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Abstract

Emerging epidemics are challenging to track. Only a subset of cases is recognized and

reported, as seen with the Zika virus (ZIKV) epidemic where large proportions of infection

were asymptomatic. However, multiple imperfect indicators of infection provide an opportu-

nity to estimate the underlying incidence of infection. We developed a modeling approach

that integrates a generic Time-series Susceptible-Infected-Recovered epidemic model with

assumptions about reporting biases in a Bayesian framework and applied it to the 2016 Zika

epidemic in Puerto Rico using three indicators: suspected arboviral cases, suspected Zika-

associated Guillain-Barré Syndrome cases, and blood bank data. Using this combination of

surveillance data, we estimated the peak of the epidemic occurred during the week of

August 15, 2016 (the 33rd week of year), and 120 to 140 (50% credible interval [CrI], 95%

CrI: 97 to 170) weekly infections per 10,000 population occurred at the peak. By the end of

2016, we estimated that approximately 890,000 (95% CrI: 660,000 to 1,100,000) individuals

were infected in 2016 (26%, 95% CrI: 19% to 33%, of the population infected). Utilizing mul-

tiple indicators offers the opportunity for real-time and retrospective situational awareness to

support epidemic preparedness and response.

Author summary

Zika virus (ZIKV) infections, like many infections, are generally underreported due to

asymptomatic, mild, or unrecognized cases. Using available surveillance indicators reflect-

ing imperfect proxies of infection, we developed a modeling approach to estimate the

weekly incidence of infection by combining independent surveillance indicators and

assumptions about system-specific reporting biases in a Bayesian framework. Using our

approach, we estimated that approximately 890,000 people in the population were infected

with Zika in Puerto Rico in 2016, much higher than the 36,316 reported confirmed
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infections. Our framework has broad application to other diseases where cases may be

underreported through traditional disease surveillance and can provide near real-time

changes in incidences.

Introduction

The emergence and rapid spread of Zika virus (ZIKV), an arbovirus transmitted by Aedes spe-

cies mosquitoes, in the Americas [1] resulted in large-scale epidemics throughout the tropical

areas of the region. The first confirmed locally acquired ZIKV case in Puerto Rico was reported

on December 31, 2015 [2], followed by more than 36,000 confirmed cases in 2016 [3]. While

confirmed cases provided an indicator of transmission intensity, reported cases represented a

small proportion of actual infections [4] in part because many ZIKV infections are asymptom-

atic or mild, and are not captured by surveillance systems [5–7]. Furthermore, distinguishing

symptomatic (i.e., disease) cases of ZIKV infections from other arboviral infections (e.g., den-

gue, chikungunya) was difficult due to their similar symptoms (e.g., fever, rash), and serologi-

cal cross-reactivity with dengue viruses (DENV). Despite these challenges, estimating the

underlying ZIKV infection incidence was critical to assess useful metrics (e.g., transmission

intensity, the number of people previously infected, and the number still at risk) that informed

prevention and response measures, and preparation for severe outcomes like Guillain-Barré

Syndrome (GBS) [8] and congenital Zika syndrome [9].

ZIKV serosurveys, like those conducted in Yap and French Polynesia [5,10], provided esti-

mates of cumulative incidence, but are logistically difficult, require substantial time and

resources, and present diagnostic challenges due to varying duration of infection markers

(RNA and different types of antibodies) and cross-reactivity [11]. Therefore, it is important to

find alternative methods to estimate incidence of infection, including statistical techniques

that can be easily applied to surveillance data.

Although many infections are undetected during outbreaks, data exist for the set of infec-

tions captured through surveillance systems. Bayesian statistical methods explicitly consider

both variability in observations (data) and uncertainty in model parameters (e.g., probability

of observation), and are well-suited to address challenges like estimating quantities that are not

directly observed. During the emergence of ZIKV in Martinique, Andronico et al. [12] devel-

oped a Bayesian model to explicitly incorporate a classic epidemiological compartmental

model with surveillance data from Martinique using prior information on ZIKV transmission,

reporting rates, and GBS risk from French Polynesia. We employed a similar approach in

Puerto Rico incorporating multiple surveillance indicators and prior information on the prob-

ability of observing infections.

We considered surveillance data on suspected arbovirus cases, suspected Zika-associated

GBS cases, and infections identified through a subset of blood banks as indicators of infection.

