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INTRODUCTION

The human gut and the rhizosphere are environments colonized by highly diverse communities of
microbes, which perform complex interactions with their host and carry out important functions
including enhanced disease resistance and nutrient uptake. In humans they are involved in energy
harvest and storage as well as in interactions with the immune system (Clemente et al., 2012).
In plants they have profound effects on seed germination, seedling vigor, nutrition, plant health,
and development of the innate immune system (Mendes et al., 2013; Berg et al., 2014a; Schikora
et al., 2016). The composition of the microbial communities is host-specific and related to its
health status (Smalla et al., 2001; Kinross et al., 2011; Berg et al., 2014a). Imbalances caused by
disturbance-induced shifts in microbial species abundances can lead to disease outbreaks in both
environments (Berendsen et al., 2012; Robles Alonso and Guarner, 2013; Berg et al., 2014b) and
further to probable proliferation of pathogenic species (Van Elsas et al., 2012; Van Agtmaal et al.,
2015).

To restore or maintain the health of the host, bio-based solutions supporting the pathogen-
suppressing ability of the hosts’ native microbiome can be applied, including probiotics, synbiotics
and biocontrol agents (de Vrese and Schrezenmeir, 2008). Such methods aim to increase the
abundance and activity of host beneficial bacteria (HBB). However, addition of HBB does not
always result in the desired pathogen suppression due to insufficient establishment, i.e., lower
survival and/or poor colonization rates of the HBB (Bashan et al., 2014).

Concepts from invasion ecology suggest that survival rates of invaders are inversely related to the
diversity of the nativemicrobiome. This can be explained by higher resource uptake and consequent
reduction in niche availability (Mallon et al., 2015). In addition, prevailing physical and chemical
parameters in the respective environment like texture, pore size distribution, and moisture content
might not favor the establishment of the introduced HBB. For a long-term establishment of the
HBB in the soil these abiotic factors have to be considered. In the gut, the colonization resistance
determined by the commensal microbiome is linked to its capacity to exploit the available niches
and to prevent the establishment of invaders via niche occupation (reviewed in Stecher et al., 2013).
The knowledge on mechanisms of microbial invasions (Mallon et al., 2015) can be used to improve
the survival of HBB in both environments.
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Given that similar mechanisms drive microbial colonization
and establishment in the gut and rhizosphere microbiomes,
we suggest that biocontrol strategies could be similar for
both environments (Ramírez-Puebla et al., 2013; Berg et al.,
2015; Mendes and Raaijmakers, 2015). Here we develop
possible strategies to ensure long-term establishment of HBB by
manipulating niche availability.

CREATING MICROHABITATS FOR HOST
BENEFICIAL BACTERIA BY INTRODUCING
MINOR DISTURBANCES

Several studies have shown that soils harboring low microbial
biomass or low microbial diversity are more susceptible to
colonization by other organisms (Fließbach et al., 2009; Van
Elsas et al., 2012). Certain agricultural practices can result in
major disturbances of the rhizosphere microbiome. Examples
include disinfestation with chemical pesticides, heat treatment
(Stapleton, 2000), radiation or anaerobic disinfestation (Van
Agtmaal et al., 2015). Moreover, tillage systems may have
major effects on the established community by reducing certain
soil microbial populations, particularly fungi (Ventorino et al.,
2012). Analogous events, leading to changes in the human gut

microbiome, are the application of broad spectrum antibiotics,
fecal transplantations (Landy et al., 2011; de Vos, 2013) or
considerable changes in diet (Turnbaugh et al., 2009). Whilst
major disturbances are frequently used to eliminate pathogens,
those methods possibly also disrupt beneficial functions of the
indigenous microbial community (Altieri, 1999; Geiger et al.,
2010).

An alternative strategy is to introduce minor disturbances

to create free niches for HBB’s in both the rhizosphere and the
human gut microbiome. This strategy aims to selectively empty
niches in the existing community.

