at 
24 h and 48 h post reperfusion were used for total mRNA 
isolation according to the protocols of the Isol-RNA Lysis 
Reagent (5 PRIME, Gaithersburg, USA) and the bead-mill-
ing TissueLyser system (Qiagen, Hilden, Germany). Quanti-
Tect® Reverse Transcription Kit (Qiagen, Hilden, Germany) 
was used to generate cDNA. The primers (Microsynth, Bal-
gach, Switzerland) used for the quantitative polymerase chain 
reaction (qPCR) are summarized in Supplementary Table 1. 
Quantitation of CNR2, ionized calcium binding adaptor 
molecule 1 (Iba1), tumor necrosis factor (TNF‑a), matrix 
metallopeptidase 9 (MMP9), glial fibrillary acidic protein 
(GFAP), and microtubule‑associated protein 2 (MAP‑2) 
mRNA expression was performed with the DyNAmo™ Flash 
SYBR® Green qPCR Kit (Thermo Scientific, Runcorn, UK) 
using a 7900 HT Fast Real-Time PCR System (Applied Bio-
systems, Carlsbad, USA). The amplification signals were 
detected in real-time, which permitted accurate quantifica-
tion of the amounts of the initial RNA template during 40 
cycles according to the manufacturer’s protocol. All reactions 
were performed in duplicates and in two independent runs. 
Quantitative analysis was performed using the SDS Soft-
ware (v2.4) and a previously described  2− ΔΔCt quantification 

method  [75]. The specificity of the PCR products of each 
run was determined and verified with the SDS dissociation 
curve analysis feature.

In vivo MRI

Data were acquired at 24 h after reperfusion on a 7 T Bruker 
Pharmascan (Bruker BioSpin GmbH, Germany), equipped 
with a volume resonator operating in quadrature mode for 
excitation and a four-element phased-array surface coil for 
signal reception and operated by Paravision 6.0 (Bruker Bio-
Spin) [73, 76–78].  Mice were anesthetized with an initial 
dose of 4 % isoflurane in oxygen/air (200:800 ml/min) and 
maintained at 1.5 % isoflurane in oxygen/air (100:400 ml/
min). Body temperature was monitored with a rectal tem-
perature probe (MLT415, ADInstruments) and kept at 
36.5 ± 0.5 °C using a warm water circuit integrated into 
the animal support (Bruker BioSpin GmbH, Germany). 
 T2-weighted MR images were obtained using a spin echo 
sequence (TurboRARE) with an echo time 3 ms, repetition 
time 6 ms, 100 averages, slice thickness 1 mm, field-of-
view 2.56 cm × 1.28 cm, matrix size 256 × 128, giving an 
in-plane resolution of 100 μm × 100 μm. For DWI, a four-
shot spin echo–echo planar imaging sequence with an echo 
time = 28 ms, repetition time = 3000 [76, 77],  acquired with a 
field-of-view of 3.3 cm × 2 cm and a matrix size of 128 × 128, 
resulting in a nominal voxel size of 258 μm × 156 μm. Diffu-
sion-encoding was applied in the x-, y-, and z-directions with 
b values of 100, 200, 400, 600, 800, and 1000 s/mm2, respec-
tively, acquisition time 3 min 48 s. The ischemic lesion was 
determined as an area of significant reduction of the apparent 
diffusion coefficient (ADC) value compared with the unaf-
fected contralateral side [79].  On  T2-weighted images, the 
lesion was determined as an area of hyperintensities com-
pared with the contralateral side.

In vivo microPET Studies

MicroPET/CT scans were performed at 24 h after reperfu-
sion with a calibrated SuperArgus µPET/CT scanner (Sede-
cal, Madrid, Spain) with an axial field-of-view of 4.8 cm 
and a spatial resolution of 1.6–1.7 mm (full width at half 
maximum). tMCAO and the sham-operated C57BL/6 J mice 
were anesthetized with ca. 2.5 % isoflurane in oxygen/air (1:1) 
during tracer injection and the whole scan time period. The 
formulated radioligand solution  ([18F]FDG: 9.9–11 MBq 
or  [18F]RoSMA-18-d6: 7.2–13 MBq) was administered via 
tail vein injection, and mice were dynamically scanned for 
60 min. For blocking experiments, 1.5 mg/kg GW405833 
(Fig. 3a) was dissolved in a vehicle of 2 % Cremophor (v/v), 
10 % ethanol (v/v), and 88 % water for injection (v/v) and 
injected together with  [18F]RoSMA-18-d6. Body tempera-
ture was monitored by a rectal probe and kept at 37 °C by a 
heated air stream (37 °C). The anesthesia depth was measured 
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by the respiratory frequency (SA Instruments, Inc., Stony 
Brook, USA). µPET acquisitions were combined with CT 
for anatomical orientation and attenuation correction. The 
obtained data were reconstructed in user-defined time frames 
with a voxel size of 0.3875 × 0.3875 × 0.775  mm3 as previ-
ously described [80]. 

