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Abstract: (1) Background: As a world-recognized high-risk occupation, coal mine workers need
various cognitive functions to process the surrounding information to cope with a large number of
perceived hazards or risks. Therefore, it is necessary to explore the connection between coal mine
workers’ neural activity and unsafe behavior from the perspective of cognitive neuroscience. This
study explored the functional brain connectivity of coal mine workers who have engaged in unsafe
behaviors (EUB) and those who have not (NUB). (2) Methods: Based on functional near-infrared
spectroscopy (fNIRS), a total of 106 workers from the Hongliulin coal mine of Shaanxi North Mining
Group, one of the largest modern coal mines in China, completed the test. Pearson’s Correlation
Coefficient (COR) analysis, brain network analysis, and two-sample t-test were used to investigate the
difference in brain functional connectivity between the two groups. (3) Results: The results showed
that there were significant differences in functional brain connectivity between EUB and NUB among
the frontopolar area (p = 0.002325), orbitofrontal area (p = 0.02102), and pars triangularis Broca’s
area (p = 0.02888). Small-world properties existed in the brain networks of both groups, and the
dorsolateral prefrontal cortex had significant differences in clustering coefficient (p = 0.0004), nodal
efficiency (p = 0.0384), and nodal local efficiency (p = 0.0004). (4) Conclusions: This study is the first
application of fNIRS to the field of coal mine safety. The fNIRS brain functional connectivity analysis
is a feasible method to investigate the neuropsychological mechanism of unsafe behavior in coal mine
workers in the view of brain science.

Keywords: Chinese coal mine workers; unsafe behavior; fNIRS; functional connectivity

1. Introduction

A growing number of studies and investigations have shown that human unsafe
behaviors and errors are the main and direct cause of accidents [1–3]. As early as 1931,
Heinrich pointed out that 88% of accidents are attributable to unsafe human behavior [2].
In China’s coal mining industry, more than 95% of accidents are caused by the unsafe
behavior of coal mine workers [4]. Thus, coal miners are considered to be one of the riskiest
occupations in the world [5,6]. According to the Human Factors Analysis and Classification
System (HFACS), an individual’s adverse mental state is an essential precondition for
unsafe personal behavior [7–9]. To effectively reduce the error rate and injury rate of coal
mine workers and to enhance coal mine safety management practices, it is necessary to
identify and monitor the mental state of coal mine workers who have engaged in unsafe
behavior. Therefore, research tools from neuroscience and cognitive psychology need to
be brought into the study of coal mine workers’ unsafe behavior to further explore the
neuropsychological mechanism of coal mine workers’ unsafe behavior.
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The human brain is a complex network with various brain regions that process or
integrate with other brain regions to perform different functions [10]. Describing how
the nervous system implements and controls behavior is a central goal of modern neuro-
science [11]. Psychologists have traditionally used self-report methods and performance on
laboratory tasks to understand and predict human behavior. However, these indicators are
only limited predictors of behavior in specific situations. In comparison, neuroimaging can
be utilized as a complement to reveal the connection between neural activity and long-term,
ecologically valid outcomes in laboratory environments [12,13]. In these years, resting-state
functional near-infrared spectroscopy (fNIRS) is considered an emerging imaging technique
and has shown valuable potential in exploring brain network architecture and the brain
mechanisms underlying various cognitive functions [14]. Compared with functional mag-
netic resonance imaging (fMRI), fNIRS can be operated in a more economical, cost-effective,
comfortable, safe, quiet, and portable way, and with high ecological validity [15–22]. In
addition, fNIRS measures the concentration changes in oxygenated hemoglobin (oxy-Hb)
and deoxygenated hemoglobin (deoxy-Hb) with a slightly higher temporal resolution than
fMRI, which can provide more information about neurovascular changes in the brain [16].
It can be viewed as a valid and promising brain imaging approach to investigate applied
societal problems, such as safety, children’s development, sport science [14,16,23–26].

In recent years, fNIRS has become a novel and advanced research tool for safety
science. Current research shows a significant link between functional connectivity and
behavior in safety-critical tasks [27]. In the field of safety research, scholars from driving,
construction, aviation, and maritime operations have applied fNIRS to study workers’
unsafe behavior. In the study areas of driving, Tao Liu explored the potential of fNIRS
as a new tool to examine driving behavior and analyzed the positive correlation between
drowsiness and prefrontal activation [28,29]. Scholars mainly focus on the application of
fNIRS to study fatigue driving and unsafe driving [25,30–33]. David Perpetuini applied
sample entropy of the fNIRS signal to estimate the mental workload of drivers [34]. In the
construction literature, Mo Hu utilized the fNIRS device to explore the construction hazard
recognition [35], Yangming Shi used virtual reality experiments to assess workers’ stress
status and task performance under different virtual training scenarios [36]. In the field of
aviation, Frederic Dehais applied fNIRS and electroencephalography (EEG) to monitor
the pilot’s cognitive fatigue [37]. Kevin J. Verdière detected pilots’ mental states in an
automated versus manual landing scenario [38]. Amanda Liu designed a system based on
fNIRS to assess the attention level and mental load of pilots [39]. In the field of maritime
operations, Shiqi Fan found that the right lateral area of the prefrontal cortex (PFC) is
sensitive to watchkeeping and decision-making during operational performance [27].