Suspected arbovirus cases identified through passive surveillance reflect symptomatic care-

seeking individuals with symptoms indicative of ZIKV, dengue virus, or chikungunya virus

infection. Suspected Zika-associated GBS cases represented a more severe and easily recog-

nized manifestation, though GBS can also result from other causes. Blood donor data provided

information on asymptomatic and pre-symptomatic infections identified through blood

screening. To capture underlying infection dynamics, we used a generic Time-series Suscepti-

ble-Infected-Recovered epidemic model within a Bayesian framework to relate infections to

data by utilizing evidence-based assumptions on detection probabilities for each indicator. In
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this framework, we estimated the weekly incidence on ZIKV infection and the cumulative

number of infections in Puerto Rico in 2016.

Results

Estimated infections based on individual surveillance indicators

In 2016, 65,820 suspected arboviral disease cases, 175 suspected GBS cases, and 360 ZIKV-pos-

itive blood donors (out of 54,588 tested), were reported in Puerto Rico (Fig 1A–1C). We used

these data to estimate the weekly and cumulative ZIKV infection incidence in 2016 for each

surveillance indicator independently (Fig 1D). Estimated suspected arbovirus cases, suspected

GBS cases and ZIKV-positive blood donors from the individual indicator models reflected a

reasonable fit to these reported indicator data (Fig A in S1 Text). Weekly ZIKV infections esti-

mated from suspected arbovirus cases and suspected GBS cases had similar trends over time,

peaking in August 2016 and declining thereafter. Using the blood bank data, estimated ZIKV

incidence peaked in June followed by high incidence through August and declined afterwards.

For cumulative incidence estimates based on each of the three indicators, the median estimate

was lowest using suspected GBS cases (880,000 infections) and highest using blood bank test-

ing data (960,000 infections), with substantial overlap of credible intervals (Table 1). Estimates

based on suspected arbovirus cases had the lowest uncertainty (95% Credible Interval (95%

CrI): 630,000 to 1,200,000) and estimates based on suspected GBS cases had the highest (95%

CrI: 420,000 to 1,300,000). The estimated proportion of the population infected during the

outbreak was similar across the three indicators, with 27% (95% CrI: 19% to 35%) infected

using suspected arbovirus case indicator, 26% (95% CrI: 12% to 38%) using the suspected GBS

indicator, and 28% (95% CrI: 19% to 37%) using the blood bank indicator.

Estimated infections with combined surveillance indicators

Using a combination of the three surveillance indicators, infections peaked between August

and September 2016 (Fig 1E), reflecting the combined peaks in incidence from the three indi-

cators. We estimated that the total incident ZIKV infections was most likely between 810,000

and 970,000 infections (50% CrI, 95% CrI: 660,000 to 1,100,000) (Table 1), corresponding to

24% to 29% (50% CrI, 95% CrI: 19% to 33%) of the total population. These estimates corre-

spond well to an a priori triangular probability distribution used to anticipate resource needs

during the epidemic [13,14] (Fig 2). The combined estimates had reduced uncertainty com-

pared to that triangle distribution and each independent estimate based on the individual sur-

veillance indicators.

Prior and posterior parameter distributions

For each of the estimates reported above, we used a model with an informed set of prior

parameter distributions. However, we also compared these estimates to those with less

informed priors (increased variance) and naïve priors (Fig 3A). Increased uncertainty in the

priors resulted in similar median estimates for infections throughout 2016, but increased

uncertainty especially for the lower bound of the credible intervals (Table 2).

For the three prior distributions, the baseline transmission parameter (β0) converged on a

similar value regardless of the surveillance data used. As expected, the less informative priors

led to higher uncertainty in the posterior distributions for the outcome parameters, particu-

larly for the individual models in which additional data are not available to inform the esti-

mates (Fig 3B). The most notable effect was seen for the suspected GBS surveillance model. In

this case, the posterior baseline GBS risk (pG0) was slightly higher and the ZIKV-specific
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infection risk (pG|Z) was highly uncertain, indicating a lack of sufficient information to distin-

guish between the two components of GBS risk. On the other hand, the combined model was

able to resolve all parameters regardless of the assumed prior variance. However, parameters

using naïve priors still had more uncertainty in their posterior distributions (Fig 3C).

Fig 1. Suspected arbovirus cases, suspected ZIKV-associated Guillain-Barré Syndrome (GBS) cases, ZIKV-positive blood donors, and estimated weekly

Zika infections during the 2016 outbreak in Puerto Rico. A) Number of suspected arbovirus cases reported (green). B) Number of suspected ZIKV-

associated GBS cases reported. C) Number of ZIKV-positive blood donors identified from blood donor screening. D) Estimated weekly infections using each

indicator model separately. Colors refer to each specific indicator used. E) Estimated weekly infections from a model using three combined surveillance

indicators. Dark bounds refer to the 50% range (interquartile range) and lighter bounds refer to the 95% credible interval (CrI).

https://doi.org/10.1371/journal.pcbi.1008812.g001
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Table 1. Estimated Zika virus infections and 95% credible intervals (CrI) using three surveillance indicators.

