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We typically have a fairly good idea whether a given
object is self-luminous or illuminated, but it is not fully
understood how we make this judgment. This study
aimed to identify determinants of the luminosity
threshold, a luminance level at which a surface begins to
appear self-luminous. We specifically tested a
hypothesis that our visual system knows the maximum
luminance level that a surface can reach under the
physical constraint that a surface cannot reflect more
light than any incident light and applies this prior to
determine the luminosity thresholds. Observers were
presented with a 2-degree circular test field surrounded
by numerous overlapping colored circles and luminosity
thresholds were measured as a function of (i) the
chromaticity of the test field, (ii) the shape of
surrounding color distribution, and (iii) the color of the
illuminant of the surrounding colors. We found that the
luminosity thresholds peaked around the chromaticity
of test illuminants and decreased as the purity of the
test chromaticity increased. However, the loci of
luminosity thresholds across chromaticities were nearly
invariant to the shape of the surrounding color
distribution and generally resembled the loci drawn
from theoretical upper-limit luminances and upper-limit
luminance boundaries of real objects. These trends were
particularly evident for illuminants on the black-body
locus and did not hold well under atypical illuminants,
such as magenta or green. These results support the
idea that our visual system empirically internalizes the
gamut of surface colors under natural illuminants and a

given object appears self-luminous when its luminance
exceeds this internalized upper-limit luminance.

Introduction

Most objects in the real world are visible because
they reflect light. Some objects, however, emit light
themselves; such self-luminous objects typically have
a distinct appearance (e.g. traffic lights visually stand
out in a scene). However, any light reaching our retina
is indiscriminately encoded by three classes of cone
signals regardless of whether the light is reflected
from a surface or directly emitted from a light source.
Thus, judging whether a given object is self-luminous
presents a mathematically underdetermined problem
to the visual system. The goal of this study is to reveal
how our visual system overcomes this computational
challenge and generates a luminous percept.

Self-luminous objects normally have a glowing
appearance distinct from the appearance of illuminated
surfaces. This qualitative difference was formally
introduced as a mode of color appearance (Katz,
1935). The original description finely discriminates
various categories, but this study concerns two
modes: surface-color mode and aperture-color mode,
which respectively correspond to the qualities of
color appearance for an illuminated surface and a
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self-luminous object. Color appearance has mostly
been studied in the surface-color mode; only a limited
number of studies have investigated the nature of the
aperture-color mode (e.g. Uchikawa, Uchikawa, &
Boynton, 1989).

One common approach is to measure the transition
luminance between surface-color mode and aperture-
color mode, which is known as the luminosity
threshold. Past studies have investigated what factors
might govern this threshold. In an early study, Ullman
(1976) extensively discussed potential determinants
of luminosity thresholds: highest intensity in a scene,
absolute intensity of the stimulus, local or global
contrast, intensity comparison with the average
intensity of the scene, and lightness computation that
emphasizes a transient intensity change over space
while ignoring a gradual intensity change. It was
concluded that, although each factor plays a role, none
of these factors are sufficient to predict luminosity
thresholds. Bonato and Gilchrist (1994) reported
quantitative observations that an achromatic surface
appears luminous when it has roughly 1.7 times the
luminance of a surface that would be perceived as
white. For chromatic stimuli, it was repeatedly shown
that luminosity thresholds were negatively correlated
with stimulus purity in a series of studies (Evans,
1959; Evans & Swenholt, 1967; Evans & Swenholt,
1968; Evans & Swenholt, 1969). Speigle and Brainard
(1996) measured luminosity thresholds using real
colored objects placed under illuminants of different
color temperatures. They supported Evans’s consistent
observation about the chromaticity-dependent nature
of luminosity thresholds and showed that the color of
the illuminant also affects luminosity thresholds. More
recently, Uchikawa, Koida, Meguro, Yamauchi, and
Kuriki (2001) pointed out that the brightness of colored
surfaces rather than their physical luminance is highly
correlated with the luminosity thresholds of colored
surfaces. These studies well characterized the properties
of a test stimulus and of surrounding contexts that have
an impact on luminosity thresholds.

One important open question in the field is whether
our visual system bases self-luminous judgments purely
on heuristics that extract statistics from the external
world. Such a strategy is prevalent in many other
visual judgments. For example, the famous anchoring
theory determines a reference based on simple statistics
in a given scene (i.e. the highest luminance in a
scene is defined as white), which has been successful
in explaining empirical results involving lightness
judgments (Gilchrist & Bonato, 1995; Gilchrist,
Kossyfidis, Bonato, Agostini, Cataliotti, Li, Spehar,
Annan, & Economou, 1999). If our visual system
takes a heuristic-based strategy, luminosity thresholds
should be susceptible to scene content – for example, a
combination of surface reflectances that happen to be
present in a scene. Alternatively, the visual system might

additionally use an internal reference for luminosity
judgments that is more robust to the variety of available
scene contents. For instance, it was shown that our
visual system might use statistical regularities about
the possible range of surface colors and illuminant
colors (Judd, MacAdam, Wyszecki, Budde, Condit,
Henderson, & Simonds, 1964) as a prior to solve an
ill-posed problem, such as color constancy (Maloney
& Wandell, 1986). In addition, there are suggestions
that color contrast and assimilation arise simply from
learning statistical regularities in external environments
(Lotto & Purves, 2000; Long & Purves, 2003). The
success of these prior-based approaches implies a
possibility that humans might take a similar strategy
when making self-luminosity judgments.

Thus, one primary focus in this study is to reveal
whether luminosity thresholds are determined purely
based on rigid heuristics that rely on the statistics
of external stimuli or whether the visual system
additionally uses internal references to make a
luminosity judgment. We specifically built a hypothesis
based on the latter view: the visual system internalizes
the physical gamut of surface colors under various
illuminants and refers to this knowledge when judging
whether a given surface is self-luminous. This physical
gamut of surface colors is visualized by optimal colors
(MacAdam, 1935a; MacAdam, 1935b), which will
be detailed in the General Method section. In short,
optimal colors are the colors with the highest luminance
that can be produced by reflected light under a given
illuminant, for each possible chromaticity. It is assumed
that the visual system estimates the illuminant color and
chooses the gamut under the estimated illuminant. In a
more general sense, this hypothesis could be treated as a
Bayesian framework where the visual system monitors
the scene illuminant and selects which prior to use
based on the estimated illuminant. This hypothesis was
specifically designed based on observations made in
a series of color constancy experiments (Uchikawa,
Fukuda, Kitazawa, & MacLeod, 2012; Fukuda &
Uchikawa, 2014; Morimoto, Fukuda, & Uchikawa,
2016; Morimoto, Kusuyama, Fukuda, & Uchikawa,
2021). In these studies, we developed a model for
illuminant estimation that operated on the assumption
that the visual system internalizes the gamut of surface
colors under various illuminants (i.e. distribution of
optimal colors) and the model accounted for observers’
estimations of illuminants reasonably well in a variety
of conditions. One interpretation of luminosity
thresholds is that the visual system takes the upper-limit
boundary of surface colors as the point beyond which
objects are self-luminous. Thus, we speculated that the
loci of luminosity thresholds measured under different
illuminants might resemble the locus of optimal colors.