In the rhizosphere the introduction of accessory bacterial
predators such as protozoa (e.g., flagellates, ciliates) or nematodes
(Jousset et al., 2006; Abada et al., 2009; Pedersen et al., 2009;
Freyth et al., 2010; Neidig et al., 2011; Müller et al., 2013)
could foster biocontrol strains via enhanced selective predation
when the biocontrol strain protects itself through production
of antibiotics. The increase in predation pressure might also
stimulate biocontrol strategies by direct predation on pathogens
as well as nutrient turnover and bacterial activity in soil.
Likewise, specific bacteriophages could be applied to selectively
eliminate target bacterial species or strains. This strategy has
been effectively shown as part of disease management for
Rhizobium sp., Bacillus sp., Burkholderia sp., Xanthomonas sp.,
Pectobacterium sp. and Dickeya sp. (Evans et al., 1979; Sharp
et al., 1986; Lynch et al., 2012; Chae et al., 2014; Santamaría et al.,
2014; Czajkowski et al., 2015). For this approach, elimination of
pathogens and reduction of soil bacterial species that directly
compete with the biocontrol agents (i.e., those sharing similar
metabolic capacities) are desirable. Due to their specificity,
bacteriophages have also been used to treat gastrointestinal
infections of bacterial origin in humans (Sulakvelidze et al.,
2001; Abedon et al., 2011). Moreover, they were successfully

used together with bifidobacteria to treat antibiotic-associated
dysbacteriosis in infants (Litvinova et al., 1978). Therefore,
bacteriophages represent an alternative to selectively wipe out
bacteria (either pathogens or strong competitors) in the gut and
to form a niche for potential HBBs to thrive. In the rhizosphere
the use of bacterial helper strains, an application of targeted
specific antibiotics or enzymes (e.g., chitinases; Herrera-Estrella
and Chet, 1999) might affect the microbiome composition
sufficiently to form free niches for HBB. Another possibility is
to introduce minor changes in physical properties like pH value
(Rousk et al., 2010), temperature (Van Veen et al., 1997; Haas
and Défago, 2005), moisture dynamics or salinity (Canfora et al.,
2014; Dini-Andreote et al., 2014).

Most of the methods described here apply to the rhizosphere
(e.g., substantial temperature or salinity changes), but due to
ethical concerns can only be considered in a limited manner
for the human gut. Thus, the direct applicability to the human
gut remains to be investigated. The concept of freeing/forming a
microhabitat for HBB by minor disturbances in the rhizosphere
or the human gut should be developed and optimized for
different situations.

Apart from making an existing niche available for the HBB by
removal of at least a part of the adapted community, creation of a
new niche could also be taken into consideration.

IMPROVEMENT OF THE
ENVIRONMENT—THE HUMAN GUT AS A
PARAGON FOR CONCEPTS IN
BIOCONTROL

To alleviate competition and increase the chance of establishment
of HBB in an environment that harbors a highly diversemicrobial
community utilizing all available resources can be enabled
by adding specific energy resources, for example prebiotics.
Prebiotics selectively stimulate growth and/or activity of the
beneficial bacteria and facilitate their establishment in the heavily
colonized gut (Teitelbaum and Walker, 2002; Tuohy et al.,
2003). Moreover, administration of synbiotics, a combination of
a probiotic (i.e., the HBB) and a prebiotic, has recently attracted
attention (Schrezenmeir and de Vrese, 2001). The prebiotic
provides a selective food source for the HBB enhancing its growth
and establishment (Teitelbaum and Walker, 2002; Saulnier et al.,
2008). The success of synbiotics has been demonstrated in vitro
as well as in vivo (Bartosch et al., 2005; Saulnier et al., 2008). We
suggest that the use of synbiotics in the human gut can serve as a
paragon to enhance the establishment of HBB in the soil. In the
rhizosphere the addition of a selective food source e.g., rhizopins
(Oger et al., 2004) could be used to stimulate specific bacteria in
the rhizosphere community.

SYNBIOTICS FOR THE SOIL

Parallels with prebiotics can be seen in the application of general
resources to the soil, such as composts and green manures.
These strategies have shown to be effective in the control of soil-
borne diseases as they combine the introduction of biocontrol
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microorganisms with organic matter after the thermophilic phase
low in competition and free nutrients. This substrate favors
the growth of beneficial microbes and suppresses the growth of
saprophytic pathogens (Hoitink et al., 1997; Hoitink and Boehm,
1999). A disadvantage of using this method, however, is varying
compost quality, which results in inconsistent colonization by
biocontrol agents and subsequent effects on disease-suppression
(Sturz and Christie, 2003). To ensure the presence of the
desired HBB, composts can be fortified with specific beneficial
microorganisms or amended with substrates that stimulate
growth and activity of a selected group of microorganisms
(Haggag and Abo-Sedera, 2005; Chae et al., 2006; Dukare et al.,
2011).