Surveillance Indicator Cumulative ZIKV

infections [95% CrI]

Proportion of ZIKV

infections [95% CrI]

Median incident infections

per 10,000 [95% CrI]

Peak weekly incident infections

per 10,000 people [95% CrI]

Week of peak

incidence [95% CrI]

Suspected arboviral

cases

900,000 [630,000,

1,200,000]

27% [19%, 35%] 41 [28, 54] 130 [93, 180] 33 [32, 34]

Suspected ZIKV-

associated GBS cases

880,000 [420,000,

1,300,000]

26% [12%, 38%] 39 [16, 56] 130 [66, 240] 32 [28, 38]

Blood bank data 960,000 [650,000,

1,300,000]

28% [19%, 37%] 35 [22, 48] 150 [99, 220] 28 [24, 34]

Combined indicators 890,000 [660,000,

1,100,000]

26% [19%, 33%] 40 [30, 52] 130 [97, 170] 33 [22, 34]

Median and 95% CrIs are shown from posterior distributions for each surveillance indicator. Peak week refers to the calendar week of the year associated with peak

incidence during the epidemic. Abbreviations: CrI, credible interval; GBS, Guillain-Barré Syndrome; ZIKV, Zika virus.

https://doi.org/10.1371/journal.pcbi.1008812.t001

Fig 2. Estimated probability distribution for the proportion of incident ZIKV infections in Puerto Rico in 2016, and probabilities obtained from published

literature. The triangle represents the estimated distribution of possible incident infections from a priori estimates [13,14] based on previous Zika serosurveys

(vertical lines), Zika outbreaks and other arboviral outbreaks in Puerto Rico studies published literature [5,15–25]. Thick lines represent the distribution of the

proportion infected estimated from combined surveillance indicators (dark red), and separate surveillance indicators.

https://doi.org/10.1371/journal.pcbi.1008812.g002
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Posterior estimates over time

Over the progression of the outbreak, the parameter posteriors evolved over time as more data

became available for each surveillance indicator (Fig 3D). For the first 4 weeks of 2016, the pos-

terior estimates for individual parameters largely reflected the priors. However, by 8 weeks the

posteriors started to shift, narrow, and stabilize.

We observed similar trends when assessing how the incidence estimates of the individual

and combined models changed over 4-week increments (Fig C in S1 Text). When incorporat-

ing new data for each surveillance indicator and the combined model over the course of the

2016 epidemic, the incidence estimates had the largest uncertainty in the earliest weeks of the

outbreak (Fig C in S1 Text), though the uncertainty was larger for individual models. For each

4-week estimation, the end-of-year estimate based on the full dataset fell within the uncertainty

bounds.

Evaluating the time-varying transmission parameter (βt) possible seasonality showed the βt
parameter had a constant pattern with some week-to-week variation (Fig D in S1 Text). This

Fig 3. Prior and posterior parameter distributions from individual indicator models, the combined indicator model, and the combined model over time. A) Prior

distributions of six model parameters. Color lines refer to assessed variance assumptions of prior distributions in sensitivity analyses. Final individual and combined

indicator models used informative priors. B) Posterior distributions of model parameters from individual indicator models. The dashed lines for the Beta parameters

refer to the posterior parameter distributions from three individual indicator models (suspected arbovirus cases, suspected GBS and blood bank). Separate plots of the

beta parameters for each indicator model are available in Fig B in S1 Text. C) Posterior distributions of model parameters from the combined model. D) Posterior

distributions over time (i.e., four-week increments from the end of January 2016 to the end of December 2016) from the combined model using informative priors.

Dashed lines refer to the informative priors for each model parameter. Darker transparency of the lines refers to each the posterior distribution from each 4-week

increment over time (i.e., the darkest lines coincide with 4-weeks increments further into the time-series).

https://doi.org/10.1371/journal.pcbi.1008812.g003
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trend is consistent with a pattern expected of an emerging pathogen as opposed to a seasonal

trend, where stronger seasonal oscillations would be expected.

Discussion

Estimates of the true burden of infection for ZIKV, like other pathogens, is challenging

because many infections are inapparent; apparent infections are not always recognized, con-

firmed or reported; and disease surveillance systems for collecting case data are highly varied.