We note that this study is also built on previous
efforts made by Evans (1959) and Speigle and Brainard
(1996) for the following reasons. Evans (1959), in
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part of his analyses, first made a comparison between
luminosity thresholds and the optimal color locus,
which is the primary purpose of this study. Although
it was concluded that luminosity thresholds do not
well align with optimal color locus, the research used a
simple stimulus configuration where a colored surface
was presented with a uniform background. Thus,
we believe it is worth testing the accountability of
the optimal color model under a wider variety of
conditions where richer cues to the illuminant are
provided. Speigle and Brainard (1996) was the first
study to directly suggest that luminosity thresholds are
strongly influenced by illuminant color. They further
modeled observers’ luminosity thresholds using the
upper-limit luminance of physically plausible surfaces
in the real world estimated by a linear model that uses
basis reflectance functions obtained via a principal
component analysis of Munsell papers. The locus
obtained via their method corresponds to a practical
upper-limit luminance in the real world as opposed to
a theoretical upper-limit luminance defined by optimal
colors. Nevertheless, we believe that their suggestion
shows conceptual similarity to our hypothesis.

In this study, we conducted three experiments to test
our hypothesis. In each experiment, we presented a
2-degree circular colored test field surrounded by many
overlapping colored circles. We measured luminosity
thresholds as a function of test chromaticities.
Experiment 1 was designed to test the degree to which
luminosity thresholds were influenced by the color
statistics of surrounding stimuli, in this case, the
geometry of the color distribution. In Experiment 2, we
tested the effect of the illuminant as well as the shape of
the surrounding color distribution to reveal whether the
luminosity threshold loci agree with the optimal color
locus under different illuminants (3000 K, 6500 K,
and 20,000 K). In Experiment 3, we measured the loci
of luminosity thresholds under atypical illuminants
(magenta and green) to investigate whether the loci of
luminosity thresholds over chromaticities might differ
between chromatically typical and atypical illuminants.

General method

Computation of physical upper-limit luminance
at a given chromaticity

We can compute the theoretical upper-limit
luminance at each chromaticity by calculating the
chromaticity and the luminance of its optimal colors.
Here, we provide a basic idea of optimal color, but a
more detailed description is available elsewhere (e.g.
Uchikawa et al., 2012; Morimoto et al., 2021). An
optimal color is a hypothetical surface having a steep
spectral reflectance function, as shown in Figures 1a

Figure 1. (a, b) Example optimal colors of band-pass and
band-stop types, respectively. (c, d) L/(L + M) versus luminance
and log10S/(L + M) versus luminance distributions, respectively,
for optimal colors, and the SOCS reflectance dataset rendered
under 3000 K, 6500 K, and 20,000 K.

and 1b. There are two types (band-pass and band-stop)
and they can have only 0% or 100% reflectances.
Changing λ1 and λ2 generates numerous optimal colors
(λ1 < λ2). To give concrete examples, we generated
three illuminants of black body radiation: 3000 K,
6500 K, and 20,000 K. Then 7644 optimal colors
were rendered under these illuminants as shown by
small dots in Figures 1c and 1d. Figure 1c shows
L/(L + M) in MacLeod-Boynton (MB) chromaticity
diagram (MacLeod & Boynton, 1979) versus luminance
distributions. Figures 1d shows log10S/(L + M) versus
luminance distributions. To calculate cone excitations,
we used the Stockman and Sharpe cone fundamentals
(Stockman & Sharpe, 2000).

In the real world, surface reflectances must be less
than 1.0 at any wavelength due to physical constraints,
and thus an optimal color has a higher luminance
than any other surface that has the same chromaticity.
Thus, no real surface can exceed this optimal-color
distribution. To show this concretely, in Figures 1c
and 1d, we plotted 49,667 objects in the standard
object color spectra database for color reproduction
evaluation (SOCS, ISO/TR 16066:2003).

From optimal color distributions, we see that
the physical upper-limit luminance is dependent
on the chromaticity. The peak of an optimal color
distribution always corresponds to a full-white surface
(1.0 reflectance across all wavelengths), which thus



Journal of Vision (2021) 21(13):3, 1–23 Morimoto, Numata, Fukuda, & Uchikawa 4

corresponds to the chromaticity and intensity of
the illuminant itself (so-called white point of the
illuminant). For this reason, when the color temperature
of the illuminant changes, the whole optimal color
distribution shifts toward the chromaticity of the
illuminant without drastically changing its overall
shape. Optimal colors with a higher purity have lower
luminance, as they have a narrower-band reflectance,
and consequently the distribution spreads out as the
purity increases. Importantly, once all optimal colors
are calculated, we can look for the physical upper-limit
luminance at any chromaticity by looking for the
luminance of the optimal color at that chromaticity.
Interestingly, it is notable that the distribution of real
objects (SOCS dataset) shows a somewhat similar shape
to the optimal color distribution.

Estimation of the upper-limit luminance at a
given chromaticity for real surfaces

The theoretical upper-limit luminance can be
computed through the calculation of optimal colors,
but the upper-limit luminance for real objects needs
to be estimated. Thus, we analyzed 49,672 surface
reflectances from the SOCS reflectance database. This
dataset includes reflectances from a wide range of
categories of natural and man-made objects: “photo”
(2304 samples), “graphic” (30,624), “printer” (7856);
“paints” (229); “flowers” (148); “leaves” (92); “faces”
(8049); and “Krinov datasets” (370) including natural
objects which were measured in a separate study
(Krinov, 1953). We then excluded reflectances that
contained a value higher than 1.0 at any wavelength as
they might include fluorescent substances. As a result,
one reflectance from the printer category and four
reflectances from the paints category were excluded.

The remaining 49,667 surfaces were then rendered
under 6500 K and their chromaticity and luminance
were calculated. The luminance value was normalized
by that of a full-white surface (100% reflectance at any
wavelength). As shown in Figure 2a, we plotted the
chromaticity of all surfaces on the MacLeod-Boynton
chromaticity diagram, where L/(L + M) is the
horizontal axis and log10 S/(L + M) is the vertical axis.
We defined a grid of 25 × 25 bins and classified 49,667
colors into corresponding bins. Then, for each bin, the
maximum luminance across all colors that belong to
the bin was defined as the upper-limit luminance of real
objects. This procedure was repeated for all 625 bins.
The upper-left and lower-left subpanels in Figure 2b
show the upper-limit luminance for optimal colors (for
comparison purposes) and for real objects. As seen here,
the loci of the upper-limit luminance for real objects
were not smooth. We assumed that this is an artifact due
to the limited availability of reflectance samples in the
database rather than the nature of reflectances of real

Figure 2. How to estimate the upper-limit luminance for real
objects using the SOCS spectral reflectance dataset. A 25 × 25
grid was first drawn on the MacLeod-Boynton chromaticity
diagram. For each grid bin, we searched for the surface that has
the highest luminance as shown in the right part of panel (a),
which was defined as the upper-limit luminance for that
chromaticity bin. Panel (b) shows the locus of upper-limit
luminance for optimal color, real objects (raw), and real objects
(smoothed) under 6500 K illuminant. The lightness indicates
the upper-limit luminance value for the chromaticity bins. The
pale green color indicates that there is no data in that bin.

objects. Thus, we smoothed the upper-limit luminances
by spatial filtering with 3 × 3 convolutional filters (each
pixel has the value of 1/9). The lower-right subpanel
depicts the smoothed data. Note that this upper-limit
luminance heatmap is dependent on the color of the
illuminant. Thus, we repeated the same procedure for
other black-body illuminants with color temperatures
from 3000 K to 20,000 K with 500 K steps. Both the
optimal color locus and real object locus unsurprisingly
peak at the chromaticity of the illuminant shown by
the red cross symbol. The upper-limit luminance of
real objects decreases more sharply as the stimulus
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Figure 3. Example of stimulus configuration. The center circle is
the test stimulus, and its luminance was adjusted by observers.
Each circle had a diameter of 2 degrees in visual angle, and the
whole image subtended 15 × 15 degrees. The surrounding
color distribution is detailed in each experimental section.

purity increases than that of optimal colors. We can
refer to these look-up-tables to find the upper-limit
luminance of real objects for an arbitrary chromaticity
under illuminants of a range of color temperatures.
Note that this upper-limit luminance of real objects
corresponds to the proposed model by Speigle and
Brainard (1996) at a conceptual level though they
estimated the boundary using a linear model rather
than the “big data” approach taken here.