However, the existing literature indicates that in the unsafe behaviors of coal miners
field, most scholars focused on accidents analysis, questionnaires, model analysis, factor
analysis, and other empirical methods [40–44]. Furthermore, to the best of our knowledge,
no scholars have applied experimental methods of brain science to study the unsafe be-
haviors of coal miners. Researchers now agree that PFC plays an important role in the
organization, order, and timing of human behavior acts [45,46]. It is the key brain area
of human cognitive functions which includes attention, working memory, and decision-
making [11,47]. Decreased attention, working memory, and decision-making may cause
unsafe behaviors such as operational errors [48]. Combining behavioral experiments, most
of the current researches were focused on the area of fatigue [29–32,37,49,50], distraction and
attention [51–55], brain load [56–59], sleep deprivation, and drowsiness [14,25,29,49,60,61]
to explore the connection between PFC and unsafe behavior. In contrast to task-related
responses, resting-state functional connectivity (RSFC) reflects the brain’s baseline, sponta-
neous and instinctive activity, and functional networks. RSFC measured with fNIRS has
been proved to be a useful method for analyzing the mental state of affective disorders and
autism spectrum disorders [62,63]. Furthermore, network science, based primarily on graph
theory, is a powerful method for studying the architecture of complex networks; it has been
widely used to study brain networks in various cognitive states and diseases [64,65]. Con-
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sistent with previous studies, we believe that brain connectivity is an effective method that
can be used to automatically detect and classify mental fatigue [65]. From this, we hypothe-
sized that functional brain connectivity is available to investigate the neuropsychological
mechanism of coal mine workers’ unsafe behavior.

Thus, to fully understand the neuropsychological mechanism of coal mine workers’
unsafe behavior, it is necessary to explore the connection between coal mine workers’
neural activity and unsafe behavior. In this study, we conducted a resting-state functional
near-infrared spectroscopy (rs-fNIRS) study with 106 coal mine workers in China and
analyzed the functional connectivity between coal mine workers who have engaged in
unsafe behaviors and those who have not, providing a new approach to analyze unsafe
behaviors of coal miners and further promote the cross-fertilization of brain science and
coal mine safety science.

2. Materials and Methods
2.1. Demographic Information of the Subjects

In this study, based on a random sampling method, 120 male miners from Shaanxi
Coal Group Northern Shaanxi Mining Hongliulin Company, one of the largest modern coal
companies in China, were selected as subjects. 14 participants were excluded because of
large motion artifacts in the signals due to head movements or extreme fatigue (10 from
NUB and 4 from EUB). Therefore, the effective subjects of this study were 106. Among them,
80 miners had no “three disobeying” behavior (NUB), the other 26 miners have engaged in
“three disobeying” behavior (EUB) in the last three years. China’s “Special Provisions of
the State Council on the Prevention of Production Safety Accidents in Coal Mines” clearly
instructs that the “three disobeying” in coal mines refer to the phenomenon or behaviors of
coal mine workers who: a) disobeyed the rules and regulations; b) disobeyed operation
disciplines; c) disobeyed labor disciplines in the process of production and construction.
Eliminating “three disobeying” behaviors is one of the most important guarantees in coal
mine safety. According to the current requirements of China’s coal mines regulation, the “
three disobeying “ are generally considered to be unsafe behaviors, such as underground
smoking, sleeping, going down the mine late, going up the mine early, taking off work,
fatigue work, bad mood work [66,67]. Regarding the basic information of the subjects, the
average age of the subjects was 27.3 ± 5.7 years, the average height was 172.00 ± 4.62 cm
and the average weight was 68.14 ± 7.80 kg. Detailed information was reviewed before
the study, and participants were required to have received no psychotropic medication
(such as stimulants, antidepressants, and antianxiety drugs) and to have no history of
neurological damage or illness, epilepsy, or psychiatric disorders. Based on the handedness
scale, we confirmed that all subjects were right-handed and had a normal or correctional
vision. Subjects were forbidden to drink sensitive products (such as alcohol or caffeine)
24 h before the experiment. The participants reported their body information and how
much sleep they had had the night before, ensuring that they had enough sleep. During
fNIRS data collection, the participants were instructed to remain still and stare at the cross
directly in the center of the screen with their eyes open without falling asleep. The time
duration for resting-state fNIRS data acquisition was approximately 5 min for each subject.
Experimental room conditions (light and temperature) were kept constant throughout the
experiment. To avoid interfering with the coal mine workers’ normal work and reduce
the effect of time on the data, this study chose coal mine workers on leave to complete the
experiment during 10:00–14:00. The demographic information of the subjects showed in
Tables 1 and 2.

Before the experiment, subjects were required to fully understand the contents of
the experimental program, and all participants provided written informed consent. The
experimental procedure was approved by the Human Ethics Committee of Xi’an University
of Science and Technology and met the ethical standards stipulated in the 1975 Helsinki
Declaration.
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Table 1. The demographic information of 106 subjects, Chi-square test, and one-way ANOVA test.

NUB (n = 80) EUB (n = 26) Chi-Square Test One-Way ANOVA

Mean ± Std Mean ± Std χ2 P1 P2 F

Length of service/year 9.00 ± 7.06 9.76 ± 7.02 0.831 1.000 0.961 0.154
Height/cm 172.88 ± 5.01 171.71 ± 4.49 1.319 0.966 0.304 1.226
Age/year 34.89 ± 6.77 36.38 ± 6.40 1.855 0.562 0.540 0.724

Weight/kg 69.50 ± 7.04 67.73 ± 7.97 1.306 0.802 0.199 1.579
Marital status - - 0.283 0.868 0.812 0.209

Education information - - 1.442 0.780 0.831 0.368

Note: P1 < 0.05, samples passed the Chi-square test. P2 < 0.05, samples passed the one-way ANOVA test.