Here, we developed an epidemic model, applied within a Bayesian modeling framework, to

estimate ZIKV incidence in Puerto Rico using three separate infection indicators available

from multiple surveillance systems and assumptions about detection probabilities for each sys-

tem. Our approach utilizes different data sources to increase the precision of infection esti-

mates over time and may further reduce bias by accounting for inherent surveillance biases

based on the probability of detection. Using this framework, we estimated that ZIKV infec-

tions occurred in roughly a quarter of the population, resulting in 890,000 total incident ZIKV

infections in Puerto Rico in 2016, translating to an average of 36 to 44 new infections per

10,000 people per week. The peak of the epidemic occurred during the week of August 15,

2016 (i.e., week 33), when an estimated 120–140 weekly incident infections occurred per

10,000 people, and correspond to the observed mid-August peak of the outbreak when 2,542

ZIKV cases were confirmed [3].

We estimated that 19–33% of the population had symptomatic and asymptomatic ZIKV

infections in Puerto Rico in 2016, a much higher proportion infected compared to the reported

36,316 confirmed cases (approximately 1% of the population) [3]. This estimate was similar to

estimates for other arboviral outbreaks in Puerto Rico and to ZIKV estimates generated using

other approaches. Household-based cluster investigations from September to October of 2016

in Puerto Rico found 114 of 367 (31%) participants with ZIKV infection [4] and a 2016–2017

cohort study estimated a 34% (30–39%) prevalence among 366 household contacts [26], while

another Bayesian approach estimated an infection attack rate of 0.31 (95% CrI: 0.28–0.35) for

all of Puerto Rico [27]. Community-level dengue seroprevalence studies conducted after

emerging outbreaks indicated infection rates of approximately 47% (range: 8–79%, 1969)

[15,28] and 30% (range: 22–45%, 1982) [29,16]. The 2014–2015 chikungunya epidemic

resulted in 23.5% seropositivity among 1,031 blood donors in 2015 [17], and for communities

Table 2. Estimated cumulative Zika virus (ZIKV) infections from models using informative, naïve, and increased variances for prior distributions, Puerto Rico,

2016.

Assumed Prior Parameter Distribution

Informative Increased variance Naïve

Surveillance

Indicator

Cumulative ZIKV

infections [95% CrI]

Proportion of ZIKV

infections [95% CrI]

Cumulative ZIKV

infections [95% CrI]

Proportion of ZIKV

infections [95% CrI]

Cumulative ZIKV

infections [95% CrI]

Proportion of ZIKV

infections [95% CrI]

Suspected arboviral

cases

900,000 [630,000,

1,200,000]

27% [19%, 35%] 910,000 [590,000,

1,200,000]

27% [17%, 34%] 910,000 [610,000,

1,200,000]

27% [18%, 24%]

Suspected ZIKV-

associated GBS cases

880,000 [420,000,

1,300,000]

26% [12%, 38%] 900,000 [330,000,

1,400,000]

31% [10%, 42%] 810,000 [380,

1,400,000]

24% [0%, 42%]

Blood bank data 960,000 [650,000,

1,300,000]

28% [19%, 37%] 900,000 [530,000,

1,200,000]

26% [16%, 35%] 780,000 [100,000,

1,200,000]

23% [3%, 34%]

Combined

indicators

890,000 [660,000,

1,100,000]

26% [19%, 33%] 870,000 [600,000,

1,110,000]

26% [18%, 33%] 860,000 [470,000,

1,110,000]

25% [14%, 33%]

Median and 95% CrIs are shown from posterior distributions for each surveillance indicator. Abbreviations: CrI, credible interval; GBS, Guillain-Barré Syndrome;

ZIKV, Zika virus

https://doi.org/10.1371/journal.pcbi.1008812.t002
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participating in a chikungunya vector control study, seroprevalence was 23% (intervention)

and 45% (non-intervention) [28]. Compared to other blood bank models, our estimate of 28%

corresponds to another estimate of 21% (95% confidence interval 18–24%) using data from

April to December 2016 [29] while another model by Chevalier et al., using data from April to

August 2016 found a lower estimate of infection, 12.9% (95% CI 11.0% - 15.4%), during the

5-month period [30].