Observers

Four observers (K.K., M.I., T.M., and Y.K.)
participated in Experiment 1. K.K. and Y.K. were also
recruited for Experiment 2 as well as two new observers
(K.S. and N.T.). K.K., K.S., and Y.K. participated in
Experiment 3. Observers, except for K.S., were naïve to
the purpose of all experiments. Observers’ ages ranged
between 22 and 57 (mean = 31.4, SD = 13.2). Observers
were all Japanese. All observers had corrected visual
acuity and normal color vision as assessed by Ishihara
pseudo-isochromatic plates. Before the experiments,
informed consent was obtained from each observer.
Observers were offered to take several breaks during the
experiments, and observers could stop the participation
at any point during the experiments.

Stimulus configuration

The stimulus configuration is shown in Figure 3. The
color distribution of the surrounding stimuli and the
chromaticities used for the test field are detailed in each
experimental section. The spatial pattern was shuffled
for each trial.

Apparatus

Data collection was computer-controlled and all
experiments were conducted in a dark room. Stimuli

were presented on a cathode ray tube (CRT) monitor
(BARCO, Reference Calibrator V, 21 inches, 1844 ×
1300 pixels, frame rate 95 Hz) controlled with ViSaGe
(Cambridge Research Systems), which allows a 14-bit
intensity resolution for each of the red, green, blue
(RGB) phosphors. We performed gamma correction
using a ColorCAL (Cambridge Research Systems)
and spectral calibration was performed with a PR650
spectroradiometer (Photo Research Inc.). Observers
were positioned 114 cm from the CRT monitor and
the viewing distance was maintained with a chin rest.
Observers were asked to view the stimuli binocularly.

General procedure

Observers first dark-adapted for 2 minutes and then
adapted to an adaptation field for 30 seconds. The
adaptation field was the full uniform screen that had
either a chromaticity of 6500 K (experiments 1 and 3) or
the chromaticity of the test illuminant (Experiment 2),
and in either case the luminance was equal to the mean
luminance value across surrounding stimuli. Then, the
first trial began. We drew surrounding stimulus circles
so that they had a specific color distribution as detailed
in each experimental section. The 2-degree circular test
field was presented at the center of the screen. The
test field was never occluded by surrounding stimuli.
The observers’ task was to adjust the luminance of the
test field to the level at which the surface-color mode
changed to the aperture-color mode using a keyboard
with three possible luminance steps (±0.5, ±1.0, or
±5.0 cd/m2). The ambiguity regarding the criterion
to judge the transition between surface-color mode
and aperture-color mode was reported in a past study
(Speigle & Brainard, 1996, Uchikawa et al., 2001).
This is mainly because the transition is not sharp, and
there is a range that a surface can appear a mixture
of surface-color mode and aperture color mode.
Considering this reported ambiguity, we instructed
observers as follows: “Your task is to adjust the
luminance of the center test field so that the test field
appears to be at the midpoint between the upper-limit
of the surface color mode and the lower-limit of the
aperture color mode.” The upper-limit of the surface
color mode and the lower-limit of the aperture color
mode were described to observers as the limit at which
the test field completely appears as an illuminated
surface and the limit at which the test field completely
appears as a light source, respectively. All observers
agreed that this was a reasonable judgment. In addition,
we note that our criterion is analogous to criteria used
in past studies (Bonato & Gilchrist,1994; Evans, 1959;
Evans & Swenholt, 1967; Evans & Swenholt, 1968;
Evans & Swenholt, 1969; Speigle & Brainard, 1996;
Ullman, 1976). During the experiments, observers were
instructed to view the whole stimulus rather than fixate
at a specific point to avoid local retinal adaptation. The
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initial luminance value for the test field was randomly
chosen from 2.0, 5.0, 8.0, 11.0, 14.0, 17.0, 20.0, 23.0,
26.0, and 29.0 cd/m2. Specific experimental conditions
are detailed in each experimental section.

Experiment 1

Surrounding color distribution, test illuminant,
and test chromaticity

In a natural scene, the colors of objects tend to cluster
around the white point of the illuminant and the density
of colors decreases as purity increases. Consequently,
the color distribution tends to form a mountain-like
shape as shown in Figure 1c. The aim of Experiment 1
was to investigate how the loci of luminosity thresholds
change when thresholds are measured in a scene that
has an atypical color distribution shape. In an extreme
case, where observers rely purely on internal criteria

to judge the self-luminosity of a surface, luminosity
thresholds should not change at all regardless of the
surrounding color distribution. However, in contrast,
if observers make a self-luminous judgement using
surrounding colors, for example, by estimating the
upper luminance boundary from the surrounding
distribution, luminosity thresholds should largely
change depending on the shape of the surrounding
color distribution.

Figure 4a shows the five surrounding color
distributions used in Experiment 1. The 6500 K
illuminant on the black-body locus was chosen as the
test illuminant in this experiment. We first defined the
natural color distribution in the upper-left subpanel
and then transformed the distribution to generate four
atypical color distributions (reverse, flat, slope+, and
slope-) in the following ways. First, to construct the
natural color distribution, we started with a dataset
of 574 spectral reflectances of natural objects (Brown,
2003). Out of the 574 reflectances, 516 reflectances

Figure 4. (a) Five color distribution sets for surrounding stimuli. An inserted image at the top shows an example stimulus configuration
for each color distribution. The vertical solid black line indicates the L/(L + M) value of 6500 K test illuminant. Black cross symbols
indicate mean cone response across all 253 surrounding stimuli. (b) Nine test chromaticities at which the luminosity thresholds were
measured.
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Figure 5. Colored square symbols indicate averaged settings across 20 repetitions for each observer. The error bars represent ±1 SE
across 20 repetitions. The black circles represent settings averaged across observers (n = 4). The magenta circles denote the
luminance of the optimal color at the test chromaticities and thus indicate the physical upper-limit luminance. The blue line shows
the upper-limit luminance of real objects estimated from the SOCS reflectance dataset. The vertical solid line shows the chromaticity
of the test illuminant (6500 K). The black cross symbol indicates the mean LMS value across surrounding stimuli.

were inside the chromaticity gamut of the experimental
CRT monitor when rendered under the 6500 K test
illuminant. All stimuli were presented via a ViSaGe,
which had the technical constraint that only 253 colors
could be simultaneously presented. Thus, we selected
253 reflectance samples out of 516 reflectances. The
reflectance spectra in the Brown dataset were clustered
around a white point in a chromaticity diagram;
therefore, if we randomly sample from those spectra, it
generates a biased distribution with more data points
around the white point. Thus the 253 reflectances
were selected such that, when rendered under 6500 K,
they were spatially uniformly distributed across a
chromaticity diagram: L/(L + M) and S/(L + M).