Table 2. The marital status and education information of 106 subjects.

NUB (n = 80) UW (n = 26)

n % n %

Marital status
Divorced 1 1.2 0 0
Married 71 88.8 21 80.8

Unmarried 8 10.0 5 19.2
Education information

Bachelor’s degree 6 7.5 3 11.5
College 12 15.0 5 19.2

High school 39 48.8 9 34.6
Junior high school 1 1.3 0 0

Technical secondary school 22 27.5 9 34.6

2.2. Data Acquisition

A 22-channel continuous-wave near-infrared optical imaging system (LABNIRS; Shi-
madzu Corporation, Kyoto, Japan) with each source including two wavelengths (690 and
830 nm) of near-infrared light was used to measure the time course of oxy-hemoglobin (oxy-
Hb) and deoxy-hemoglobin (deoxy-Hb) concentrations at a sampling rate of 7.4074 Hz [68].
The time duration for resting-state fNIRS data acquisition was approximately 5 min for
each subject, including 2.224 sample points. The 8 sources and 7 detector probes were
plugged into a holder and arranged into a 5× 3 array resulting in 22 measurement channels
covering the prefrontal areas (inter-optode distance = 30 mm, Figure 1). This probe design
was also the same as that in the previous series of fNIRS studies [23,69,70]. Detector 7 was
perpendicular to the tip of the nose and flush with the eyebrow. Measurement patches
were attached to a regular swimming cap worn by the participant. Since the prefrontal
cortex of the brain plays a central role in response execution, memory extraction, and
emotional assessment, and is associated with socialization, perception, attention, and
decision-making [11,47]. This arrangement allowed us to assess the surface portions of
our main regions of interest (ROIs), PFC, including the middle parts of the dorsolateral
prefrontal cortex (dlPFC) (CH01, CH02, CH03, CH04, CH05, CH08, CH13, CH14, and
CH18), the frontopolar area (CH06, CH07, CH10, CH11, CH12, CH15, and CH16).

The positions of all fNIRS channels were measured by a 3D electromagnetic tracking
device (FASTRAK; Polhemus, USA) after the experiment. The origin of this system is
in the center of the chin. Four reference points are obtained at the nasion (Nz), right
preauricular points (AR), left preauricular points (AL), and central zero (Cz) [71]. The
positions of the fNIRS sources and detectors were obtained according to the origin and the
four reference points. The Montreal Neurological Institute (MNI) of an fNIRS channel was
computed from the positions of the sources and detectors by the MATLAB toolbox NIRS-
SPM (The MathWorks Inc., Natick, MA, USA) [61,72,73]. The probability is to describe
how the estimated MNI coordinates accurately correspond to the specific brain regions.
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The estimated mean locations of the fNIRS channels were obtained using anatomical
information based on Brodmann areas. These are reported in Table 3.

Figure 1. (a) Positions of fNIRS channels. (b) Fifteen optodes (eight sources and seven detectors)
were attached to the forehead in a 5 × 3 lattice pattern forming 22 measurement channels (in frontal
view). (c) The 3D MNI coordinates of the fifteen optodes in a different view.

Table 3. Locations of all fNIRS channels.

CH Brodmann Area MNI Coordinates Probability

x y z

CH01 * 9—Dorsolateral prefrontal cortex 31 48 42 0.7547
CH02 * 9—Dorsolateral prefrontal cortex 11 58 41 0.9958
CH03 * 9—Dorsolateral prefrontal cortex −12 58 41 1.0000
CH04 * 9—Dorsolateral prefrontal cortex −29 48 39 0.6406
CH05 * 46—Dorsolateral prefrontal cortex 43 51 28 0.6368
CH06 * 10—Frontopolar area 21 65 28 0.6324
CH07 * 10—Frontopolar area −1 64 26 0.8878
CH08 * 46—Dorsolateral prefrontal cortex −22 63 28 0.8619
CH09 45—pars triangularis Broca’s area −39 51 27 0.9889
CH10 * 10—Frontopolar area 31 67 14 0.8810
CH11 * 10—Frontopolar area 12 72 16 1.0000
CH12 * 10—Frontopolar area −13 72 15 1.0000
CH13 * 46—Dorsolateral prefrontal cortex −31 64 16 0.7677
CH14 * 46—Dorsolateral prefrontal cortex 40 64 0 0.3726
CH15 * 10—Frontopolar area 21 72 3 0.4762
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Table 3. Cont.

CH Brodmann Area MNI Coordinates Probability

x y z

CH16 * 10—Frontopolar area −4 71 4 0.7357
CH17 * 11—Orbitofrontal area −21 72 5 0.6826
CH18 * 46—Dorsolateral prefrontal cortex −39 62 3 0.9173
CH19 * 11—Orbitofrontal area 29 69 −8 0.8404
CH20 * 11—Orbitofrontal area 11 73 −7 0.9443
CH21 * 11—Orbitofrontal area −13 72 −6 0.9964
CH22 * 11—Orbitofrontal area −32 66 −6 0.5135

Note: * indicates Region of Interest.