In contrast to our analysis, studies from other islands found substantially higher seropreva-

lence estimates, including 73% in Yap in 2007 [5], 49% in French Polynesia in 2013–2014 [10],

and 42%–50% in Martinique in 2015 [7,31]. The differences in the estimated underlying infection

burdens may be in part due to heterogeneity in exposure to infection even within an island popu-

lation, as seen in early dengue serosurveys in Puerto Rico and municipality-level estimates for

ZIKV infection rates [27]. In this analysis, we did not attempt to estimate municipality level due

to sparse suspected GBS case data and limited spatial representativeness of blood bank data. Inva-

sion patterns, by nature drive some spatial heterogeneity which can influence longer-term trans-

mission dynamics, since areas with high immunity may limit transmission to areas with low

immunity. Other factors that may contribute to differing levels of immunity include human

mobility, underlying socioeconomics, and cross-immunity from other arboviruses, and all war-

rant further examination. The estimated 2016 Puerto Rico infection rate is well below most model

estimates for how large a Zika epidemic would be if the population was perfectly mixed [32].

The framework developed here offers advantages beyond the estimation of epidemic size. In

practice, we used the model to actively inform situational awareness beginning in August 2016.

From the analysis of performance over time, the model could have provided useful information

even earlier in the epidemic, despite limited availability of information about the outcome proba-

bilities. Informative priors were available early in the year for baseline GBS risk and for the blood

bank reporting factor. While specification of informative prior distributions for the reporting of

ZIKV cases and suspected GBS cases would have been more challenging, they would not have

been completely naïve. Critically, combining indicators lessened the need for strong prior infor-

mation for any single indicator. Assuming less precise priors had some effect on outcome preci-

sion for all models but had the least effect when indicators were combined, except in the case of

completely naïve priors. Similar observations were reported by Andronico et al. [12], where exam-

ination of different prior assumptions did not strongly affect parameter estimates.

Our approach had some limitations. One of our key indicators, suspected arboviral cases,

uses a broad case definition to capture all potential symptomatic cases, and likely includes

cases caused by other circulating arboviruses, such as dengue and chikungunya viruses. Con-

firmed rather than suspected cases could have been used as an indicator, however confirma-

tion is also dependent on testing and test timing and introduces an additional delay. The

results also suggest this would have made little difference as the model based only on suspected

arboviral cases gave estimates in the same range as those for the other indicators and 92% of

suspected arboviral cases were confirmed as ZIKV infections, as dengue and chikungunya

were rare in Puerto Rico in 2016 [3]. We expect if there had been more dengue and chikungu-

nya cases, our framework would improve differentiation from ZIKV cases from other arbo-

viral cases. In general, our prior assumptions were based on data available at the time. If these

early data contain hidden bias, resulting estimates could also be biased. Our results suggest

that being conservative with respect to precision does not sacrifice substantial precision in the

results, in part due to using multiple indicators. Our framework did not allow for substantial

transmission variation beyond some week-to-week variability and reduced incidence due to

acquired immunity in those already infected. In practice, transmission likely changes season-

ally and can be influenced by vector control measures. In this case, with the introduction of a

completely novel virus and the lack of large-scale effective vector control measures, we expect
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there would have been little change in transmissibility throughout the year and examination of

βt over time did not show evidence of seasonal variation. Nonetheless, it is likely that there are

some seasonal patterns to transmission. Those would likely be stronger in other epidemiologi-

cal settings and could be incorporated into future versions of the framework. In addition,

including biologically relevant weighting of the transmission parameter relative to each sur-

veillance indicator could provide additional insight on transmission dynamics over time,

including direct estimates of the reproductive number, as well as differences between the sur-

veillance indicators [33,34].

Reported cases generally underestimate the true number of incident infections occurring in

an epidemic, since they capture only recognized and reported clinical infections. However,

multiple imperfect indicators provide the opportunity to estimate the underlying incidence of

infection, utilizing multiple complementary indicators: (1) a broad non-specific indicator with

relatively high counts (suspect arboviral disease cases); (2) an indicator of a severe outcome

that is rare, but likely to have high reporting fidelity (GBS); and (3) an age- and geography-

biased sample of infection prevalence (blood donors). Each indicator offers a unique but

biased insight into the progression of the epidemic, capturing different case subgroups includ-

ing different age-groups, and, when combined, can provide critical situational awareness

about the progression of the epidemic.