To generate the other color distributions (reverse,
flat, slope+, and slope-), we independently scaled each
of the 253 reflectances by a scalar value to manipulate
the luminance while keeping the chromaticity constant.
The inserted image in each subpanel shows an example
of surrounding stimuli that has the corresponding
color distribution. Note that the spatial layout of the
surrounding stimuli was shuffled for each trial. For
all distributions, the intensity of the test illuminant
was determined so that a full-white surface (i.e.
100% reflectance across all visible wavelengths) had
a luminance of 35.0 cd/m2 under the test illuminant.
We note that surrounding colors had relatively
low luminance values. For the test field to appear
self-luminous, the test field needs to have a substantially
higher luminance than the surrounding colors. Thus,

the choice of surround luminances was unavoidable in
order to ensure that observers could make a satisfactory
adjustment at any tested chromaticities within the
luminance range allowed by our experimental monitor.

For the center test field, we chose nine reflectances out
of the 253 so that they fell closely along the black-body
locus when placed under a 6500 K illuminant. Figure 4b
shows these nine test chromaticities at which luminosity
thresholds were measured. The chromaticity of two
reflectances are slightly off from the black-body locus.
This is because we could not find reflectance samples
that exactly fall on the locus.

Procedure

One block consisted of nine settings to measure
thresholds at all nine test chromaticities in random
order. There were five blocks in each session to test
all five distribution shapes. The order of distribution
condition was randomized. All observers completed
20 sessions in total (i.e. 20 repetitions for each data
point). They completed 10 sessions per day and thus
the experiment was conducted in 2 days.

Results

Figure 5 shows the results for Experiment 1. Colored
symbols with error bars indicate each observer’s
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setting. Each data point is the average across 20
repetitions. The average across four observers is shown
as black circles. There was some variation across
individuals. Furthermore, the experimental design was
to try to collect reliable data from a small number
of participants. Thus, we discuss results individually.
The magenta circles and the line show luminances of
optimal colors at test chromaticities when rendered
under the test 6500 K illuminant (the optimal color
locus). In other words, if the visual system uses the
optimal color to judge whether a surface emits a light,
the observer’s settings should match the magenta
line. The blue circles and the line show a smoothed
upper-limit luminance locus of real objects, estimated
from the SOCS reflectance dataset as shown in Figure 2,
which more rapidly decreases as it gets away from the
white point than the optimal color locus does. For
simplicity, we hereafter refer to the magenta and blue
lines as predictions of the optimal color model and the
real object model, respectively.

First, the loci of luminosity thresholds for all
observers had a mountain-like shape regardless of
surrounding color distribution. The loci generally
peaked around the chromaticity of the test illuminant
(the vertical black solid line) and the luminosity
thresholds decreased as the test chromaticity moved
away from the white point. Although there were some
individual differences, especially in the overall setting
level (e.g. K.K. generally had higher thresholds than
others) and in the peak chromaticity, the luminosity
thresholds generally seem to more resemble the
prediction of the optimal color model than that of the
real object model in this experiment. This is consistent
with the hypothesis that the visual system knows the
upper boundary of the optimal color distribution
and judges that a given surface is self-luminous when
its luminance exceeds the luminance of optimal
colors.

To quantify the similarity between observers and
models, we calculated Pearson’s correlation coefficient
between observer settings and model predictions
over the nine test chromaticities. Figure 6 shows
summary matrices of the correlation coefficients.
We calculated correlation coefficients for each
observer and discuss them on an individual
basis.

The magenta and blue symbols represent the optimal
color model and the real object model, respectively. In
addition, we evaluated a model which judges the surface
as self-luminous when its luminance exceeds that of
the surrounding color distribution. The luminosity
thresholds estimated from such a model should show
much similarity to the shape of the surrounding color
distribution. For example, in the reverse condition,
the luminosity threshold should be lowest at the white
point and increase as the saturation of the test stimulus
increases. This model is labelled as the “surrounding

Figure 6. The matrices of Pearson’s correlation coefficients
calculated between observer settings and model predictions
over nine test chromaticities. Each subpanel represents each
distribution condition (natural, reverse, flat, slope+, and
slope-). The color of each individual cell indicates the
correlation coefficient as denoted by the color bar. The cyan
star symbol indicates the highest correlation coefficient across
the three models. The cyan arrows at the bottom of each
subpanel show the model that received the highest number of
cyan star marks, indicating a good candidate model of human
observers’ strategy to judge the self-luminosity of a surface.

color” model in Figure 6. Note that this is a simplistic
model and we are not trying to claim that the visual
system takes such a strategy. Instead, our goal here
is to build a framework in which we quantitatively
predict an observer’s behavior if she/he judges the
luminosity thresholds solely based on surrounding
stimuli presented in each trial without using any prior
about the statistics of the real world.

The cyan star symbols in some cells indicate the
highest correlation-coefficient value across the three
tested models. The cyan arrows below each subpanel
indicate the model that received the highest number of
cyan stars across the four observers.

Overall, because the observer settings are stable
across all distribution conditions, the correlation
coefficient patterns are also similar between the optimal
color and real object models whose predictions are
both not affected by surrounding colors. However,
the correlation coefficients for the surrounding color
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model strongly depend on distribution condition as
predicted. Specific trends are as follows. For observers
K.K. and Y.K., the loci of the luminosity thresholds
showed the highest correlation with the optimal color
model for all distributions. For T.M., the real object
model was the best predictor in all distributions except
for the flat condition. For M.I., the optimal color
model showed the highest correlation for reverse,
flat, and slope+ conditions, whereas the real object
model showed the highest correlation for natural and
slope- conditions. If we summarize these trends based
on the number of cyan arrows each model received,
the optimal color model is the best predictor in
Experiment 1.

The major finding in this experiment is that the loci
of luminosity thresholds are nearly invariant regardless
of the shape of the surrounding color distribution.
This result supports the idea that observers use an
optimal color distribution as an internal reference to
determine the luminosity thresholds. In the Appendix,
we also provide two other alternative models that
predicts luminosity thresholds based on post-receptoral
signals or cone signals of the test field alone, but it was
shown that these models did not predict the luminosity
threshold well in Experiment 1. In Experiment 2, we
tested whether this observation holds under different
illuminants which shift the peak of the optimal color
distribution as shown in Figure 1. If the visual system
indeed uses optimal colors, changes in luminosity
thresholds should reflect changes in the optimal color
distribution.

Experiment 2

Surrounding color distribution, test illuminant,
and test chromaticity

We used natural, reverse, and flat distributions of
surrounding colors. For test illuminants, we used
3000 K, 6500 K, and 20,000 K on the black-body locus.
Out of the 253 reflectances we used in Experiment 1,
only 180 samples were inside the chromaticity gamut of
the experimental CRTmonitor under all test illuminants
and those 180 samples were used as surrounding
stimuli in Experiment 2. Figure 7a shows all nine
test surrounding conditions (3 distributions × 3 test
illuminants). Although we found that surrounding color
distribution has no systematic effects on luminosity
thresholds in Experiment 1, we again manipulated the
distribution shapes in Experiment 2 to investigate if this
finding held under different illuminants.

We then selected 15 surface reflectances from the 180
reflectances. Figure 7b shows the 15 test chromaticities
when rendered under each test illuminant at which the
luminosity threshold was measured.

Procedure

One block consisted of 15 consecutive settings to
measure thresholds for all test chromaticities presented
in random order. There were nine blocks in one session
to test all conditions (3 illuminants × 3 distributions).
The order of conditions was randomized. All observers
completed 10 sessions in total. The experiment was
conducted in 3 days.

Results

The black line in Figure 8 shows the mean setting
across four observers. The rest of the data presentation
follows the results in Experiment 1. For clarity, only
the averaged setting is shown here, but the individual
observers’ data is presented in Figure A1 in the
Appendix.

First, the mean settings showed that the loci of
luminosity thresholds were again mountain-like in
shape, and the influence of the shape of the surrounding
color distribution was almost absent, supporting the
findings in Experiment 1. It is also noticeable that the
peak chromaticity of the mean setting in each panel
shifted toward the illuminant chromaticity shown as
vertical solid lines.