2.3. Data Preprocessing

The fNIRS data were preprocessed using MATLAB R2013b by our script. We manually
converted the a.txt file, the output from the LABNIRS system, to the a.mat file. The
modified Beer-Lambert law (MBLL) was applied to compute concentration changes in
hemoglobin signals from the attenuation of light through the head at two wavelengths [74].
According to Duncan’s study of 100 adults, the mean value of the differential pathlength
factor (DPF) was 6.53 ± 0.99 [75]. Discrete wavelet transformation was adopted to reduce
head movements and surface noise [76]. Similar to previous studies, band-pass filtering
with cutoff frequencies of 0.02 and 0.08 Hz was applied to remove the long-term trends,
respiratory and cardiac noises [49,70,77,78]. Compared with deoxy-Hb signals and total-Hb
signals, oxy-Hb signals are a more sensitive indicator of changes associated with regional
cerebral blood flow. Thus, oxy-Hb signals were selected as the research objects of this
study [79–81].

2.4. Resting-State Functional Connectivity Analysis
2.4.1. Pearson’s Correlation Coefficient and t-Test

Common analysis indicators of RSFC include Pearson’s Correlation Coefficient (COR),
Magnitude Squared Coherence (COH), and Phase Locking Value (PLV). Among them, COR
is the most commonly used indicator [36,77,82]. In this study, COR is used to describe
the linear correlation between the time domain signals x(t) and y(t) of two channels. It
is generally assumed that two signals have no delay. For signals with a mean of 0 and a
variance of 1, COR can be defined as:

CORxy =
1
N

N

∑
k=1

x(k)y(k) (1)

COR value range: [−1,1]. If the two signals are completely negative (linearly) cor-
related, the value is −1; if the two signals are completely positive (linear) correlated, the
value is 1; if there is no linear correlation between the two signals (there may be nonlinear
correlation), the value is 0.

The connection strength of the prefrontal cortex neuron population in 5 min of this
experiment can be obtained, by calculating the COR matrix of between 22 channels of
two groups [73]. The rows and columns of these 22 × 22 matrices represent the channel
numbers, while the elements of the matrices were the correlation coefficients of the matching
channels.

After the construction of COR matrix, to further explain the difference between the
two groups of functional connectivity, a binary transformation of the COR matrix was
used. Referring to previous studies, the threshold was set as 0.5 and 0.7, and COR greater
than the threshold was defined as “1”, while COR less than the threshold was defined as
“0” [73,83–85].

The COR matrix of 22 channels between the two groups was carefully examined
using two-tailed paired t-tests. Multiple comparison correction was adopted to control
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for the probability of false-positive events, and false discovery rate (FDR) correction was
performed for all COR results (q < 0.05) [86]. All statistical analyses were performed by
SPSS 26.0 (SPSS Inc., Chicago, IL, USA), and the significance level was set to p < 0.05.

2.4.2. Brain Network Analysis

Graph-theoretical topology analysis is rich in content and widely used. Many dis-
ciplines, such as communication, computer science, and neuroimaging, utilized graph
theory as a tool to solve practical and theoretical problems [87]. In this study, graph theory
analysis was conducted to further evaluate the functional connectivity of these 22 chan-
nels [23,69,70,73]. For complex brain networks, clustering coefficient, global efficiency,
local efficiency, and small-world network measure, are often used in network topology
characteristic analyses [65,80,84]. All these indicators were calculated by GRETNA on
MATLAB [88]. Referring to previous studies, a widely used sparsity threshold were
adopted [23,69,70,80,83,89,90]. A range of continuous threshold values (sparsity) T (T ∈
(0.1 : 0.1 : 0.9)), were input to construct the brain networks. Brain networks are typically
compared with random networks to test whether they are configured with significantly non-
random topology [88]. Further, 100 matched random networks were generated to compute
the ratios of all these indicators between the real brain functional networks [84,91–93].

The nodes and edges are two essential components to construct the brain networks [94,95].
In this study, N is the set of all nodes in the network, and n is the number of nodes. L is the set
of all links in the network, and l is the number of links. (i, j) is a link between nodes i and j, (i,
j∈N). aij is the connection status between i and j: aij=1 when link (i, j) exists (when i and j are
neighbors); aij = 0 otherwise (aii = 0 for all i).

The number of links were computed as l = ∑
i,j∈N

aij (to avoid ambiguity with directed

links we count each undirected link twice, as aij and as aji) [94].
The degree is defined as the number of links connected to a node, degree of a node

i [94]:
ki = ∑

j∈N
aij (2)

The number of triangles around a node i,

ti =
1
2 ∑

j,h∈N
aijaihajh (3)

Thus, the clustering coefficient is defined as follows [87,94,96]:

Cnet =
1
n ∑

i∈N
Ci =

1
n ∑

i∈N

2ti
ki(ki − 1)

(4)

where Ci is the clustering coefficient of node i (Ci = 0 for ki < 2). The clustering coefficient
evaluates the local clustering or region range of the network. A network with a larger
clustering coefficient indicates a more isolated network topology [65].

The shortest path length (distance), between nodes i and j:

dij = ∑
auv∈gi↔j

auv (5)

where gi↔j is the shortest path (geodesic) between i and j. Note that dij = ∞ for all
disconnected pairs i, j.

The characteristic path length of network [84]:

Lp = ∑
i∈G

∑i 6=j∈G min
{

Li,j
}

(N − 1)N
(6)
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where min
{

Li,j
}

is the shortest path (geodesic) between node i and node j, G is the set of
all nodes in the network. The characteristic path length is the average of the shortest path
lengths between any pair of areas in the network; it measures the overall route effectiveness
of the network. Networks with short characteristic path lengths indicate a high efficiency
of parallel information transmission [65].