Triphenyltetrazolium Chloride (TTC) Staining

To assess the ischemic lesion severity in the brain of tMCAO 
mice and to validate the absence of lesion in the sham-
operated mice, staining with TTC staining was performed. 
After measurements mice were euthanized, their brains were 
removed and 1-mm thick brain slices were obtained with a 
brain matrix. Slices were incubated in a 2.5 % TTC solution 
(Sigma-Aldrich, Switzerland) in PBS at 37 °C for 3 min. Pho-
tographs of the brain sections were taken. Edema-corrected 
lesion volumes were quantified as described [81]. 

Biodistribution Studies in the Mouse Brain

After PET/CT scanning of tMCAO mice at 24 h after reper-
fusion with  [18F]RoSMA-18-d6, animals were sacrificed at 
70 min post injection by decapitation. The spleen and brain 
regions of ischemic ipsilateral area and contralateral hemi-
sphere were collected for analysis with a gamma counter. 
The accumulated radioactivities in the different tissues were 
expressed as percent normalized injected dose per gram of 
tissue normalized to 20 g body weight of the animals (norm. 
percentage injected dose per gram tissue ( % ID/g tissue)).

Data Analysis and Statistics

Images were processed and analyzed using PMOD 4.2 soft-
ware (PMOD Technologies Ltd., Zurich, Switzerland). The 
time − activity curves were deduced from specific volume-of-
interest that were defined based on a mouse MRI  T2-weighted 
image template [82].  Radioactivity is presented as standard-
ized uptake value (SUV) (decay-corrected radioactivity per 
 cm3 divided by the injected dose per gram body weight).  [18F]
RoSMA-18-d6 SUVR was calculated by using the midbrain 
in the corresponding hemisphere as reference brain region. 
For  [18F]FDG PET, regional SUV was calculated. Two-way 
ANOVA with Sidak post hoc analysis was used for compari-
son between groups (Graphpad Prism 9.0, CA, USA).

Results
Increased expression of inflammation makers and neuronal 
damage after focal cerebral ischemia in tMCAO mice mRNA 
levels were measured to address the question whether mouse 
non-ischemic and ischemic hemispheres differ in their 
expression levels of CNR2 and other inflammatory genes. 
CNR2 mRNA expression was increased to around 1.3-fold 
after 24 h reperfusion and at 48 h in the ipsilateral compar-
ing to contralateral hemisphere (Fig. 1a). Similarly, 1.5–2.5-
fold increases were observed in the mRNA expression of 
inflammatory markers including TNF‑α, Iba1, MMP9, and 
GFAP at 24 h and 48 h after reperfusion in the ipsilateral 
compared to contralateral brain region (Fig. 1b–e). MAP‑2 

Fig. 1.  Relative mRNA levels of inflammatory markers and neuronal damage in sham-operated and tMCAO mouse brain in contra-and 
ipsilateral brain hemisphere at 24 h and 48 h after reperfusion. a CNR2, b Iba1, c TNF-α, d MMP9, e GFAP, and f MAP-2. Values represent 
mean ± standard deviation. Expression levels were quantified by qPCR relative to β-actin. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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expression has been shown to be a reliable marker of neu-
rons that undergo cell death [83, 84].  The neuron-specific 
MAP‑2 expression was markedly reduced in the ipsilateral 
compared to contralateral hemisphere at 24 h and 48 h after 
reperfusion (Fig. 1f). As similar CNR2 mRNA expression 
was observed at 24 h and 48 h, our studies were performed 
at early time point of 24 h after reperfusion for investigating 
the functional, structural, and molecular changes in the fol-
lowing experiments.