It should be noted that the peak chromaticity of
the luminosity threshold loci for 20,000 K was slightly
shifted to the right along the L/(L + M) dimension
from the chromaticity of the test illuminant. This trend
was generally consistent across observers as shown
in Figure A1 (Appendix). One potential reason could
be that observers misestimated the illuminant color
from the surrounding colors. Human color constancy is
often imperfect, and thus we speculated that observers’
luminance settings might better agree with the optimal
color or real object model rendered under an illuminant
estimated by each observer instead of a ground-truth
illuminant (20,000K). In fact, misestimate of illuminant
color was also reported to be an important factor
in predicting luminosity thresholds by Speigle and
Brainard (1996). The estimated illuminant is typically
measured using a technique, such as achromatic
adjustment (Brainard, 1998), but these data were not
collected in this study. Thus, we assumed that the
peak chromaticity of observer settings indicated the
observer’s estimated illuminant.

We first calculated the chromaticities of illuminants
from 3000 K to 20,000 K in 500 K steps. Then, for
each observer and for each condition independently,
we searched for the color temperature that had the
closest chromaticity to the peak chromaticity of
the luminosity thresholds. The Table 1 summarizes
the color temperatures of the estimated illuminants
in each condition. In the 3000 K condition,
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Figure 7. (a) Nine color distributions for surrounding stimuli (3 test illuminants × 3 distributions). Inserted image shows an example
stimulus configuration. The vertical solid black line indicates the L/(L + M) value of each test illuminant. Black cross symbols indicate
mean cone response values across the 180 surrounding stimuli. (b) Fifteen test chromaticities at which the luminosity threshold was
measured.

estimated illuminants matched the ground-truth color
temperature for most observers. For 6500 K, there was
a slight variation across observers. It is notable that
in the 20,000 K condition, observers estimated color
temperatures substantially lower than those of the
ground-truth, meaning illuminant color was estimated
to be less blue. This could be because perceptual
differences between stimuli rendered under 20,000 K
and under 6500 K is smaller than the difference between
3000 K and 6500 K, as perceptual sensitivities are
reported to be worse for bluish illuminants and surfaces

(Pearce, Crichton, Mackiewicz, Finlayson, & Hurlbert,
2014; Winkler, Spillmann, Werner, & Webster, 2015).

Then, we drew optimal color loci under these
estimated color temperatures. This concept is depicted
in Figure 9. Intuitively speaking, this procedure allows
us to estimate an optimal color locus that the observer
presumably used during the task, so that the peak
of this new optimal color locus coincides with the
peak of the measured locus of luminosity thresholds.
The cyan curve shows the optimal colors under the
estimated illuminant and seems to predict mean
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Figure 8. The black circle symbols represent averaged observer settings (n = 4). The error bars represent ±1 SE across the four
observers. The optimal color loci are plotted as magenta circles. The blue circles show the upper-limit luminance of real
objects. The red, black and blue vertical solid lines show the chromaticities of the 3000 K, 6500 K, and 20,000 K test illuminants,
respectively. The black cross symbol indicates the mean LMS value across surrounding stimuli. Individual observer data is shown in
the Appendix. The region surrounded by a rectangle in the 20,000 K condition is further discussed in Figure 9.

observer settings better than the optimal color locus
under the ground-truth illuminant (20,000 K).

Figure 10 depicts the correlation coefficient matrices
for all conditions. We compared correlations from
five models: (i) the optimal color model and (ii) the
real object model under the ground-truth illuminant,
(iii) the optimal color model and (iv) the real object
model under the estimated illuminant, and (v) the
surrounding color model. Again, the cyan star symbol
in some cells denotes the highest correlation across the
five models for that participant. The cyan arrows below
each subpanel point to the model that has the highest
number of cyan stars – the overall best model for that
condition.

Overall, the surrounding color model does not show
high correlation with observer settings in any condition,
agreeing with the trends in Experiment 1. The optimal
color model and the real object model seem to show
high correlation, and it depends on the condition

which model correlates better. For the natural-3000 K
condition, the highest correlation was found for the real
object models, consistently across all observers. For the
reverse-3000 K condition, all observers except N.T. were
best correlated with the optimal color model under the
estimated illuminant while for the flat-3000 K condition
the votes were split between the optimal color and real
object models. For natural-6500 K, K.K. and N.T. were
well predicted by the optimal color model under the
ground-truth illuminant, but the other two observers
were better correlated with the real object model. For
the reverse-6500 K condition, the optimal color and
the real object model both showed high correlations.
The real object model, when used with the estimated
illuminant, predicted observer settings best for the
flat-6500 K condition. It is notable that for the 20,000 K
condition, the optimal color model under the estimated
illuminant was consistently the best predictor. The
optimal color model under the ground-truth illuminant
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3000 K 6500 K 20,000 K

Natural K.K. 3000 5500 10,500
K.S. 3000 7000 8500
N.T. 3000 5000 10,500
Y.K. 3000 5500 12,000

Reverse K.K. 3000 6500 7500
K.S. 4000 7000 7500
N.T. 3000 5500 12,000
Y.K. 3500 5000 10,500

Flat K.K. 3000 7000 8500
K.S. 3000 5000 8500
N.T. 3000 5500 12,000
Y.K. 3000 6500 12,000

Table 1. Estimated illuminant by each observer judged from the
chromaticity at which luminosity thresholds peaked. The top
row shows the color temperatures of ground-truth illuminants,
and the other numbers indicate the color temperature of
estimated illuminants.

Figure 9. Optimal color models based on the ground-truth
illuminant (magenta) and based on estimated illuminants for
the averaged observer setting (cyan). It is shown that
observers’ settings are better explained by the optimal color
model that allows misestimation of illuminants by observers.

also shows much lower correlations, suggesting that
observers’ misestimates of the illuminant play a role
in predicting luminosity thresholds. In summary, both
the optimal color model and the real object model
showed fairly good agreement with human observers’
settings.

Experiments 1 and 2 collectively suggested that both
the optimal color locus and the real object locus seemed

to be good candidate determinants of luminosity
thresholds. We also note that two other alternative
simplistic models again did not predict luminosity
thresholds well in Experiment 2 (shown in Appendix).
One noteworthy feature in experiments 1 and 2 is that
we used illuminants on the blue-yellow axis that are
typically found in natural environments. We also used
chromaticities on the black-body locus for the test field.
If we assume that the visual system learns the locus of
optimal color distribution or real object distribution
by observing colors in natural environments, the
luminosity thresholds under atypical illuminants may
not agree well with the prediction of the optimal color
model or the real object model. We directly tested this
hypothesis in Experiment 3.

Experiment 3

Experiment 3 tested whether luminosity thresholds
resembled the optimal color locus under atypical
illuminants. We also chose a wider range of test
chromaticities from the black-body locus and a locus
that is orthogonal to the black-body locus.

Surrounding color distribution, test illuminant,
and test chromaticity

We used natural, reverse, and flat distributions for
the surrounding stimuli. For test illuminants, we used
magenta and green illuminants. We chose two color
filters (Rosco, R44 “Middle Rose” and R4460 “Calcolor
60 Green”) through which the 6500 K illuminant was
passed to obtain the spectra shown in Figure 11a. The
chromaticities of these illuminants largely deviate from
black-body locus as shown in Figure 11b. Out of the
574 spectral reflectances of natural objects collected by
Brown, 251 reflectances were inside the chromaticity
gamut of the CRT monitor under both illuminants. For
the surrounding stimuli, we sampled 180 reflectances
out of the 251 reflectances and created each distribution
following the manipulation used in experiments 1 and
2. Experiments 1 and 2 showed no effect of surrounding
color distribution but Experiment 3 also included this
manipulation to confirm that the findings also held
under atypical illuminants.