The small-world network measure [84,87,94]:

σ =
γ

λ
(7)

where γ = Cnet/Crandom , λ = Lnet/Lrandom, C and Crandom are the clustering coefficients,
AL and ALrandom are the characteristic path lengths of the respective tested network and
a random network. Crandom and Lrandom denotes the average clustering coefficient and
characteristic path length of 100 matched random networks, respectively, which possess
the same number of nodes, edges, and degree distribution as the real brain network [97,98].
Small-world networks often have σ� 1.

The global efficiency [94,99]:

Eglobal =
1

N(N − 1) ∑
i,j,i 6=j

1
dij

(8)

where dij is the shortest path length (distance), between nodes i and j.
The local efficiency [94,99]:

Eloc =
1
n ∑

i∈N
Eloc,i =

1
n ∑

i∈N

∑j,h=N,j 6=i aijaih

[
djh(Ni)

]−1

ki(ki − 1)
(9)

where Eloc,i is the local efficiency of node i, and dih(Ni) is the length of the shortest path
between j and h, that contains only neighbors of i.

The Two-Sample T-test was utilized to confirm the differences between safe workers
and unsafe workers in Cnet, Snet and Eglobal . The significance of the data was tested with a
confidence level of p < 0.05.

3. Results
3.1. Demographic Information

Table 1 illustrates the demographic information for NUB and EUB. Overall, the mean
length of service was longer in EUB (9.76 ± 7.02) than in NUB (9.00 ± 7.06); the mean
height was essentially the same in NUB (172.88 ± 5.01) and EUB (171.71 ± 4.49); the mean
age was greater in EUB (36.38 ± 6.40) than in NUB (34.89 ± 6.77), and the mean weight
was higher in NUB (69.50 ± 7.04) was higher than that of EUB (67.73 ± 7.97). The marital
status and education information of NUB and EUB was shown in Table 2. In terms of
distribution rate, the proportion of unmarried is higher in EUB (19.2%) than in NUB (10.0%).
Compared to NUB, there are more coal mine workers with low educational attainment in
EUB, accounting for 34.6%.

Unfortunately, the results of the chi-square test showed that there was no significant
difference between the two groups of coal mine workers in the length of service, height,
age, weight, marital status, and education information. One-way ANOVA results showed
no significant differences in coal mine workers’ brain functional connectivity among the
above demographic factor subgroups.

3.2. Pearson’s Correlation Coefficient and t-Test

Figure 2a shows the 22 × 22 correlation matrices for NUB and EUB. Each grid repre-
sents the functional connectivity (COR∈ [0, 1]) between the two channels. A larger COR
indicates a stronger correlation between channels, meaning that activation of one channel
is significantly correlated with activation of the other. In Figure 2a, blue indicates weak
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connections between channels, and red indicates strong connections. In Figure 2b,c, based
on the binary method, COR = 0.5 and COR = 0.7 were, respectively, set as critical values in
this study. If the COR between two channels was less than the critical value, it was black; if
it was greater than the critical value, it was white. It can be seen that stronger connectivity
EUB was shown in comparison to NUB (p < 0.05 two-sampled t-test).

Figure 2. (a) Functional connectivity matrices between any two channels for NUB and EUB.
(b) Binary matrices with COR = 0.5. (c) Binary matrices with COR = 0.7.
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In particular, Figure 2b described the binary matrices (COR = 0.5) of NUB and EUB,
the functional connectivity of NUB was 42.98% while that of EUB was 43.39%. In these two
groups, the channels with COR greater than 0.5 were mainly concentrated in Brodmann’s
Areas (BA) 9 (CH01, CH02, CH03, CH04), BA 10 (CH06, CH07, CH10, CH11, CH12, CH16),
and BA 46 (CH08, CH13, CH14). That is, the strength of the functional connection between
the dorsolateral prefrontal cortex (BA 9 and BA 46) and frontal pole area (BA 10) was
stronger than other brain areas in PFC.

The functional connectivity of NUB in Figure 2c was 7.02% area wise while that of
EUB was 8.26% (COR = 0.7). In this case, the differences between the two groups were
significantly concentrated in CH 02-03 (BA 9), CH 06-01 (BA 10-BA 9), CH 06-02 (BA 10-BA
9), CH 07-02 (BA 10-BA 9) and CH 11-02(BA 10-BA 9). In other words, the COR in the
frontal pole area and dorsolateral prefrontal cortex of EUB were stronger than that of NUB.

As shown in Figure 3, it is clear that among the functional connectivity matrices for NUB
and EUB there were three pair channels passed the two-sample test (p < 0.05). Specifically,
CH 15-22 (p = 0.002325), CH 09-22 (p = 0.02102), and CH 21-22 (p = 0.02888). In this study, CH
9 belongs to BA 45, CH 15 belongs to BA 10, CH 21, and CH 22 belongs to BA 11. In other
words, the frontopolar area and orbitofrontal area (CH 15-22), pars triangularis Broca’s area
and orbitofrontal area (CH 09-22), Orbitofrontal area (CH 21-22) were the regions with the
difference between the functional connection matrix of NUB and EUB.

Figure 3. p-value of functional connectivity matrices for NUB and EUB (p < 0.05).