The approach described here can estimate how many people have been infected in near

real-time or identify changes in the trajectory of incidence across various indicators. It is also

useful for post-hoc analysis to understand what the impact may have been on the population-

level and whether more transmission may be expected. With 19–33% of the population

infected in 2016, ZIKV transmission should be much more limited but still possible in Puerto

Rico, particularly in areas that may have experienced lower infection rates. These insights are

critical both for preparedness for and response to future epidemics, and this modeling

approach is applicable to future Zika epidemics as well as epidemics of other pathogens. This

approach could be applied to future outbreaks of dengue and other arboviruses in Puerto Rico,

using suspected arboviral case, GBS, blood bank, and potentially other data as indicators. Like-

wise, other types of surveillance data, like reported influenza-like-illness (ILI)-associated hos-

pitalizations, outpatient ILI visits and reported laboratory-confirmed specimens, could be

used to enhance influenza surveillance. Each have limitations as individual indicators of the

incidence of influenza infection, but when combined they may best approximate the incidence

of influenza infection. Approaches like the one we present here provide a tool to incorporate

these diverse data and the uncertainties in them to generate timely estimates of incident infec-

tion and inform response and control efforts.

Methods

Ethics statement

Exemption was obtained from the CDC Human Subjects Research Office as the data were col-

lected as part of regular surveillance activities.

Data

We collected data on suspected arboviral disease cases, suspected GBS cases, and infections

detected among blood donors reported in Puerto Rico during January 1, 2016–December 31,

2016. A suspected arboviral disease case was defined as any patient with clinically suspected ill-

ness resulting from an arbovirus infection and reported through the Passive Arboviral Diseases

Surveillance System (PADSS) in Puerto Rico [3,35]. Suspected GBS cases were patients

experiencing onset of neurological symptoms characteristic of GBS (e.g., bilateral flaccid limb
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weakness [13]) reported through the GBS Passive Surveillance System–a surveillance system

capturing GBS cases along with patients experiencing other neurological symptoms (e.g.,

encephalitis [13]) and operated by the Puerto Rico Department of Public Health (PRDH) with

support from the Centers for Disease Control and Prevention (CDC) [36]. Not all suspected

GBS cases were confirmed to be either ZIKV infections or GBS cases, rather they represented

real-time reports of possible GBS cases. We used an indicator for asymptomatic and pre-symp-

tomatic infections using blood bank data beginning in April 2016 when all blood donations

were tested for ZIKV RNA [30]. Two blood collection agencies provided the numbers of total

donations and the number testing positive for ZIKV [30], the population of donors was not

representative, being predominantly male and not including anyone under age 16. For the

population of Puerto Rico, we assumed the population was approximately 3.4 million people

based on 2016 census estimates [37]. See S1 Data for the weekly suspected arboviral disease

cases, suspected GBS cases, and blood donor data.

Epidemic model

We developed a generalized Bayesian discrete Time-series Susceptible-Infected-Removed

model [33,34] to fit surveillance data over the 52 weeks of 2016 to estimate weekly ZIKV infec-

tion incidence in Puerto Rico. We used an underlying SIR epidemic model, where a propor-

tion of the population was infected each week, zt, and was defined as the product of the

proportion infected in the previous week (zt−1), the proportion of population that was suscepti-

ble in the previous week (st−1), and a time-varying transmission rate, βt:

zt ¼ bt � zt� 1 � st� 1

bt � Normalð0;1Þðb0; sÞ

where we use the notation Distribution(a,b)(θ) to indicate that we use the stated Distribution

with relevant parameter(s) θ but restricted to support (a,b), and so scaled to yield a valid distri-

bution. The time-varying transmission rate (βt) was assumed to have a constant mean reflect-

ing no substantial control, with random variability between weeks, and was constrained to be

greater than or equal to zero using a half-normal distribution. We assumed a prior for the

baseline transmission rate (β0, β0~Normal(0,1)(2, 1)) reflecting an expected weekly reproduc-

tive number on the order of 1 to 5 [32]. The prior for the standard deviation had a similar scale

(σ~Normal(0,1)(0, 1)). Though the average time between successive generations of arboviral

infections, i.e., generation times, is typically several weeks [33,38], we implemented this model

with a weekly time step, intended to reflect a generic representation of a weekly transmission

process in which βt cannot be directly interpreted as R0, the basic reproductive number. We

did not explicitly aim to model the initial phases of the epidemic, and therefore only estimated

an initial proportion of the population infected in the first week of 2016, using a restricted nor-

mal prior to indicate a small prevalence of infection that week (z0~Normal(0,1)(0, 0.001)). All

other individuals were assumed susceptible to infection, as evidence suggests only very limited

transmission prior to 2016 [2]. Our model assumed a closed population, meaning that suscep-

tible and infection population estimates depended only on population-level risk, and that

there were no births, deaths, or migration.