Figure 12a shows the surrounding distributions
for all six test conditions (3 distributions × 2 test
illuminants). The intensities of the test illuminants were
chosen so that the average luminance across the 180
colors matched 2.5 cd/m2.

In this experiment, the test chromaticities were
chosen so that they varied along two directions: (i) the
black-body locus (shown as circles) and (ii) an axis
approximately orthogonal to the black-body locus
(shown as triangles) depicted in Figure 12b. First, eight
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Figure 10. The matrices of Pearson’s correlation coefficient calculated between observer settings and model predictions over 15 test
chromaticities. The cyan star symbol indicates the highest correlation coefficient across the five models. The cyan arrows at the
bottom of each subpanel show the model that received the highest number of cyan star symbols.

reflectances were selected from the 180 reflectances and
were used under both illuminant conditions. Then,
we sampled five different reflectances separately for
each illuminant condition from the reflectances that
can be presented only under either magenta or green
illuminant. Thus, these reflectance samples are not
shared between illuminant conditions. This choice
was made to choose test chromaticities on the locus
orthogonal to black-body locus as widely as possible.
In Figure 12b, the five data points surrounded by a
red edge represent the five reflectances that were not
shared between illuminant conditions. There were seven
chromaticities for each axis, but one chromaticity was
used for both axes (plotted as a black square). The
chromaticities of natural objects tend to spread along
the black-body locus, and the purpose of this design
was to test whether luminosity thresholds measured
at atypical chromaticities would deviate from the

prediction of the optimal color model or the real object
model.

Procedure

One block consisted of 13 consecutive settings and
thresholds were measured for all test chromaticities in
random order. Each session comprised six blocks to test
all distribution × illuminant conditions. The order of
condition was randomized. All observers completed 10
sessions in total. Observers conducted five sessions per
day and thus the experiment was completed in 2 days.

Results

Figure 13 shows the results. The left six panels
depict luminosity thresholds measured at chromaticities
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Figure 11. (a) Spectra for magenta and green illuminants used
in Experiment 3. (b) Chromaticities of both illuminants. The
black-body locus and the chromaticity of 6500 K illuminant are
shown for comparison purposes.

along the black-body locus (black circles and square
in Figure 12b), whereas the right six panels indicate
thresholds at chromaticities along the orthogonal locus
(black triangles and square in Figure 12b).

We first look at the left two columns. For the magenta
illuminant condition, observers’ settings again show
a mountain-like shape. In addition, one can see that
settings are not dependent on the surrounding color
distribution. However, in this condition, the optimal
color model and the real object model show a relatively
flat locus. For the green illuminant, observer settings
appear flat. However, luminosity thresholds for subject
K.S. show a fairly different trend from the other
observers, and the locus is not well predicted by the
optimal color locus nor the real object locus, which was
not observed in experiments 1 and 2.

When the test chromaticities are on the axis
orthogonal to the black-body locus (right two columns),
for the magenta condition all observers’ settings might
appear to resemble the optimal color locus. However,
for the green illuminant condition, K.S. again shows a
different trend from the other observers and observers
do not all agree with either model prediction.

Figure 14 allows us to compare the correlation
coefficient across models and conditions. For
black-body reflectances shown under the magenta
illuminant (the leftmost column), the optimal color
model overall showed good correlations for the natural
condition, whereas the real object model showed good
correlations for the reverse and flat conditions. For
the natural condition, one observer (K.S., not naïve)
had the highest correlation with the surrounding color
model, which was not observed in experiments 1 and
2 in which illuminants on the black-body locus were
used as test illuminants. For black-body reflectances
shown under the green illuminant (the second
leftmost column), in most cells, correlation coefficients
appeared considerably low. Although the optimal
color model consistently had the highest correlation
for all distribution conditions (average coefficient

Figure 12. (a) Six color distributions for surrounding stimuli (2
test illuminants × 3 distributions). Inserted image shows an
example stimulus configuration. The vertical solid black line
indicates the L/(L + M) value of test illuminant. Black cross
symbols indicate mean cone response values across 180
surrounding stimuli. (b) Thirteen test chromaticities at which
the luminosity threshold was measured. Symbols with a red
edge indicates reflectances that were not shared between
magenta and green illuminants.

across 9 cells is 0.578), the correlation coefficient is
not so high if we consider that the correlation for
the optimal color model was 0.901 in Experiment 1
(averaged across 5 distributions × 4 observers). In
addition, in Experiment 2, correlations were 0.746 for
the optimal color model of the ground-truth illuminant
and 0.837 for the estimated illuminant (average across 9
conditions × 4 observers in both cases).

For the reflectances on the axis orthogonal to
black-body locus under the magenta illuminant (the
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Figure 13. Observer settings in Experiment 3. The left two columns plot luminosity thresholds measured at test chromaticities on the
black-body locus (circle and square symbols in Figure 12b). The right two columns show results for test chromaticities on the locus
orthogonal to black-body locus (triangle and square symbols in Figure 12b). Colored square symbols indicate averaged settings across
10 repetitions for each observer. The error bar plots ±1 SE across 10 repetitions. The black circle symbols plot average observer
settings (n = 3). The magenta circle symbols denote the optimal color locus and the blue circles show the real object locus. The
vertical solid line represents the chromaticity of the test illuminant. The black cross symbol indicates the mean LMS value across
surrounding stimuli.

second-from-the-right column), the trend seemed to be
close to that of the test chromaticities on the black-body
locus (leftmost column), but the correlation coefficients
overall seemed to be lower. For the green-natural
condition, the surrounding color model shows a high
correlation with observers K.K. and K.S. It is notable
that the optimal color model shows nearly zero or even
negative correlations. For the reverse condition, the real
object model showed the best correlation, but their
values were not high (0.577, average across 3 observers).
For the flat condition, we did not find a consistently
good model. It may be worth noting that for the green
illuminant condition, correlation coefficients for test
chromaticities sampled from the locus orthogonal to
black-body locus are overall lower than those for test
chromaticities sampled from black-body locus.

In summary, these results suggested that although
the optimal color and real object models can account
for observer settings to some extent, overall coefficient
values were substantially lower than those observed in

experiments 1 and 2. In addition, the surrounding color
model showed good correlations in some cases. These
results might imply that the visual system does not have
a rigid internal reference about upper-limit luminance
under atypical illuminants and sometimes relies on
external cues such as the color of the surrounding
stimuli. Additionally, for green illuminant condition,
we found a trend that the predictions of optimal color
model were particularly worse when test chromaticities
were sampled from the axis orthogonal to the black
body locus.