Figure 4 shows the histograms of the functional connectivity distribution of NUB and
EUB. The mean and standard deviation (Std) of functional connectivity of the two groups
were similar, while the frequency distribution is quite different, especially in the range 0.35
to 0.5.
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Figure 4. Histograms of the functional connectivity distribution of NUB and EUB.

3.3. Brain Network Analysis

For the subsequent network analysis, the correlation matrices were thresholded over
a sparsity range from 0.1 to 0.9. As a function of network efficiency, the global efficiency
(Eglobal), the local efficiency (Eloc), the clustering coefficient (Cnet), and the characteristic
path length (Lp) are depicted in Figure 5. In general, the parameters of global efficiency
(Figure 5a) and local efficiency (Figure 5b) increased with threshold, which is consistent
with the previous findings [93,100]. For brain networks of NUB and EUB, the clustering
coefficients increased (Figure 5c), but the characteristic path length decreased (Figure 5d)
as sparsity increased. Consistent with previous studies, these results indicate that the PFC
functional network has stable small-world characteristics [65,89,93,100,101].

The oxy-Hb-based group differences in clustering coefficient, nodal efficiency, and
nodal local efficiency during resting state were available in Table 4, provided with a two-
sample test (p < 0.05). It is worth noting that among these three network metrics, only CH
08 (belongs to BA 46) passed the two-sample t-test, specifically, the clustering coefficient
(p = 0.0004), nodal efficiency (p = 0.0384), nodal local efficiency (p = 0.0004).

The small-world analysis results were displayed in Figure 6, in which we discovered
that the γ (Figure 6a), λ (Figure 6b) and σ (Figure 6c), respectively, decreased and descended
with increased sparsity threshold for both NUB and EUB networks. Further, since the λ
was larger than 1 and the γ approached to 1 (σ > 1), both the resting-state brain networks
in NUB and EUB exhibited the small-world properties.
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Table 4. Group differences in clustering coefficient, nodal efficiency and nodal local efficiency during resting state.

Clustering Coefficient Nodal Efficiency Nodal Local Efficiency

ROI CH
Mean ± Sd

T-Value p-Value
Mean ± Sd

T-Value p-Value
Mean ± Sd

T-Value p-Value
NUB EUB NUB EUB NUB EUB

* 9—Dorsolateral
prefrontal cortex 01 0.6 ± 0.1 0.59 ± 0.11 0.4812 0.6314 0.56 ± 0.01 0.57 ± 0.09 −0.3753 0.7082 0.66 ± 0.11 0.65 ± 0.12 0.3351 0.7382

* 9—Dorsolateral
prefrontal cortex 02 0.64 ± 0.1 0.62 ± 0.08 0.8237 0.4120 0.56 ± 0.01 0.59 ± 0.07 −1.7021 0.0917 0.69 ± 0.09 0.69 ± 0.06 0.0159 0.9873

* 9—Dorsolateral
prefrontal cortex 03 0.64 ± 0.12 0.61 ± 0.15 0.7971 0.4272 0.54 ± 0.01 0.51 ± 0.09 1.4707 0.1444 0.68 ± 0.12 0.65 ± 0.15 1.1885 0.2374

* 9—Dorsolateral
prefrontal cortex 04 0.6 ± 0.11 0.6 ± 0.1 −0.0185 0.9853 0.57 ± 0.01 0.55 ± 0.09 1.0231 0.3086 0.66 ± 0.11 0.65 ± 0.1 0.4286 0.6691

* 46—Dorsolateral
prefrontal cortex 05 0.53 ± 0.16 0.54 ± 0.14 −0.1626 0.8712 0.48 ± 0.02 0.5 ± 0.11 −0.5690 0.5706 0.57 ± 0.17 0.58 ± 0.15 −0.2154 0.8299

* 10—Frontopolar area 06 0.62 ± 0.07 0.6 ± 0.08 1.0348 0.3032 0.6 ± 001 0.6 ± 0.04 −0.7637 0.4468 0.69 ± 0.06 0.68 ± 0.06 0.7059 0.4818
* 10—Frontopolar area 07 0.62 ± 0.13 0.63 ± 0.16 −0.2504 0.8028 0.53 ± 0.01 0.54 ± 0.11 −0.3812 0.7039 0.67 ± 0.14 0.68 ± 0.16 −0.3188 0.7505

* 46—Dorsolateral
prefrontal cortex 08 0.64 ± 0.07 0.56 ± 0.13 3.6304 0.0004 * 0.58 ± 0.01 0.54 ± 0.12 2.0967 0.0384 * 0.7 ± 0.06 0.63 ± 0.15 3.6598 0.0004 *

45—pars triangularis
Broca’s area 09 0.45 ± 0.2 0.48 ± 0.17 −0.7149 0.4763 0.41 ± 0.02 0.44 ± 0.16 −0.7777 0.4385 0.48 ± 0.22 0.52 ± 0.19 −0.7838 0.4350

* 10—Frontopolar area 10 0.58 ± 0.1 0.58 ± 0.1 −0.2765 0.7827 0.56 ± 0.01 0.56 ± 0.07 0.2711 0.7869 0.64 ± 0.1 0.64 ± 0.1 −0.2684 0.7889
* 10—Frontopolar area 11 0.61 ± 0.08 0.62 ± 0.05 −0.4760 0.6351 0.6 ± 0.01 0.61 ± 0.02 −1.1720 0.2439 0.69 ± 0.06 0.7 ± 0.03 −0.6768 0.5000
* 10—Frontopolar area 12 0.62 ± 0.08 0.62 ± 0.08 0.0643 0.9489 0.6 ± 0.01 0.59 ± 0.06 0.5009 0.6175 0.69 ± 0.07 0.69 ± 0.08 0.2394 0.8113