Reduced Cerebral Glucose Metabolism and 
Structural MRI Lesion Following tMCAO

Reduced  [18F]FDG uptake was observed in the presumed 
MCA territory of the ipsilateral hemisphere in tMCAO mice, 
while there was no difference in  [18F]FDG uptake between 
hemispheres in sham-operated mice (Fig. 2a). SUVs were 
significantly lower in the ipsilateral striatum in tMCAO 
compared to the contralateral side and compared to the same 
region in sham-operated mice 1.8 vs 1.4 (Fig. 2b). There were 
no differences in  [18F]FDG uptake in the cortex and cerebel-
lum between the ipsilateral and contralateral hemisphere in 
tMCAO mice and sham-operated mice.  T2-weighted MRI and 

DWI imaging were performed in tMCAO and sham-operated 
animals at 24 h after reperfusion (Fig. 2c). The lesions in 
the ipsilateral side in the striatum and cortex were visible as 
areas of decreased values on the ADC maps calculated from 
DWI and as areas of increased intensities on the  T2-weighted 
MR images at 24 h after reperfusion following 1 h tMCAO 
(Figs. 2c–d). Ischemic lesions in the tMCAO were also seen 
ex vivo as white areas, while viable tissue appeared red in 
TTC stained brain sections (Fig. 2e). Homogenous deep red 
color was observed across both hemispheres in sham-oper-
ated mice, verifying the absence of any lesion. The hemi-
spheric lesion volumes in tMCAO mice were 42.8 ± 10.2 % 
(mean ± standard deviation).

Increased [18F]RoSMA‑18‑d6 Retention 
in the Striatum After tMCAO

To analyze the distribution of  [18F]RoSMA-18-d6 in tMCAO 
mice brain, dynamic µPET/CT scans were performed at 24 h 
after reperfusion. The standard uptake values (SUVs) of  [18F]
RoSMA-18-d6 did not reveal significant difference in vari-
ous brain regions of tMCAO mice (Supplementary Fig. 1). 
However, we found a reduced uptake at early time frame 

Fig. 2.  In vivo MRI and  [18F]FDG PET in tMCAO mouse brain. a Representative PET images of coronal, sagittal and horizontal mouse 
brain sections after intravenous injection of  [18F]FDG in sham-operated and tMCAO mice. The radiosignals were averaged from 21 to 
61 min; b  [18F]FDG accumulation (SUV) at different mouse brain regions (Str: striatum; Ctx: cortex; Cb: cerebellum) in sham and tMCAO 
mice. Significantly reduced  [18F]FDG accumulation was observed in the ipsilateral striatum compared to contralateral side in tMCAO 
mice; c–e in vivo  T2-weighted image, ADC map, and ex vivo TTC stained brain sections, indicating the delineation in tMCAO mice. TTC, 
2,3,5-triphenyltetrazolium chloride; ADC, apparent diffusion coefficient; SUV, standard uptake value. *p < 0.05.
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(1–3 min) and a similar uptake after 7 min in the ipsilat-
eral side compared to that of the contralateral side (Fig. 3c, 
and whole head images in Supplementary Fig. 2). Thus, to 
exclude the perfusion influence, we averaged the brain signals 
from 21–61 min and selected the midbrain as the reference 
region. Higher  [18F]RoSMA-18-d6 SUVR was observed in 
the ischemic ipsilateral striatum compared to the contralateral 
striatum (two-way ANOVA with Sidak multiple comparison 
correction, 0.97 ± 0.02 vs 0.87 ± 0.06, p = 0.0274), but not in 
other brain regions such as cortex (Figs. 3d, e). The increased 
signals at ischemic ipsilateral striatum, however, could not be 
blocked by the selective  CB2R agonist GW405833 (Fig. 3e).

At the end of the in vivo experiments, we dissected the 
mice to verify the activity accumulation and specificity 

of  [18F]RoSMA-18-d6 in the spleen and different brain 
regions with a gamma counter. In line with the results 
obtained from the averaged SUVRs in the tMCAO mouse 
brain, the radioactivity in the ipsilateral side was indeed 
significantly higher than that of the contralateral hemi-
sphere (0.037 ± 0.007 vs 0.026 ± 0.003, n = 5 each group), 
but no blockade effect was seen under blocking condi-
tions (Fig. 4a). As expected, radioactivity in the  CB2R-rich 
spleen was much higher than the brain and 58 % of the sig-
nals was blocked by co-injection of  CB2R specific ligand 
GW405833, demonstrating specific target engagement of 
 [18F]RoSMA-18-d6 in vivo (Fig. 4b).