Finally, we summarize results from the three
experiments to test whether correlation coefficients
of the optimal color model are higher for typical
illuminants (experiments 1 and 2) than atypical
illuminants (Experiment 3). For each observer, we
averaged the correlation coefficient of the optimal
color model across all condition in experiments 1
and 2 (14 conditions), which served as a summary
statistic for typical illuminants. For the 20,000 K



Journal of Vision (2021) 21(13):3, 1–23 Morimoto, Numata, Fukuda, & Uchikawa 16

Figure 14. The matrices of Pearson’s correlation coefficient calculated between observer settings and model predictions over seven
test chromaticities in Experiment 3. The cyan star symbols indicate the highest correlation coefficient across the three models. The
cyan arrows at the bottom of each subpanel indicate the model that received the highest number of cyan stars.

condition in Experiment 2, we used the correlation
coefficient value of the optimal color model under
the estimated illuminant as it predicted observer
settings substantially better than the model under
the ground-truth illuminant. We also calculated
averaged correlation coefficients across all conditions in
Experiment 3 (8 conditions) per observer. The averaged
correlation coefficients across all observers were 0.879
± 0.0114 (average ±1 SD) for typical illuminants and
0.525 ± 0.155 for atypical illuminants. Welch’s t-test
(one-tailed, no assumption about equal variance)
showed that the optimal color model has a significantly
higher correlation for typical illuminants than atypical
illuminants (t(2.01) = 3.94, p = 0.0290). In addition,
we performed the same analysis using correlation
coefficients for the real object model which showed the
same trend (t(2.84) = 2.93, p = 0.0326).

These results are consistent with the idea that human
observers empirically learn the upper-limit luminance
through observing colors in natural environments and
use the criterion to judge whether a given surface is
self-luminous or not. Because magenta and green

illuminants are uncommon in natural environments,
the visual system does not know the upper limit of
surface colors under those illuminants. Moreover, in
the Appendix, we show that a simplistic model predicts
the luminosity threshold in Experiment 3 as well as the
optimal color model. A potential interpretation would
be that when the scene illuminant has an atypical color,
the visual system makes a self-luminous judgement
based on simple statistics.

General discussion

This study investigated potential determinants of
luminosity thresholds. Our three experiments showed
that the loci of luminosity thresholds have a mountain-
like shape that peaks around the illuminant color
and decreases as stimulus purity increases, showing a
striking similarity to optimal color and real object loci.
A simple alternative strategy which bases judgments
on the surrounding color distribution did not explain
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observers’ settings well. Rather, observers seem to hold
an internal representation about the luminance at which
a surface should reach self-luminosity. Moreover, such
similarity between luminosity threshold and optimal
color or real object loci was higher when surfaces
were placed under illuminants along the blue-yellow
direction than magenta and green illuminants that are
atypical in natural environments. These support an
idea that the visual system empirically internalizes the
gamut of surface colors through an observation of
colors in daily life. Going back to the original question
of whether the visual system relies on a heuristic
or internal reference for luminosity judgements, the
present study generally supports the internal reference
hypothesis.

We also note that some properties of the test field we
did not consider in the present study are known to affect
luminosity judgment. For instance, it was reported that
surfaces with smaller areas appeared to emit light at
lower luminance levels (Bonato & Gilchrist, 1999). It
has also been reported that surround stimuli are more
likely to affect luminosity threshold if the surround
stimuli are presented at the same depth as the test field
(e.g. Yamauchi & Uchikawa, 2005). Thus, in future
studies, it would be desired to expand our model to
modify the prediction of luminosity thresholds based
on factors such as stimulus size and relative depth in a
way that agrees with human luminosity judgments.

One consistent trend across the three experiments
was that observer settings were above the physical limit
(i.e. prediction of the optimal color model) in most
cases. We suspect that there are at least two reasons for
this. First, observers’ criterion to judge the luminosity
threshold in this study was the midpoint between the
upper-limit of the surface color mode where a test
field purely appears as an illuminated surface and the
lower-limit of the aperture color mode where a test field
purely appears as a light source. If we instead used a
different criterion, for example, to set the luminance so
that the test field appears simply as the upper-limit of
the surface color mode, we would have seen a smaller
discrepancy. Second, it is possible that observers
overestimated the intensity of the test illuminant. Just
as humans cannot directly access the chromaticity of
test illuminant, the intensity is also not directly known
to observers. In fact, in other color constancy studies
(Morimoto, Fukuda, & Uchikawa 2016; Morimoto et
al., 2021), we have repeatedly found that observers tend
to overestimate illuminant intensities and the degree of
overestimation substantially varied across individuals.
When the illuminant intensity is overestimated, the
observers’ internal upper-limit luminance should
accordingly increase, which could account for an
observed discrepancy between model predictions and
observer settings. Moreover, we also note that the
limit drawn by optimal-color or real-object model
corresponds to the upper-boundary as a surface color,

but the models are not designed to exactly predict how
the test field should appear when the luminance of the
test field exceeds the predicted value by the models.
Thus, it is inherently difficult to directly compare the
model prediction and observers’ settings, and we think
that they rather need to be compared relatively (for
example, using correlation coefficient). We also found
that individual differences in this study were mainly
found in gain rather than the shape of the observer
settings (though for some conditions in Experiment 3
shape differences were also evident). This individual
variation in gain could also be due to the variability in
estimating illuminant intensity.

Color constancy is often described as a visual
ability to identify the same surface under different
illuminants. A surface reflects a light, and that reflected
light enters our eyes. Because the reflected light is a
product of surface and illuminant components, color
constancy is often framed as a process in which our
visual system estimates the influence of the illuminant.
The “brightest is white” heuristic, which assumes that
a surface with the highest luminance provides the
closest information about the illuminant color, has
been known as an influential approach in estimating
illuminant color (Land, 1977). However, self-luminous
objects do not carry information about the scene
illuminant, which might cause a misestimation of the
illuminant if included in a scene. In general, when we
receive an intense light from a surface, there are two
ways to interpret this. One is that the surface is placed
under an intense illuminant and the other is that the
surface is self-luminous. This example highlights the
need for luminous percepts to be incorporated into
the process of color constancy. In fact, Fukuda and
Uchikawa (2014) showed that a surface appearing in
aperture-color mode does not have a strong influence
on observers’ estimates of the illuminant.

We chose a set of colored circles as experimental
stimuli to directly test our hypothesis while excluding
any other cues. However, it is reported that changing
a material property could affect the mode of
color appearance (Kuriki, 2015). In addition, our
experimental stimuli were simulated to be uniformly
illuminated by a single illuminant, but in natural
environments the spectra hitting an object surface
changes from one direction to another (Morimoto,
Kishigama, Linhares, Nascimento, & Smithson,
2019). The presence of multiple illuminants means
that we need to consider multiple optimal color
distributions, and thus the loci of luminosity thresholds
measured under such an environment might also
change. Despite a growing amount of research on
material perception (Fleming, 2013), luminosity
perception is little studied in the field. While our
choice of stimuli was necessary for experimental
control, it will be interesting whether our finding can be
applied to a wider range of stimuli that have complex



Journal of Vision (2021) 21(13):3, 1–23 Morimoto, Numata, Fukuda, & Uchikawa 18

material properties and are illuminated in non-uniform
ways.

One closely related phenomenon to self-luminous
perception would be brightness perception of colored
objects. The Helmholtz-Kohlrausch effect is that stimuli
with high purity appear to have high brightness even
if luminance is kept the same. The effect was reported
under a variety of viewing conditions (Nayatani,
Umemura, Sobagaki, Takahama, & Hashimoto, 1991;
Donofrio, 2011). However, it is unclear why a color with
high purity appears brighter. Curiously, as observed in
the present study, the same trend holds for luminosity
thresholds: a surface with high purity reaches the
limit of surface color mode at a lower luminance
level. Thus, if we take a strategy to determine the
brightness of colored stimuli in comparison to the
theoretical upper-limit luminance at the chromaticity
we could account for the Helmholtz-Kohlrausch
effect. Uchikawa et al. (2001) directly focused on this
relationship and argued that saturated colors appear
brighter because the visual system knows that it has
a lower limit and brightness might be determined in
proportion to the theoretical upper-limit luminance.