* 46—Dorsolateral
prefrontal cortex 13 0.58 ± 0.09 0.55 ± 0.12 1.4942 0.1382 0.58 ± 0.01 0.58 ± 0.06 −0.0972 0.9228 0.65 ± 0.08 0.62 ± 0.11 1.5247 0.1304

* 46—Dorsolateral
prefrontal cortex 14 0.53 ± 0.13 0.51 ± 0.16 0.4713 0.6384 0.5 ± 0.01 0.48 ± 0.13 0.9824 0.3282 0.58 ± 0.14 0.56 ± 0.17 0.4336 0.6655

* 10—Frontopolar area 15 0.47 ± 0.18 0.51 ± 0.17 −1.0407 0.3004 0.43 ± 0.02 0.48 ± 0.14 −1.4789 0.1422 0.51 ± 0.19 0.56 ± 0.18 −1.1735 0.2433
* 10—Frontopolar area 16 0.61 ± 0.07 0.63 ± 0.09 −1.1105 0.2694 0.6 ± 0.01 0.59 ± 0.05 0.6103 0.5430 0.68 ± 0.05 0.69 ± 0.07 −0.9391 0.3499

* 11—Orbitofrontal area 17 0.44 ± 0.19 0.41 ± 0.2 0.7440 0.4585 0.39 ± 0.02 0.36 ± 0.16 0.9054 0.3673 0.48 ± 0.21 0.43 ± 0.22 0.9364 0.3513
* 46—Dorsolateral
prefrontal cortex 18 0.53 ± 0.14 0.51 ± 0.18 0.5957 0.5527 0.5 ± 0.01 0.48 ± 0.14 0.8376 0.4042 0.57 ± 0.15 0.55 ± 0.19 0.6609 0.5101

* 11—Orbitofrontal area 19 0.46 ± 0.16 0.48 ± 0.19 −0.4376 0.6626 0.43 ± 0.02 0.45 ± 0.13 −0.4082 0.6840 0.5 ± 0.18 0.52 ± 0.19 −0.3948 0.6938
* 11—Orbitofrontal area 20 0.52 ± 0.13 0.56 ± 0.13 −1.3365 0.1843 0.52 ± 0.01 0.54 ± 0.1 −0.9959 0.3216 0.58 ± 0.14 0.62 ± 0.13 −1.2797 0.2035
* 11—Orbitofrontal area 21 0.44 ± 0.17 0.48 ± 0.19 −1.0392 0.3011 0.42 ± 0.02 0.43 ± 0.15 −0.3884 0.6985 0.47 ± 0.19 0.51 ± 0.2 −0.9037 0.3682
* 11—Orbitofrontal area 22 0.41 ± 0.18 0.44 ± 0.16 −0.6393 0.5241 0.38 ± 0.02 0.44 ± 0.13 −1.7044 0.0913 0.44 ± 0.2 0.48 ± 0.18 −0.8278 0.4097

Note: ROI, region of interest; CH, channel. T-value and p-value were the results of the two-sample test (p < 0.05). * indicates that the results passed the two-sample test.
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Figure 5. Comparison of the NUB brain network to the EUB brain network: network efficiency.
(a) The global efficiency (Eglobal). (b) The local efficiency (Eloc). (c) The clustering coefficient (Cnet).
(d) The characteristic path length (Lp). The blue color represents NUB anticipation, and the red color
represents EUB anticipation. The horizontal axes show the threshold values (T∈(0.1:0.1:0.9)) and the
vertical axes show the network properties indexes (p < 0.05).
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Figure 6. Comparison of the NUB brain network to the EUB brain network: small-worldness. Brain
network data were based on the functional networks generated from the oxy-Hb measurements over
continuous threshold values ((T∈(0.1:0.1:0.9)). (a) γ. (b) λ. (c) σ.

4. Discussion

In this study, a resting-state fNIRS measurement was utilized to characterize and
identify the differences in functional connectivity and brain network indicators in the PFC
regions between NUB and EUB. To the best of our knowledge, this study is the first to use
fNIRS in the coal mine safety field. Overall, our findings demonstrated that the fNIRS brain
functional connectivity and brain network analysis is a new approach that could be used to
further explore the neuropsychological mechanism of coal mine workers’ unsafe behavior
from the perspective of brain science. For each subject, we recorded 5 min of continuous
fNIRS data of PFC and applied band-pass filtering to eliminate physiological noise. First,
we applied COR to discriminate the difference in brain functional connectivity between
NUB and EUB. In general, EUB has higher connectivity on PFC than NUB, especially in the
frontal pole area and dorsolateral prefrontal cortex. Further, the difference between NUB
and EUB 22 × 22 channels’ COR was examined using a two-tailed t-test (p < 0.05). The
results showed a significant difference in COR between NUB and EUB in the frontopolar
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area and orbitofrontal area (CH 15–22), pars triangularis Broca’s area, and orbitofrontal area
(CH 09–22), Orbitofrontal area (CH 21–22). In addition, we also discovered that both NUB
and EUB cases exhibited small-world properties. More importantly, only CH 08 (belongs
to the dorsolateral prefrontal cortex) passed the two-sample t-test among the 22 channels,
which indicated that the brain networks of NUB and EUB show significant differences in
CH 08.