Fig. 3.  In vivo microPET imag-
ing of tMCAO mouse brain 
using  [18F]RoSMA-18-d6. 
a,b Chemical structures of 
blocker GW405833 and  [18F]
RoSMA-18-d6; c representa-
tive PET images of horizontal 
mouse brain sections at different 
time frames after intravenous 
injection of  [18F]RoSMA-
18-d6; SUV: 0–0.5; d,e ratios 
of  [18F]RoSMA-18-d6 uptake 
under baseline and block-
ade conditions in cortex and 
striatum. Significantly higher 
 [18F]RoSMA-18-d6 standard 
uptake value ratio (SUVR) was 
observed in the ischemic ipsi-
lateral striatum under baseline 
conditions, but not in the ipsilat-
eral cortex. Midbrain was used 
as reference brain region for 
SUVR calculation. *p < 0.05.
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Discussion
This study assessed the utility of  CB2R PET tracer  [18F]
RoSMA-18-d6 for imaging tMCAO mouse at subacute stage, 
concomitant with decreased CMRglc levels and formation of 
a structural lesion. Previous PET imaging of stroke animal 
models led to inconclusive results. In a rat model of photo-
thrombotic stroke at 24 h after surgery, increased  [11C]NE40 
 (CB2R tracer) uptake and unvaried  [11C]PK11195 (TSPO 
tracer) uptake were reported [85].  In another study,  [11C]
NE40 uptake did not show any difference in the same rat 
model of photothrombotic stroke [86].  Moreover, reduced 
 [11C]A836339  (CB2R tracer) uptake was reported in a focal 
tMCAO rat model over 1–28 days after occlusion [56].  Pos-
sible reasons for these different observations include the time 
point of assessment, different methods for inducing acute 
stroke (transient or permanent ischemia) resulting in vari-
ations of ischemic severity and levels of inflammatory cell 
expression [36]. 

CB2R has negligible expression in the mouse brain and 
is mainly expressed in the spleen under physiological condi-
tions [39, 45, 64–69, 87].  Under neuroinflammatory condi-
tions,  CB2R is upregulated in activated microglial cells. In 
this study, we used quantitative real-time polymerase chain 
reaction to measure gene expression levels of CNR2, TNF‑
α, Iba1, MMP9, GFAP, and MAP‑2 at 24 h and 48 h. All 
tested inflammatory markers displayed increased mRNA 
levels in the ipsilateral brain hemisphere, in agreement with 
the reported findings in tMCAO mouse model [34, 38, 88, 
89].  In line with the increased CNR2 gene expression lev-
els, significantly higher  [18F]RoSMA-18-d6 SUVR (standard 

uptake value ratio) was observed in striatum at ipsilateral vs 
contralateral under baseline conditions in our PET studies. 
The 50 % reduction of the neuronal marker MAP‑2 indicated 
neuronal damage.

The dynamic µPET scan using  [18F]RoSMA-18-d6 indi-
cated a reduced perfusion in the lesion brain regions at 
the first time frame of 1–3 min. This is probably due to 
the changes of microvascular response (no-reflow phenom-
enon) and the reduction in neuronal activity. Taking the 
midbrain as the reference region, the ratios of SUV aver-
aged from 21 to 61 min revealed increased  [18F]RoSMA-
18-d6 SUVR in the ipsilateral ischemic striatum compared 
to that of the contralateral side. Our ex vivo bio-distribu-
tion studies confirmed the difference of the radioactivity 
distribution in the left and right brain hemisphere. The 
in vivo specificity of  [18F]RoSMA-18-d6 towards  CB2R 
is evidenced by a 58 % reduction in radioactivity in the 
mouse spleen under blockade conditions in ex vivo bio-
distribution studies. Underlying reasons for the lack of 
specificity of  [18F]RoSMA-18-d6 in the mouse brain may 
include (1) the increased tracer availability in the blood 
induced by blocking the  CB2R peripheral targets in the 
presence of the blocker GW405833; and (2) the relatively 
low brain uptake of our  CB2R-selective radioligand  [18F]
RoSMA-18-d6 in the mouse brain resulted in undetectable 
changes of radiosignals under baseline and blockade con-
ditions. Notably, the time-activity curves of  [18F]RoSMA-
18-d6 in tMCAO mouse brain showed remarkably higher 
initial brain uptake under blockade conditions than the 
baseline in both sides of the mouse brain (Supplementary 
Fig. 1), indicating the influence of blocking  CB2R target 