Reporting models

For each surveillance indicator, we estimated the probability of observing an infection as a

function of infection risk (zt) and the observation process for each data type within the
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epidemic model. The combined model estimated incident infections from the three individual

indicators within one epidemic model.

Suspected arboviral cases

Given that laboratory testing identified very few dengue and chikungunya cases [3], we assumed

most suspected arboviral cases were suspected Zika cases. We estimated the expected number of

reported suspect arboviral cases (St) as the product of population size (N), ZIKV infection preva-

lence (zt), and the probability of reporting a clinical suspect Zika case per infection (pS|Z) and fit

the case data using the negative binomial distribution formulated as a mean and dispersion:

St � NegBinðN � zt � pSjZ;φSÞ:

For pS|Z, we used a beta-distributed prior to approximate a mean of 0.11 and 95% credible inter-

val [CrI] of 0.01–0.24 based on Mier-y-Teran et al. [39] (pS|Z~Beta(3.3, 27)) (Table 3). The disper-

sion, φS, was assigned a prior distribution with high expected overdispersion,FS~Normal(0,1)(0,

1000).

Suspected ZIKV-associated GBS cases

We assumed the number of observed suspected GBS cases (GBSt) came from a binomial distri-

bution:

GBSt � BinomialðN; pG0 þ ðpGjZ � pG0 � ztÞÞ;

where pG0 is the weekly risk of GBS due to other causes and pG|Z is the probability of suspect

GBS given ZIKV infection and pG0+(pG|Z−pG0
�zt) represents the probability of an individual in

population N being reported as a suspected GBS case. We assumed the global baseline GBS

risk was 0.8–1.9 GBS cases per 100,000 per year [40] for Puerto Rico, and the weekly risk was

approximated using a beta prior distribution: pG0~Beta(23, 8.9x107). The prior for the proba-

bility of suspected GBS given ZIKV infection pG|Z was based on an estimated range of 0.5–4.6

GBS cases per 10,000 ZIKV infections [39], which was approximated with a beta distribution

(pG|Z~Beta(5.9, 2.3x104)).

Blood bank indicator

We assumed the number of positive blood donors (BZ,t) was a binomial sample from all tested

donors (Bt):

Bz;t � BinomialðZt � fBB;BtÞ:

We used an adjustment factor (fBB) to account for the duration of test positivity and the pro-

portion of infected individuals excluded from donating blood because they were symptomatic

Table 3. Model parameters and prior distributions.

Parameter Description Mean 95% Quantiles Distribution Reference

Population (N) 2016 population for Puerto Rico 3,400,000 - - [37]

Suspect Zika probability (pS|Z) Probability of ZIKV infection becoming a suspect case 0.11 0.03, 0.24 Beta [32]

Viremic detection (V) Period of detecting Zika virus RNA in blood (days) 10 10.7, 17.7 Weibull [30]

Asymptomatic proportion (pA) Proportion of ZIKV infections that are asymptomatic 0.68 0.53, 1.0 Beta [5,6,30]

GBS probability (pG|Z) Probability of GBS given ZIKV infection 1.39/100,000 per week 9.32x10-5, 5.01x10-4 Beta [39]

Global baseline GBS risk (pG0) Weekly GBS risk due to other causes 1.89/100,00 per week 1.64x10-7, 3.73x10-7 Beta [40]

Abbreviations: GBS, Guillain-Barré Syndrome; ZIKV, Zika virus

https://doi.org/10.1371/journal.pcbi.1008812.t003
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at the time of donation [30]. Assuming weekly testing, the equations and distributions of Che-
valier et al. were used to approximate a prior distribution for this factor:

fBB ¼ 7 � D=ðpA � V þ ð1 � pAÞÞ:

We sampled from distributions of each component, pA, the proportion of asymptomatic infec-

tions [5,6,11]; V, the duration of viremia [41]; and D, incubation period [41,42] (see S1 Text),

to estimate a Gamma prior for fBB: fBB = Gamma(6.7, 7.6).

Analysis of priors

We examined the effect of different prior distribution assumptions on model posteriors for the

probability of a suspected case being reported (pS|Z), the probability of acquiring GBS if ZIKV

infected (pG|Z), and the relative incidence of ZIKV in the general population compared to posi-

tivity in blood donor (fBB) parameters. We assessed the models with three alternative types of

prior variance: informative (as described above), informative with doubled standard deviation

in the prior and naïve (uniform or flattened). Prior distributions for each parameter under

each assumption are available in Table A in S1 Text.