With respect to the connectivity patterns of NUB and EUB, our analysis demonstrated
that the resting-state functional connectivity of EUB in the frontal pole area and dorsolateral
prefrontal cortex were connected more intensively in the ROIs of PFC. It has been proved
that executive function and selective attention are related to the dorsolateral prefrontal
cortex, and multitasking ability is related to the frontopolar area [102–105]. Therefore, it
can be inferred that the executive function, selective attention, and multitasking ability of
EUB are more closely related than that of NUB. Previous studies have shown that with
increasing cognitive load, hemodynamic activity levels increase in the PFC with enhanced
brain functional connectivity (COR) [33]. In addition, higher severity of depression was
related to increased dynamic RSFC in the dorsolateral prefrontal cortex [106]. Impulsive
traits are linked to increased functional connectivity within the dorsolateral prefrontal
cortex [107]. These pieces of evidence are consistent with our research, coal mine workers
with depression, impulsion, or had a cognitive overload were usually easier to engage in
unsafe behavior. Interestingly, Guillermo Borragán explores the reduction in functional
connectivity between left prefrontal cortical regions caused by a sustained attentional
decline after cognitive fatigue induction in the presence of high sleep pressure [49]. A
possible reason for the inconsistency between our results and previous results is that
Guillermo Borragán’s experiment was under special conditions (after the whole night sleep
deprivation) while our experiment was conducted in the noon with enough sleep.

In a comparison between the two resting states, two-sample t-test at 95% confidence
interval showed that CH 15–22 (p = 0.002325), CH 09–22 (p = 0.02102), and CH 21–22
(p = 0.02888). In other words, there are significant differences between NUB and EUB in
the brain functional connections between the three groups of channels. Specifically, CH
15–22 represents the frontopolar area and orbitofrontal area, CH 09–22 represents pars
triangularis Broca’s area and orbitofrontal area, and CH 21–22 represents the orbitofrontal
area. The dorsolateral prefrontal cortex, frontopolar area, and orbitofrontal area work
together for central executive functions [108]. It is also responsible for systems, such as
response execution, memory extraction, and emotional assessment, and is associated with
socialization, perception, attention, and decision-making [11,47]. Broca’s area is related to
semantic judgment [109]. From this, it is reasonable to infer that NUB and EUB differ in
response execution, memory extraction, and emotion, socialization, perception, attention,
decision making, and semantic judgment. Combined with the field interviews by our
research team in Shaanxi Coal Group Northern Shaanxi Mining Hongliulin Company,
we learned that those coal mine workers who engaged in unsafe behavior mostly have
poor concentration, bad reaction and execution skills, and emotional instability. It follows
that our experimental results are consistent with the behavioral performance of coal mine
workers.

On this basis, we analyzed the brain network differences between NUB and EUB. The
results showed that the trends of parameters such as global efficiency, local efficiency, cluster-
ing coefficients, and feature path length of the two groups under different thresholds were
consistent with previous studies, but no significant differences were found [65,89,93,100].
Further, we calculated the small-world properties of the brain networks of NUB and EUB
separately, and the results were greater than 1. That is, the resting-state brain network data of
both groups have small-world properties. Notably, the results of the two-sample t-test showed
that only CH 08 (dorsolateral prefrontal cortex) passed the significance test for both clustering
coefficient, nodal efficiency, and nodal local efficiency (p < 0.05). Mengjing Wang has proved
that the clustering coefficient was of excellent level reliability [70]. Previous studies showed
that the dorsolateral prefrontal cortex is considered to be related to attention control during
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executive functions [110]. The higher clustering coefficient represents increased connectiv-
ity strength among neighbor nodes and a higher processing rate of local information [111].
Previous evidence showed that higher brain network clustering is associated with superior
working memory [112]. Thus, it is possible to reasonably infer that compared to EUB, NUB has
stronger attention control and better working memory to ensure safe work. In the following
works, further experimental tests could be performed on NUB and EUB in the dorsolateral
prefrontal cortex to examine the stability of this region in distinguishing the significance of
NUB and EUB.

Several limitations of the present work must be addressed. First, this study was
undertaken in a well-controlled laboratory environment. In the real world, underground
coal mine shafts and coal mine work operations are more complex and unpredictable.
Therefore, more detailed and dynamic scenarios need to be measured in future studies.
Second, the limited sample size of this study may affect the accuracy of the analysis results.
Third, this study concentrated only on the PFC, which could ignore the influences of
other brain regions. In fact, the frequency of unsafe behavior varies in coal mine workers
on different shifts, our next study will further explore the mechanisms underlying the
occurrence of unsafe behavior in coal mine workers by shift.

5. Conclusions

This rs-fNIRS study confirmed that the differences in brain functional connectivity
between coal mine workers who have engaged in unsafe behaviors and those who have not.
On the one hand, the COR analysis of NUB and EUB were significantly different among
the frontopolar area, orbitofrontal area, and pars triangularis Broca’s area. On the other
hand, brain network analysis results showed significant differences in clustering coefficient,
nodal efficiency, and nodal local efficiency in the dorsolateral prefrontal cortex. Altogether,
the results showed that the fNIRS functional connectivity is feasible to investigate the neu-
ropsychological mechanism of unsafe behavior of coal mine workers. Future research can
introduce other metrics describing the temporal time course of the hemoglobin variations
and machine learning approaches to further explore the neuropsychological mechanism of
unsafe behavior of coal mine workers.
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