Identifying the range of natural colors has been
a major focus especially in the field of color science
(e.g. Pointer, 1980). While the limit of chromaticity
has been well characterized, less is known regarding
the luminance limit. In this study, we used the
SOCS reflectance dataset as a reference to draw
an upper-luminance boundary for real objects. The
database covers a wide range of color space as it
includes manmade materials such as ink which can
have narrow-band reflectances. We do not intend to
claim that the SOCS dataset in any sense represents all
plausible natural reflectance spectra. Yet, our separate
analysis based on 16 hyperspectral images (Nascimento,
Ferreira, & Foster, 2002; Foster, Amano, Nascimento,
& Foster, 2006) showed that colors in those images were
mostly covered in the gamut of the SOCS dataset. In
addition, to our knowledge, we have not encountered
another dataset that has a larger color gamut than the
SOCS dataset. We also found that if we restrict samples
to natural objects, the color gamut largely shrinks (see
figure 2b in Morimoto et al., 2016), and upper-limit
luminance estimated only from natural samples would
not predict obtained luminosity thresholds in this
study. Additionally, in this study, we used a smoothed
upper-limit luminance. We confirmed that if we instead
used raw unsmoothed data, the correlation coefficient
was lower in almost all tested conditions. These results
show that a precise evaluation of the abundance of
reflectance samples in real world seems to play a key
role in understanding the luminosity percept. When
more reflectance datasets become available in the future,
the gamut of real objects may need to be re-evaluated.

In summary, our results showed a mysterious
similarity between luminosity thresholds and optimal
colors. Yet, it is difficult to make a conclusive statement

as to whether the optimal color model is better in
accounting for luminosity thresholds than the real
object model. This is partially because the optimal color
locus well resembles the locus of real objects, leading to
high correlation between predictions from two models.
Furthermore, an intrinsically more challenging question
would be how our visual system learns the optimal
color locus because optimal colors do not exist in the
real world. Considering this point, one plausible theory
would be that our visual system learns the plausible
range of surface colors by seeing colors in daily life
and empirically internalizes the gamut of surface
colors. Then, a given surface appears self-luminous
when its luminance exceeds the upper-limit luminance
empirically internalized in the visual system. This
study presents a potential link between our perceptual
judgment and statistical properties of the real world.

Keywords: luminosity threshold, color vision, optimal
color
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Appendix

Individual observer settings in Experiment 2

In the main text, we presented mean observer settings
for Experiment 2. Figure A1 shows the individual
observer settings. There is some individual variation,
but, overall, the trend was similar across individuals.

Implementation of other past models

Here, we compare two simplistic models that predict
luminosity thresholds based on post-receptoral signals
or cone signals of the test field. Note that these two
models were also implemented as candidate models in
Speigle & Brainard (1996).

The first model is a post-receptoral model which
assumes that the visual system monitors the weighted
sum of the three types of cone signals of the test field.
The test field appears self-luminous when wLLT +
wMMT + wSST > = 1, where LT, MT and ST denote
cone signals of the test field and wL, wM, and wS denote
weightings for each class of cone signal (wL >= 0,
wM >= 0, andwS >= 0). Then, we optimized weightings
wL, wM, and wS, which produced the minimum root
mean square error between model prediction and mean
observers’ setting.

The second model is a generalized Evans’s model
(Evans, 1959) which assumes that a test field appears
self-luminous when any of LT, MT, or ST cone signals
exceed a certain criterion level. Thus, the model predicts
that a test field is self-luminous when LT > = cL, MT >
= cM or ST > = cS. The goal of the optimization here
was to find criterion cL, cM, and cS that minimized the
root mean square error between model prediction and
mean observers’ setting.

For both models, the optimization procedure was
performed separately for each experimental condition.
In other words, for example, in Experiment 2, we
performed optimization procedures nine times in total
(3 illuminants × 3 distributions).

Figures A2, A3, and A4 depict the prediction of
the post-receptoral model and the generalized Evans’s
model as well as the optimal color model in experiments
1, 2, and 3. To obtain the prediction of the optimal
color model, we used the ground-truth illuminant
for experiments 1 and 3, but for Experiment 2, we
used the estimated illuminant so that the peak is
matched between the prediction of optimal color model
and the mean observer settings (for more details,
see the Results section in Experiment 2 in the main
text).

For Experiment 1, we see that the post-receptoral
model predicts a linear luminosity threshold locus over
L/(L + M) which did not lead to a high correlation
coefficient (shown at the right upper corner in each
panel). The generalized Evans’s model came closer to
observer settings, but in all conditions the correlation
coefficient was lower than that of the optimal color
model. Welch’s t-test (one-tailed, no assumption
about equal variance) on averaged correlation
coefficients across the five conditions showed that
the optimal color model has a significantly higher
correlation than the Evans’ model (t(4.64) = 4.57,
p = 0.0072).
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A quite similar trend is shown in Experiment 2,
although in one condition (flat and 20,000 K), the
Evans’s model exceeded the optimal color model’s
correlation coefficient. However, again Welch’s t-test
on averaged correlation coefficients across the nine
conditions showed a significantly higher correlation
coefficient for the optimal color model than the Evans’s
model (t(8.95) = 3.72, p = 0.0048).

In contrast, for Experiment 3, we see that the Evans’s
model showed higher correlations than the optimal
color model especially in green illuminant conditions.
Welch’s t-test on averaged correlation coefficients across
the 12 conditions showed that there is no significant

difference between the Evans’s model and the optimal
color model (t(12.2) = 1.80, p = 0.0962).

In summary, it is evident that for experiments
1 and 2, the optimal color model predicts human
observer settings better than the two alternative
models considered here. In Experiment 3, there was no
significant difference in correlation coefficients between
the Evans’s model and the optimal color model. One
interpretation would be that when the scene illuminant
is atypical, human observers rely on the simple statistics
such as cone signals because the visual system does
not know the optimal color locus under the atypical
illuminant.

Figure A1. Individual observer settings in Experiment 2. Colored square symbols indicate the averaged setting across 10 repetitions for
each observer. The error bar indicates ±1 SE across 10 repetitions. The magenta circles denote the optimal color locus and the blue
circles show the real object locus. The red, black, and blue vertical solid lines show the chromaticities of the 3000 K, 6500 K, and
20,000 K test illuminants, respectively. The black cross symbol indicates mean LMS value across surrounding stimuli. Note that the
horizontal range differs across panels.
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Figure A2. Predictions from the post-receptoral model, the generalized Evans’s model and the optimal color model in Experiment 1.
Each model prediction was scaled to give the minimum root mean square error between model prediction and mean observer setting
to compare their shapes more easily. The correlation coefficients between model prediction and mean observer settings are shown at
the top right corner in each panel (in the order of post-receptoral model, generalized Evans’s model and optimal color model from top
to bottom). We used a ground-truth illuminant (i.e. 6500 K) to obtain the prediction from the optimal color model.

Figure A3. Predictions from the post-receptoral model, the generalized Evans’s model, and the optimal color model in Experiment 2.
Each model prediction was scaled to give the minimum root mean square error between model prediction and mean observer
setting. The correlation coefficients between model prediction and mean observer setting are shown at the right top corner in each
panel. For the optimal color model, we used an estimated illuminant whose peak matched that of the observer settings (see Results
section in Experiment 2 in the main text for more details).
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Figure A4. Predictions from the post-receptoral model, the generalized Evans’s model, and the optimal color model in Experiment 3.
Each model prediction was scaled to give the minimum root mean square error between model prediction and mean observer
setting. The correlation coefficient between model prediction and mean observer setting is shown at the top right corner in each
panel. We used a ground-truth illuminant (i.e. magenta or green) for the optimal color model.