In addition, specific substrates and HBB can be combined to
complement each other. Several studies have shown that certain
carbon sources and minerals increase the activity of biocontrol
bacteria (Duffy and Défago, 1999; Shaukat and Siddiqui, 2003;
Kim et al., 2008). Moreover, plants are able to select for specific
bacteria by exudation of sugars, polysaccharides, amino acids,
and a variety of secondary metabolites (Teplitski et al., 2000;

Badri et al., 2009). These compounds are comparable to mucosal
glycans in the human gut. As a soil synbiotic, these compounds
could be artificially applied in combination with the respective
HBB. Not only nutrient sources, but also signaling molecules
and chemo-attractants should be taken into account, which
are often highly specific for certain bacterial species or even
strains. Ultimately, engineering beneficial microbes or genetically
modified plants that are capable of synthesizing certain enzymes
quenching bacterial signal particles might allow for shaping
microbial communities against plant host pathogens (Dong et al.,
2001; Ryan et al., 2009).

To support a long shelf life and stability of the product,
these compounds can be formulated with specific carrier
materials, membrane stabilizers and buffering agents in fine-
tuned quantities (Paau, 1998; Bashan et al., 2014). An example
for such soil inoculum carrier is biochar (charcoal used as
soil amendment), known to have positive effects on soil
properties such as pH (Saxena et al., 2013; Hale et al.,
2014) and potentially be amended with extra HBB-specific
resources.

FIGURE 1 | Process of establishment of host beneficial bacteria (HBB) in the rhizosphere soil and the human gut. Application of HBB without additional

measures frequently results in an unsuccessful establishment. To achieve a successful establishment of the HBB introduction of minor disturbances that empty

host-associated niches in combination with improvements of the environment that create a new niche are suggested. Examples for the rhizosphere and the human gut.
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UTILIZING THE SPECIFICITY OF
HOST-BACTERIUM INTERACTIONS

Selection of the appropriate crop plant or a particular
bacterial genotype can significantly influence the growth and
establishment of HBB in soil (Mazzola, 2004) as interactions
between plant and bacterial genotypes are assumed to be highly
specific. This specificity could also be used in the human gut
hosting defined beneficial strains (Tap et al., 2009). This selection
could counteract down-sides of synbiotics, in which the presence
of the HBB usually decreases dramatically once the consumption
of the prebiotic stops (Bezkorovainy, 2001). For the same reasons,
enhancing indigenous soil bacteria should be considered as an
alternative to introducing new strains as they are likely to be
better adapted to the respective environment (Chaparro et al.,
2012).

OUTLOOK AND CONCLUSIONS

In our opinion, the future of the HBB application lies in
milder treatment of soils by using case-specific nutrient-microbe
combinations as well as individualized treatments of patchy
field sites after field structure analysis. As summarized in
Figure 1, we suggest considering approaches such as the use of
minor disturbance combined with timely application of HBB to
improve their establishment in the soil. Soil treatments could
be selected in analogy to therapies chosen for human guts. A
new term “synbiotics for the rhizosphere” could reflect such
intention.

It is assumed, that modern crop plants lost beneficial traits
due to breeding programs conducted under conditions with high
nutrient supply and the use of chemical pesticides. Consequently,
breeding plants for beneficial plant-microbe interactions is an
emerging research topic that might give birth to cultivars, which

interactmore efficiently with beneficial indigenous strains or with
the applied HBB.

We see a sustainable future for agriculture by comparing
methods for restoring or retaining the human gut microbiome
and those altering the rhizosphere microbiome. Therefore,
we suggest a paradigm shift in agricultural practices toward
specialized treatment of the rhizosphere microbiomes as
described in this work. We invite researchers of agricultural and
human health related research areas to compare the methods of
both fields and take into consideration findings of the other for
their own future work.
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