Model fitting

We fitted epidemic models using a Markov chain Monte Carlo (MCMC) Bayesian framework

to estimate incident ZIKV infections and 95% credible intervals [95% CrI] from the three sur-

veillance indicators individually and using all three indicators combined. For each indicator

model, we performed 1,001,000 iterations for three chains, and discarded the initial 1,000 iter-

ations as the burn-in period. We evaluated convergence using the Gelman-Rubin diagnostic

[32] and thinned the output using every 1,000th sample to obtain 1,000 effectively uncorrelated

simulations per chain. For the MCMC simulations, we used the rstan package version 2.19.3 of

Stan (version 2.18.0–1, Stan Development Team, http://mc-stan.org), and coda version 0.19–2

[43] package in R version 3.3.2 (https://www.R-project.org/)). See S1 Code for the combined

indicator model Stan code.

Supporting information

S1 Text. Supporting Information for “Estimating incidence of infection from diverse data

sources: Zika virus in Puerto Rico, 2016”. This supplement contains additional parameter

descriptions and additional tables and figures.

(DOCX)

S1 Data. Combined Indicator Data.

(XLSX)

S1 Code. For combined indicator model. Stan code for running the model using the com-

bined indicators.

(STAN)

Acknowledgments

The findings in this article are those of the authors and do not necessarily represent the official

position of the U.S. Centers for Disease Control and Prevention or the U.S. Public Health

Service.

PLOS COMPUTATIONAL BIOLOGY Estimating incidence of Zika infections in Puerto Rico in 2016

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008812 March 30, 2021 12 / 15

http://mc-stan.org/
https://www.r-project.org/
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008812.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008812.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008812.s003
https://doi.org/10.1371/journal.pcbi.1008812


Author Contributions

Conceptualization: Talia M. Quandelacy, Stephen Waterman, Michael A. Johansson.

Data curation: Bradford Greening, Dania M. Rodriguez, Koo-Whang Chung, Matthew J.

Kuehnert, Emilio Dirlikov, Tyler M. Sharp.

Formal analysis: Talia M. Quandelacy, Jessica M. Healy, Luis Mier-y-Teran-Romero.

Methodology: Talia M. Quandelacy, Jessica M. Healy, Brad J. Biggerstaff, Michael A.

Johansson.

Supervision: Michael A. Johansson.

Visualization: Talia M. Quandelacy.

Writing – original draft: Talia M. Quandelacy.

Writing – review & editing: Jessica M. Healy, Bradford Greening, Dania M. Rodriguez, Koo-

Whang Chung, Matthew J. Kuehnert, Brad J. Biggerstaff, Emilio Dirlikov, Luis Mier-y-

Teran-Romero, Tyler M. Sharp, Stephen Waterman, Michael A. Johansson.

References
1. Fauci AS, Morens DM. Zika Virus in the Americas—Yet Another Arbovirus Threat. N Engl J Med. 2016;

374(7):601–4. https://doi.org/10.1056/NEJMp1600297 PMID: 26761185

2. Thomas DL, Sharp TM, Torres J, Armstrong PA, Munoz-Jordan J, Ryff KR, et al. Local Transmission of

Zika Virus—Puerto Rico, November 23, 2015-January 28, 2016. MMWR Morb Mortal Wkly Rep. 2016;

65(6):154–8. https://doi.org/10.15585/mmwr.mm6506e2 PMID: 26890470

3. Sharp TM, Quandelacy TM, Adams LE, Aponte JT, Lozier MJ, Ryff K, et al. Epidemiologic and spatio-

temporal trends of Zika Virus disease during the 2016 epidemic in Puerto Rico. PLoS Negl Trop Dis.

2020; 14(9):e0008532. https://doi.org/10.1371/journal.pntd.0008532 PMID: 32956416

4. Lozier MJ, Burke RM, Lopez J, Acevedo V, Amador M, Read JS, et al. Differences in Prevalence of

Symptomatic Zika Virus Infection, by Age and Sex-Puerto Rico, 2016. J Infect Dis. 2018; 217

(11):1678–89. https://doi.org/10.1093/infdis/jix630 PMID: 29216376

5. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, et al. Zika virus outbreak on Yap

Island, Federated States of Micronesia. N Engl J Med. 2009; 360(24):2536–43. https://doi.org/10.1056/

NEJMoa0805715 PMID: 19516034

6. Musso D, Nhan T, Robin E, Roche C, Bierlaire D, Zisou K, et al. Potential for Zika virus transmission

through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to

February 2014. Euro Surveill. 2014; 19(14). https://doi.org/10.2807/1560-7917.es2014.19.14.20761

PMID: 24739982
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