Fig. 4.  Ex vivo biodistribution of  [18F]RoSMA-18-d6 in the brain and spleen of tMCAO mouse. Animals (n = 4) were sacrificed at 70 min post-
injection, and the spleen and brain regions were dissected and analyzed with a gamma counter. a Higher  [18F]RoSMA-18-d6 binding (norm % 
ID/g tissue) was detected in the ipsilateral vs contralateral hemisphere under baseline conditions. b In the spleen about 58 % of the  [18F]
RoSMA-18-d6 binding (norm % ID/g tissue) was blocked. No significant blocking was observed in the brain. Data are presented as the mean 
of the percentage of injected dose per gram tissue normalized to 20 g body weight; mean ± standard deviation.  % ID/g: percentage injected 
dose per gram. *p < 0.05, **p < 0.01.
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in the peripheral organs on the availability of radiotracer 
concentrations in the blood. In our previous studies with 
Wistar rats, the spleen uptake of  [18F]RoSMA-18-d6 was 
blocked by nearly 90 %. The higher specific binding of  [18F]
RoSMA-18-d6 in rat spleen is likely due to the increased 
available targets. Govaerts et al. reported higher binding 
sites  Bmax in the rat spleen (0.71 ± 0.02 pmol/mg protein) 
compared to that in the mouse spleen (0.31 ± 0.03 pmol/mg 
protein) by using  [3H]CP55940 binding assay [90].  In the 
mouse P-glycoprotein assay, compound RoSMA-18 exhib-
its an efflux ratio (ER) of 4.6, which partly explains the 
low initial brain uptake in mice. Compared to other  CB2R 
radioligand developed in our group,  [18F]ROSMA-18-d6 
has the highest specificity (86 %) towards  CB2R based on 
the ex vivo biodistribution results in the rat spleen and was 
therefore selected for in vivo studies.

We observed that  [18F]FDG measure of CMRglc was 
reduced in the ischemic areas, i.e., ipsilateral striatum of 
the tMCAO mice at 24 h after reperfusion. The reduced 
CMRglc was reported in many earlier studies in disease 
animal models and in stroke patients, [91–94],  mask-
ing CMRglc reduction of neuronal tissue in the brain. At 
an extended time points of the recovery stage from days 
4 to 40, an increased CMRglc level was reported in the 
ischemic regions due to the increased consumption from 
inflammatory cells along with microglial activation [91, 
95, 96]. 

There are several limitations in the current study. (1) 
As there is no reliable specific  CB2R antibody, we did 
not include immunohistochemical staining for  CB2R pro-
tein distribution in the mouse brain. The qPCR measures 
of CNR2 mRNA level provided an alternative readout, 
but do not provide spatial distribution of cerebral  CB2R 
expression. (2) Due to the logistic barrier, MRI and µPET/
CT scans were performed with different cohorts of ani-
mals. Nevertheless, standard operating procedures for 
the surgery were used. (3) Our in vivo data with tMCAO 
mice were collected at 24 h after surgery, longitudinal 
imaging of tMCAO mice with  [18F]RoSMA-18-d6 along 
with structural and functional readout will provide fur-
ther insight into the spatio–temporal dynamics of  CB2R 
expression in the brain. Moreover,  [18F]FDG-PET was 
used as a benchmark for neuroinflammation in the current 
study. Further study using TSPO tracer to assess the glial 
activation along with  CB2R tracer will provide valuable 
insights.

Conclusion
Our newly developed  CB2R PET tracer,  [18F]RoSMA-18-d6, 
revealed limited utility to image neuroinflammation in the 
ischemic ipsilateral of the tMCAO mice at 24 h after reperfu-
sion. Although lesion regions in tMCAO mouse brain could 
be followed by the ratios of averaged SUVs from 21 to 61 min 

with midbrain as the reference region, the in vivo specificity 
of  [18F]RoSMA-18-d6 was confirmed only in the  CB2R-rich 
spleen. Different neuroinflammatory animal models which 
have comparable neuronal numbers in the lesion regions are 
recommended for evaluation of  CB2R in further PET imag-
ing studies.
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